integrata
cegos

)(

Clean Code -
Professionelle Codeerstellung und Wartung

Gesamtinhaltsverzeichnis

0 Uber diese UNterlagecoceueurueeeereruscesesesssssssssssssssssssssssssssssssssssasaens 0-3
0.1 Diese Unterlage und der KUrscooviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee 0-3
02 € 11T=To (=1 0 oo R 0-3
0.3 ARErnativen ... 0-3
0.4 Regeln 0-4
0.5 TeChNIK.cooiiiiiiiiiieiiieeieeeee e 0-4

1 Was ist QUAlitat?......cccoicemiiiiierr e 1-3
1.1 EINIEIUNG . ettt 1-3
1.2 Professioneller Code ... 1-3

1.2.1 Die NUtzer-Sicht........coo 1-3
1.2.2 Die ,Hacker -SiCht.........ccoooi 1-4
1.2.3 Die Programmierer-Sicht ... 1-5
1.2.4 Die betriebswirtschaftliche Sicht ... 1-6
1.2.5 Die Auftraggeber-Sicht............oeeiiiiiiii 1-6
1.2.6 Zusammenhange zwischen Merkmalen................cocuuuee. 1-6
1.3 Extrinsische und Intrinsische Merkmalecccoooiiiiieiinne. 1-9
1.4 ,Code Smells® — Anzeichen fiir schlechten Code 1-10
141 SHAITE e 1-10
1.4.2 ZerbrechlichKeit ..., 1-10
1.4.3 UnbeweglichKeit...........oooiiiiiii 1-10
1.4.4 ZAhMlUSSIGKEILoueeeeiiieeee 1-11
1.4.5 Unndtige Komplexitat..........ccoeeeeeiiiiiiiii e 1-11
1.4.6 Unndtige Wiederholungen ..., 1-11
1.4.7 Undurchsichtigkeit ..., 1-11
1.5 Was ist professioneller Code? ... 1-12

2 Objektorientierte Programmierung.........cccuuirrssmmmmmrmmsssnsssssssmssssssssnsnes 2-3
2.1 EINIEIUNG . 2-3
2.2 Arten der Programmi€rungcooooeeeiiieiieeeieeeiiiieeee e 2-3

2.2.1 Prozedurale Programmierung..........cooeeoueeieeeeneeeeeeniiiieeeee 2-3
2.2.2 Funktionale Programmierung.........cooeeeuuieeeieeeeeeeeeeeeeee 2-3
2.2.3 Logische Programmierung........ccccccoeeeiiimiieeeeneeeeeeeeee 2-4
2.2.4 Objektorientierte Programmierung..........ccccccceeeeeieiniinnnnnn. 2-5

1.0.0210 /9033 © Integrata AG IHV-1

IHV Gesamtinhaltsverzeichnis
2.2.5 MisChformen ... 2-5
2.3 Grundsétze objektorientierter Programmierung..........cooeccvvveeeenennn. 2-6
2.3.1 Unified Modeling Language (UML)ouvviiiiiiiiiiiiiinnnnes 2-6
2.3.2 Die Holper-Regel ... 2-6
2.3.3 ADSIrAKONeueiiiiiiiiiii 2-7
2.3.4 KIGSSEN ..ttt 2-7
2.3.5 Komposition und Aggregation................eeeeeeeeeeeeeeeeneeennnnnnns 2-8
2.3.6 ASSOZIALON ...evviiiiiiiiiiiiiiiiiiiiieii e 2-10
LG TR (o100 o o] g T=T o1 (=1 o KU 2-11
2.3.8 VErerDUNG ...eueeeiiiiiiiiiiiiiiiiieiee e 2-12
2.3.9 POIYMOIPNIEeiiiiiiiiiiiiiiiei e 2-13
2.3.10 Sichtbarkeitenccoooieiiiiiiie e 2-14
2.3.11 PerSiSteNZ ...eeeiiiiiii e 2-15
2.3.12 NaChICNEN....uiiiiiiiiiiii e 2-15
2.4 Die drei ,K*“ der Objektorientierung......ccccceeeeeeciveeieeeeee e 2-16
2.41 Kapselung (encapsulation)eeeeevueeieieeeeiineeinennnnns 2-16
2.4.2 Kopplung (COUPIING) ...uummmmmmiiiiiiiiiiiiiii e 2-21
P C TR (Col a F=T] (o] o W (o7o] a1 T<1 o] 1) SRR 2-24
2.5 ZusammenfasSUNQGcoouviiiiiiiiiiiiiiiiiieeeeee e 2-26
3 Professionelle Klassen und Objekte............ccoevmmmmiiiinniiicsseemnnnnneennnnns 3-3
3.1 Binleitung.....oooo 3-3
3.2 Klassenhierarchiencccccooiiiiiiiieeeeee 3-3
3.2.1 Das Liskovsche Substitutionsprinzip (LSP).........cceoeuunnneee. 3-5
3.2.2 Die Holper-Regel ... 3-5
3.2.3 Mehrfachvererbungen..........ccccciiiis 3-6
3.3 SchnittStellen ... 3-8
3.3.1 Hierarchieschnittstellen............cccccooiiiiiiiiiiies 3-8
3.3.2 Fahigkeitsschnittstellen................uuueeiiiiiiiiiiiiiiiiiiiiiiiiiieans 3-10
3.3.83 MiX-INS coiiiii 3-11
3.3.4 Parallele Schnittstellen-Hierarchiencccccccooeiiiiineenn.. 3-14
3.3.5 Client-Schnittstellenccueeeeeeeiiiiiie e, 3-15

3.3.6 Das Schnittstellen-Abgrenzungs-Prinzip
(Interface-Segregation-Principle ISP)cccccceiiinnnnnne 3-15
3.4 KIaSSENQIOBEN ... 3-20
3.4.1 Das Visions-Prinzip........cccouueeiiiiii e 3-22

3.4.2 Das Einzelne-Verantwortlichkeits-Prinzip
(Single-Responsibility-Principle — SRP)ccovveeiiiinnneee. 3-23
3.5 Anderungen ermigliChenccooeeeveveeeeeeeeeeeee e, 3-24
IHV-2 © Integrata AG 1.0.0210/ 9033

Gesamtinhaltsverzeichnis IHV

3.5.1 Das Offen-Gesperrt-Prinzip

(Open-Closed-Principle — OCP).....cccooiiiiiiiiiiiiiiiee 3-24

3.5.2 Das Prinzip der umgekehrten Abhéngigkeiten
(Dependency-Inversion-Principle — DIP)............ccccoeee. 3-26
3.6 ZuSammMENTaSSUNG ...cceeiiiiiiiiiiiiiiiiiiiiiieeee ettt et e e e e e e e e eeeeeeeeeeeeeeeees 3-28
T S (- 3 11 o 4-3
o I |] (=11 0T PP 4-3
4.2 Welche SPprache? ... 4-3
4.3 Bedeutungsvolle Namen ... 4-4
4.3.1 KIGSSEN .ttt 4-5
4.3.2 Abstrakte KlasSen..........ccccccuiiiiiiiiiiie 4-5
4.3.3 INTErfaCeS ...uuuuiiiiiiiiiiiiii 4-6
4.3.4 MethOden.........uuiiiiiiiiiiiii 4-6
4.3.5 KONSITUKIOrEN ...oeeiiiiiiiiiiiiiiiii e 4-7
4.3.6 Namen und Kontexteuuuuumiimmiimiiiiiiiiiiiiiiiiiiiiiiiiiinees 4-8
4.3.7 Besondere Namenuuuuuuiuiiiiiiiiiiiiiiiiiiieneeees 4-8
4.3.8 Missverstandliche Namen................uueuemmiiiiiiiineeiiiiiiiininnns 4-10
4.3.9 TextrauSCReNuuuiiiiiiiiiiiii e 4-11
4.3.10 Doméanen-Sprache vs. Losung-Sprache............cccuvveeee... 4-12
4.3.11 Ein Konzept, €in WOortooieeiiiiieecceeeeee e 4-12
4.3.12 Verwandte KONZepte.........uuuuuuimimmiiiiiiiiiiiiiiiiiiiiiiiiiniininnnnns 4-13
4.4 Namen und ihre FOrM ... 4-14
4.41 GroB- und Kleinschreibungcoooveeeiiiiiiiieeeeeeeeeecee, 4-14
4.4.2 Optische Verwechslungencccoooiiiiiiiiiineeieceeciee, 4-14
4.4.3 Aussprechbare Nameneueeeueuiimeiiiiiiinieiiiiiiieineeannns 4-15
4.4.4 Typ- und Kontextbezeichner (encodings)eeveeeeee. 4-16
4.45 Wortspiele und ,SIangccccoeeeeiiiiiiiiiee e 4-17
T Vo] o =] o= o [P 4-18
451 Andern von Namencccoooveveueeeeeeeeeeeeeeeee e, 4-18
4.5.2 Der Style-GUidecccoeeiiiiiiiiiiiiieee e 4-19
4.6 ZuUSamMMENTASSUNG ..cceveiiiiiiiiiiiiiiiiiieeeieeeeeee et e et eeeee e e e e e eeeeeeeeeeeeeeeeees 4-20
ST 1] 1= 1 3 o Yo (= o 5-3
51 EBinleltung.....cooo i 5-3
5.1.1 Was ist eine Methode?c.oeevveiiiiiiiiiiiieeeee e 5-3
5.2 FOrM . 5-4
B5.2.1 LANGE . it 5-4
LIV2Z N =1 (o To (o [£0] £ 1= o 1R 5-11
5.2.3 NAMEN et 5-13
5.3 Nl 5-15

1.0.0210 /9033 © Integrata AG IHV-3

IHV Gesamtinhaltsverzeichnis
5.3.1 Eine Aufgabecoooiiiiieeeeee e 5-15

5.3.2 Di€ ViSION. ... it 5-16

5.3.3 AbstraktionsSebenenccoeeeeiiiiiiiiiiiiieeeeeeeeeee e 5-16

5.3.4 Die Stepdown-Regel.......ccccevveeeiiiiiiiiiiieeee e 5-17

5.4 ArgUMENTE ... 5-18
5.4.1 Niladische Methodencccoooviiiiiiiiiiiiieeceeeeeevee e, 5-18

5.4.2 Monadische Methoden.............cooeiiiiiiiiiiiiiiieee, 5-19

5.4.3 Dyadische Methoden ..., 5-19

5.4.4 Triadische Methodencccoooiviiiiiiiiiiiiieeeceeeeeeve e, 5-20

5.4.5 GroBere (Polyadische) Methoden...........ccovvvvvvveiveeeinnnnnnn. 5-20

ST G I =T 1< PP 5-21

5.4.7 Ausgabe Parameter......cccccovvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeee 5-22

5.4.8 Argument-Objekle.......cccuiiiiiiieiiiiiieee e 5-23

DD Sl e 5-24
5.5.1 Seiteneffekte......uuuieeiiiiiiiiiicceeeeee e 5-24

5.5.2 Befehl oder Abfrage (Command Query Separation)........ 5-24

5.5.3 Mehrere Exit-Punktecouoeiiiiiiiiiiiiiieceeeeeeeeee e 5-25

554 REKUISIONEN......uuiiiiiiice et 5-25

5.6 ZusammenfasSuNgccoeiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 5-27
6 Kommentare und Dokumentation.........ccoceeeeeciiiiiiimineccccssee e eeeeaans 6-3
6.1 Einleitung......cooo i 6-3
6.1.1 Lesbarer Codeccoouriiiiimiiiiiiiiie e 6-3

6.2 Gute KOMMENTAIE ..ccvvveieeeeeeeeeeeeeee e 6-5
6.2.1 Rechtliche HINWeISe.........cccccoeviiviiiiiiii e, 6-5

6.2.2 Klarstellungen ... 6-5

6.2.3 AbsichtserkI&rungen ... 6-6

6.2.4 Design Patternscooeviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee 6-6

6.2.5 RegelverstiBe ... 6-6

6.2.6 UnterstreiChungen ... 6-7

6.2.7 Formale Kommentarecccooevviiiiiiiiiiiiiececieeeeeve e, 6-7

6.3 Schlechte KOmmentareovveeiiieiieiiiieecceeeeeeeeeeeee e 6-9
6.3.1 Unverstandliche Kommentare...........ccccoeeeeiivieeiiiiiieeeeeen, 6-9

6.3.2 ReduNdanzZencouoeiiiiiiiii e 6-9

6.3.3 Forcierte Kommentarecoooevveieeiiiiiiieieeeeceeeeeeeeeeees 6-10

6.3.4 CodehiStorien.......ccceeeeeiiiiiieiiceeee e 6-10

6.3.5 Klammer-Kommentare..........ccooovvieeiiiiiiiieeeeeiieeeeeeeeeeeees 6-11

6.3.6 Auskommentierter Codecceeeeeeeeiiiieiiiiiieeeeeeeeeeeeeeieaenn 6-11

6.3.7 Informationstberfluss.........ccooooieiiieriiiiiieeeeeeeeee 6-12

B.3.8 TODOS.....cco et 6-12

IHV-4 © Integrata AG 1.0.0210 /9033

Gesamtinhaltsverzeichnis IHV

6.3.9 Nicht-6ffentliche formale Kommentare.........ccccccccevveeeeeeee. 6-12

6.4 Testfalle als Dokumentation ... 6-13
6.5 ZusammenfasSUNGccouiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 6-14
7 Code-Formatierung......cccccceeerrrriiisssssnmmmnnss s s sssssss s s 7-3
71 Binlelfung....cooo 7-3
7.2 Warum FOrmatierung.........coooveiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 7-3
7.2.1 Automatisierte Formatierung........cccccevveveviiiiiiiiiiiiiiiiiieeeeen. 7-3

7.2.2 Sourcecode als Kommunikationcccccceeiiiiiiiiiieennnnn. 7-5

7.3 Die Zeitungsmetapher ... 7-6
7.3.1 SChlagzeileeeeeeieeieeee e 7-6

7.3.2 Untertiteloooeviiiiiiiiiiiiiiieieeeeee e 7-6

7.3.3 Der Einstieg/Leadcccuuiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 7-6

7.3.4 ADSEIZE....ooeiiiiiiiiiiiieeeeeeee e 7-6

7.3.5 Reihenfolgen........cccooviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee 7-9

7.3.6 Die RUDIIKuueiiiiieeeeeeeeee e 7-10

7.4 Weitere Formatierungsregeln ... 7-10
7.4.1 Breite und HONeooooviiiiiiiiiiiiiieeeeeeeeeeee 7-10

A =] 4 U Te1 (8 oo =] o PP 7-11

7.4.3 AUSNANMEN....coiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee et 7-11

7.5 Team RuUles! ... 7-12
7.6 ZusammenfasSUNQGcouuiiiiiiiiiiiiiiiiiieeeeeeee e 7-13
L2 I 11 (= (51151 o 8-3
8.1 Einleitung......oooo i 8-3
8.1.1 Code ENtropYeeeeeeeeiei i 8-3

8.1.2 Die ZetaChSe.....uuueeeiiiiiiiiiiiiiiiiiiiiii e 8-3

8.2 Basis Metriken ... 8-4
8.2.1 Cyclomatic Complexity (CC)cuerrirriiiiiiiiiiiieee e 8-4

8.2.2 Lines of Code (LOC)......coiiuiiiiiiiiee et 8-5

8.2.3 Non Commenting Source Statements (NCSS) 8-6

8.3 Objektorientierte Metrikencccuuveeeeeieiiii e 8-7
8.3.1 Weighted Methods per Class (WMQC)........ccccccvveeeiiiinnnnnen. 8-7

8.3.2 Depth of Inheritance Tree (DIT)uuueeeeieiiiiiiiiiiiiiiiiiiiiiinnns 8-7

8.3.3 Number of Children (NOC)ccovvieiiiiiiiiiiiieieee e 8-7

8.3.4 Coupling between Object Classes (CBO)......ccceeeeuunnnneee. 8-7

8.3.5 Response for a Class (RFC)....ccoeveiiiiiiiiiiiiiiiiiiee e 8-8

8.3.6 Lack of Cohesion in Methods (LCOM)........cccccveeeiiiinnnneen. 8-8

8.3.7 BEWEITUNQ...uuuiiiiiiiiiiiiitiiiii e 8-9

8.4 Statische Analyse Tools (Bug Finder) ..., 8-10

1.0.0210 /9033 © Integrata AG IHV-5

IHV

Gesamtinhaltsverzeichnis

8.5 Laufzeit MetriKenooovvviiiiiiii 8-11
8.5.1 Testabdeckungccoviiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeee e 8-11
8.5.2 Builddauer.........ccouuiiiiiiiiiiiiiiiiiiiiiieeeeeeeee e 8-11
8.6 ZusammenfasSUNGcouuiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 8-12
9 NebenlaufigKeitcccovmmmmiiiiiiiieerr e ————————— 9-3
9.1 EBinleitung.....cooo oo 9-3
9.1.1 Warum brauchen wir Nebenlaufigkeit?ccccovieeeee.n. 9-3
9.1.2 Mythen und MissverstandniSSse.........ccccceeeeeeeiiiiciireneeeeeenn. 9-4
9.1.3 Wahrhetencooovviiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeee e 9-5
9.1.4 Die Herausforderung............eeeeeeeeeeiieiiiieiiiieeiiieeeeeeeeeeeeeeeeen 9-5
9.2 Nebenlaufige Prinzipien........ccccovviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee 9-7
9.2.1 Nebenlaufig oder NiCht..........coovviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee 9-7
9.2.2 Atomare ZUugriffe ... 9-7
9.2.3 Das Single-Responsiblity-Principlecccccceeeviiiiiiiieennnnn. 9-8
9.2.4 Begrenzte Schreibzugriffe........ccooiiiiiiiieiieeeeee, 9-8
S 2 T D - 1 (=T g B (o] o 1= o PP 9-8
9.2.6 Unabhangige Threadsccccccveiiiiiiiiiiiiiiiiieiieieeeeeeeeeeeeee 9-9
9.3 Begriffe .. 9-10
9.4 Ablaufmodelle.........ooooiiiiiiii 9-11
9.4.1 ProducCer-CONSUMENceeiieieeeeiiiiiiiiieeeeeeeeeeanneeeeeeaeeens 9-11
9.4.2 Reader-Wrter ... 9-11
9.4.3 Dining PhiloSOPNErS.......cciiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeeee 9-12
9.5 BIblIOthEKEN .coeeiieiee e 9-13
9.6 TeStS i 9-13
9.6.1 MoNte Carlocoeeeeiiieieeee e 9-13

9.6.2 Unerwartete Situationen sind potentielle
Threading-Probleme ..., 9-13
9.6.3 Threading und nicht-Threading Tests trennen................. 9-13
9.6.4 Variable ThreadpoolS.........cccceriiiiiiiiiiiiiieee e 9-13
9.7 ZusammenfasSUNQGueeeeiieiiiiiiiiiiiieee e 9-14
0 0T o 11111 0o ' 10-3
101 BINIEIUNG ... 10-3
10.1.1 Was ist Performance?..........ccccooooieieiiineannens 10-3
10.1.2 Geflihlte Performance.........cccccooooiioiiiiies 10-4
10.1.3 Wann sollte optimiert werden?...........ooooiieiiiiiiiiiiiiie. 10-4
10.2 Das OptimierungSAreieCkKcouueriiiiiiiiiiiiiee e 10-5
10.3 OptimIerUNgSPrOZESS. .. .cocueieieeiiieee ettt 10-9
10.4 ZusammenfasSUNGooouuiiiiiiiie e 10-12
IHV-6 © Integrata AG 1.0.0210/ 9033

Gesamtinhaltsverzeichnis IHV

11 Meisterschafi......... e 11-3
12 Anhang — Regeln........ s 12-3
12.1 Kapitel 1 —Was ist Qualitatoooiiiiiiii s 12-3
12.2 Kapitel 2 — Objektorientierte Programmierung..........ccccccceveeeeennes 12-3
12.3 Kapitel 3 — Professionelle Klassen und Objektecccccceeeeeennees 12-4
12.4 Kapitel 4 — NamMENuuuiiiiiiiiiiiiiiiiiiiii e 12-5
12.5 Kapitel 5 — MethOdeN........cuuviiiiiiiiiiiiiiiiiiiiie s 12-7
12.6 Kapitel 6 — Kommentare und Dokumentationuvveeuennne 12-8
12.7 Kapitel 7 — Code-Formatierungen..........ccceeeeeeeeeiiiiiiiiiiceeeee e 12-8
12.8 Kapitel 8 — MetriKen..........uuuviiiiiiiiiiiiiiiiiiiiieeiee e 12-9
12.9 Kapitel 9 — NebenlaufigKeit..........uuuuuiiiiiiiiiiiiiiiiiiiieiiiee 12-9
12.10 Kapitel 10 — OptiMIi€ruNgueeeeeeeee e 12-9
12.11 Kapitel 11 — Meisterschaftuuvuiiiiiiiiiiiiiiiiie 12-9
13 Literaturempfehlungen ... 13-3
L€ === 13 1101 Lo (= G IDX-1

1.0.0210 /9033 © Integrata AG IHV-7

IHV Gesamtinhaltsverzeichnis

IHV-8 © Integrata AG 1.0.0210 /9033

Uber diese Unterlage

0.1 Diese Unterlage und der KUrscooovviiiiiiiiiiiiiiiiiiiieeeeeeeeceeeeeeeeee 0-3
(02 € 11 T=To (=T 0T oo R 0-3
0.3 ARErNatiVeN ..o 0-3
0.4 RegelN 0-4
0.5 TeChNIK.cciiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeee e 0-4

1.0.0210 /9033 © Integrata AG 0-1

Uber diese Unterlage

0-2

© Integrata AG

1.0.0210 /9033

Uber diese Unterlage 0

0.1

0.2

0.3

Uber diese Unterlage

Diese Unterlage und der Kurs

Diese Unterlage ist als Nachschlagewerk zum Thema Objektorientierte
Programmierung gedacht. Sie ist allerdings nicht unbedingt als direkter
Leitfaden zur Verfolgung des Kurses ausgelegt, sondern eher zu des-
sen Nacharbeitung. Insbesondere sind die Schwerpunkte des Kurses
von den Interessen der Teilnehmer abhdngig, was diese Unterlage
nicht widerspiegeln kann.

Gliederung

Diese Unterlage teilt sich grob in funf Teile.

Zunachst werden wir uns in der Einleitung mit den Grundsatzen von
Qualitat beschéaftigen und unser Ziele formulieren.

Im zweiten Teil wiederholen wir objektorientierte Grundsatze, die wir mit
Prinzipien des guten OO-Designs erweitern wollen.

Der dritte Teil steht ganz im Zeichen des lesbaren Codes. Wir werden
hier Grundsatze definieren, wie wir unseren Quellcode selbst besser
lesbar gestalten kénnen, anhand von Kriterien wie Namensvergabe,
Kommentaren, Funktionskomposition etc. Der Inhalt dieses Teils ist
teilweise rein formal, strahlt aber teilweise auch sehr deutlich in das
Design herein.

Im vierten Teil wenden wir uns einigen ausgesuchten, speziellen The-
men wie Optimierung und Nebenlaufigkeit zu.

Der flnfte Teil schlieBlich stellt den Anhang dar. Hier finden sich Indizes
und Verweise.

Alternativen

Unterlage und Kurs versuchen, wo immer es sinnvoll erscheint, mogli-
che Alternativen aufzuzeigen. Grundsatzlich verfolgt diese Unterlage al-
lerdings eine konkrete Meinung Uber sinnvolle und unsinnige Vorge-
hensweise und spricht konkrete Empfehlungen fir die Praxis aus. Diese
spiegeln zwangslaufig die Meinung des Autors wieder, begrinden sich
aber auf umfangreiche, konkrete und praktische Erfahrungen. Wo im-
mer Zeit und Umfang es rechtfertigen, wird diese Begrindung auch in
der Unterlage geliefert.

1.0.0210 /9033 © Integrata AG 0-3

0 Uber diese Unterlage

0.4 Regeln
Uber diese Unterlage verstreut findet sich eine Reihe von fundamenta-
len Regeln. Diese sind im Anhang noch einmal zusammengefasst.

0.5 Technik
Die Programmbeispiele in dieser Unterlage sind groBtenteils in Java
verfasst, die Konzepte gelten aber grundsatzlich flr alle objektorientier-
ten Programmiersprachen.

0-4 © Integrata AG 1.0.0210/ 9033

Was ist Qualitat?

1.1
1.2

1.3
1.4

1.5

Binleitung ..o 1-3
Professioneller COde ... 1-3
1.2.1 Die NUtzer-Sicht.......coovioiiiii e 1-3
1.2.2 Die ,Hacker-SiCht.........cccooiiii 1-4
1.2.3 Die Programmierer-Sichtccccoeeiiiiiiiiiiiiiieeee e 1-5
1.2.4 Die betriebswirtschaftliche Sichtccccccciiiiiiiinnee. 1-6
1.2.5 Die Auftraggeber-Sicht..........ccceeeiiiiiiiii e, 1-6
1.2.6 Zusammenhange zwischen Merkmalen..............ccccccuuunneee 1-6
Extrinsische und Intrinsische Merkmale ..., 1-9
,Code Smells“ — Anzeichen fir schlechten Codeccuueeeee... 1-10
141 SHAITE e 1-10
1.4.2 ZerbrechlichKeitcccoois 1-10
1.4.3 UnbewegliChKeit...........cccoiiiiiiiiiiieaees 1-10
1.4.4 ZAhflOSSIGKEItoveeeeiieeeeee e 1-11
1.4.5 Unnodtige Komplexitat..........ccccocemmimiiiiiiiiiiiiiiiiiiinens 1-11
1.4.6 Unndtige Wiederholungeneeeeeeiiiiiiiiiiiiiiiiiiiiiinnnns 1-11
1.4.7 Undurchsichtigkeit ... 1-11
Was ist professioneller Code? ... 1-12

1.0.0210 /9033 © Integrata AG 1-1

Was ist Qualitat?

1-2

© Integrata AG

1.0.0210 /9033

Was ist Qualitat? 1

1.1

1.2

1.2.1

Was ist Qualitat?

Einleitung

Im folgenden Kapitel wollen wir einige Grundlagen definieren. Zunachst
beschaftigen wir uns mit dem Ziel, das wir erreichen wollen und definie-
ren dazu einige Begriffe aus unterschiedlicher Sicht. Weiterhin beschaf-
tigen wir uns mit dem Softwareentwicklungsprozess und der Einord-
nung des eigentlichen Programmierens darin.

Professioneller Code

Unser anspruchsvolles Ziel lautet, professionellen Code zu erstellen.
Um es erreichen zu kénnen, missen wir zunachst natdrlich erst einmal
definieren, was professioneller Code Uberhaupt ist. Die Meinungen hie-
riber gehen wie zu erwarten deutlich auseinander.

Um bei Definition einen Schritt weiter zu kommen, wollen wir zunachst
den Begriff ,Professionell” durch eine adaquate Alternative ersetzen:
,<qualitativ hochwertig“. Wir wollen also eine méglichst hohe Qualitat er-
reichen. Der Begriff Qualitédt scheint zumindest im ersten Ansatz besser
zu definieren zu sein.

Allerdings gibt es nattirlich auch bei dem Begriff Qualitat unterschiedli-
che Sichtweisen. Wir wollen im Folgenden die wichtigsten davon naher
betrachten und uns diejenigen heraussuchen, die uns am geeignetsten
erscheinen, um unser Ziel zu formulieren.

Die Nutzer-Sicht

FUr einen Nutzer ist natdrlich in erster Linien die Funktionsfahigkeit des
Programmes selbst entscheidend. Weiterhin ist relevant, wie benutzer-
freundlich oder effizient das Programm ist. Steve McConnell hat die fir
den Nutzer wichtigen Kriterien in seinem Buch ,Code Complete® als
.Externe Softwarequalitats-Merkmale“ definiert:

Korrektheit: Der Grad der Fehlerfreiheit eines System (bezogen auf
Spezifikation, Entwurf und Implementierung). Wie korrekt erfillt das
Programm seine Aufgabe?

Benutzerfreundlichkeit: Wie leicht fallt es dem Benutzer, das Sys-
tem zu erlernen und zu benutzen?

Effizienz: Wie gut werden vorhandene Ressourcen genutzt? Wel-
chen Speicher/Leistungsbedarf besitzt das Programm? Wie schnell
ist es?

1.0.0210 /9033 © Integrata AG 1-3

Was ist Qualitat?

1.2.2

Zuverlassigkeit: Wie groB ist die Wahrscheinlichkeit, dass das Pro-
gramm unter normalen, definierten Bedingungen ausfallt? Wie hoch
ist die damit verbundene Ausfallzeit?

Integritat: Wie sicher und stabil sind die Daten? Sind die Daten im-
mer konsistent (Transaktionalitat, Nebenlaufigkeit)? Existieren MaB3-
nahmen, um einen unauthorisierten Zugriff auf die Daten zu verhin-
dern?

Anpassungsfahigkeit: Wie flexibel kann das Programm ohne Ande-
rung an die Umgebung oder andere Programme angepasst werden
(= Konfigurierbarkeit)

Genauigkeit: Wie genau sind die Ergebnisse (nicht: sind die Ergeb-
nisse richtig)? Die Auflésung der Ergebnisse.

Robustheit: Wie geht das Programm mit externen Fehlersituationen
um (Netzwerkausfall, Fehleingaben)? Wie haufig fliihren diese zu ei-
nem Ausfall des Programms?

Natdrlich gibt es bei diesen Merkmalen einige, die sich nur im Detail un-
terscheiden.

Wir werden externe Softwarequalitat im Weiteren auch als Produkt-
Qualitét bezeichnen. Wo hier in der Entwicklung die Schwerpunkte lie-
gen, wird durch die Anforderungen beschrieben — Korrektheit ist natir-
lich immer ein entscheidendes Kriterium (also die Funktionalitat), die
anderen Merkmale werden durch die sogenannten Nicht-Funktionalen
Anforderungen (NFAs) beschrieben.

Die ,,Hacker“-Sicht

Eine Sicht, die flr uns nicht weiter von Bedeutung ist, aber der Voll-
standigkeit halber dennoch erwahnt werden sollte. Diese Sichtweise
beschreibt ein Programm bzw. ein Stlick Software dann als professio-
nell', wenn das Problem méglichst ,innovativ (soll heiBen: méglichst
Uberraschend) gelést wurde. Die Hacker-Sicht dient dazu, die eigenen
Fahigkeiten unter Beweis zu stellen oder sich fir eine Firma unabding-
bar zu machen.

Leider wird die hieraus entstehende Herangehensweise immer noch
haufig in der Praxis beobachtet.

! Aber nicht unbedingt als qualitativ hochwertig

1-4

© Integrata AG 1.0.0210/9033

Was ist Qualitat? 1

1.2.3

Die Programmierer-Sicht

Die Programmierer-Sicht misst die Qualitat eines Programmes anhand
von Kriterien, die fir den Nutzer nicht direkt sichtbar sind, wie bei-
spielsweise Lesbarkeit des Quellcodes, und deshalb analog zu den ex-
ternen als interne Qualitdtsmerkmale bezeichnet werden. Ein anderer
gangigerer Begriff ist ,Sourcecode-Qualitit>. Grob betrachtet beein-
flussen diese Merkmale alle den Aufwand, den ein Programmierer zu-
kinftig erbringen muss, um bestimmte Ziele zu erreichen. Die wichtigs-
ten Merkmale sind:

Wartungsfreundlichkeit: Wie leicht kann der Code angepasst wer-
den, um Fehler zu korrigieren, die Leistungsfahigkeit zu erhdéhen
oder Fahigkeiten geandert bzw. hinzugefligt werden?

Flexibilitat: Wie leicht lasst sich das Programm an neue Situationen
anpassen?

Portierbarkeit: Wie viel Arbeit muss aufgewendet werden, um das
Programm in einer anderen Umgebung einzusetzen?

Wiederverwendbarkeit: Konnen Teile des Codes in anderen Pro-
grammen/Systemen verwendet werden?®

Lesbarkeit: Wie viel Anstrengung muss ein Entwickler aufbringen,
um den Code zu verstehen? Wie viel Fachwissen muss dieser dazu
mitbringen?

Testbarkeit: Wie gut lasst sich das Programm bzw. einzelne Kom-
ponenten (automatisiert) testen?

Verstandlichkeit: Wie leicht ist das Programm an sich verstandlich —
also wie die Komponenten zusammenarbeiten, bzw. ,was das Pro-
gramm macht®?

Bei den internen Merkmalen gibt es ebenso wie bei den externen natlr-
lich Uberschneidungen bzw. die Merkmale selbst unterscheiden sich
teilweise nur in Nuancen. Auch wirken einige Merkmale sicher in den
anderen Bereich hinein. Mit der Frage, welche Merkmale wie zusam-
men hangen werden wir uns im Folgenden noch ein wenig ausfuhrli-
chen beschaftigen.

Wie wir dabei auch sehen werden, nehmen zwei Merkmale, namlich
Flexibilitat und Portierbarkeit eine Sonderstellung ein.

2 Eine weitere, etwas verkiirzende Bezeichnung ist ,Les- und Wartbarkeit“. Hierbei
Werden allerdings einige Punkte nicht gewlrdigt.

% Das heiBt nicht, dass der Code jemals in anderen Systemen verwendet wird. Den-
noch ist das Maf der Wiederverwendbarkeit ein deutlicher Prifstein fiir die Source-
code-Qualitat

1.0.0210 /9033 © Integrata AG 1-5

Was ist Qualitat?

1.2.4

1.2.5

1.2.6

Die betriebswirtschaftliche Sicht

Die betriebswirtschaftliche Sichtweise verfolgt eine ganzlich andere
Strategie. Qualitat bezeichnet hierbei die Kosten die zum einen fir die
Erstellung eines Programmes, zum anderen aber auch im weiteren Le-
ben der Software fir Wartung, Pflege und Erweiterung anfallen. Ein aus
betriebswirtschaftlicher Sicht hochwertiges Programm kostet also in
Entwicklung und Pflege mdglichst wenig.

Traditionell kostet die Wartung eines Programmes ein Vielfaches der
Entwicklungskosten, weshalb die betriebswirtschaftliche Sicht natdrlich
Herangehensweisen favorisiert (bzw. favorisieren sollte), die méglichst
den Wartungsaufwand reduzieren.

Es gilt der Grundsatz: ,Gerade so viel nétig“, was die externen Merkma-
le angeht. Also nicht maximale Effizienz oder Benutzerfreundlichkeit,
sondern eben nur so viel, wie gefordert wurde (anhand des Pflichten-
heftes bzw. anderer Anforderungsdokumente).

Man kénnte die betriebswirtschaftliche Sicht auch als Zukunftsorientier-
te Sicht betrachten.

Natdrlich soll nicht unerwéhnt bleiben, dass zum einen die Weitsicht fir
diese Sicht in der Praxis fehlt und zum anderen, dass in besonderen
Fallen die Gewichtung aus betriebswirtschaftlicher Sicht ganzlich an-
ders sein kann. Das ist zum Beispiel der Fall, wenn das Produkt explizit
nicht gepflegt wird, sondern lediglich als Wegwerfprodukt in einem klar
definierten Rahmen genutzt wird (zum Beispiel zu Konvertierung eines
Datenbestandes): Allerdings hat die Erfahrung immer wieder gezeigt,
dass auch Code, der nie fiir eine langere Nutzung gedacht war, doch
Uber Jahre hinweg nicht nur genutzt, sondern eben auch gepflegt und
weiter entwickelt wird.

Die Auftraggeber-Sicht

Die vollkommene Umkehrung der betriebswirtschaftlichen Sicht ist die
Auftraggeber-Sicht. Fir den Auftraggeber (nicht den spateren Nutzer)
ist es weniger relevant, wie gut eine Software tatsachlich funktioniert,
sondern dass sie die geforderten Kriterien erfillt. Fir diese Sichtweise
sind die internen Merkmale nebensachlich. Stattdessen ist ein MalBgeb-
liches Kriterium fUr Qualitat (bzw. hier nattrlich auch eher von Professi-
onalitat), wie lange die Auftragserfillung dauert.

Zusammenhange zwischen Merkmalen

Natlrlich kann man die oben erwahnten Merkmale nicht ohne weiteres
von einander losgeldst betrachten. So kann sich z.B. eine Erhéhung der
Genauigkeit eines Programmes negativ auf die Effizienz auswirken.
Ebenso wirken sich insbesondere interne Merkmale auf die externen
aus. Die folgende Tabelle stellt die Zusammenhange zwischen den
Merkmalen exemplarisch dar:

1-6

© Integrata AG 1.0.0210/9033

Was ist Qualitat?

Korrektheit

Benutzerfreundlich-
keit

Korrektheit

Benutzerfreundlichkeit

Effizienz

Wartungsfreundlichkeit
Wiederverwendbarkeit

Anpassungsfahigkeit
Testbarkeit

Integritat
Robustheit
Flexibilitat
Portierbarkeit
Lesbarkeit

Verstandlichkeit

Effizienz

+

+ | Zuverlassigkeit

+

Zuverlassigkeit

+ |+ | Genauigkeit

+

+
+
1
1

Integritat

Anpassungsfahigkeit

Genauigkeit

Robustheit

Wartungsfreundlich-
keit

Flexibilitat

Portierbarkeit

Wiederverwendbar-
keit

Lesbarkeit

+

Testbarkeit

Verstandlichkeit

Das kann natdrlich nur eine exemplarische Aufstellung sein, die genau-
en Einflisse unterscheiden sich von Projekie zu Projekt. Wir wollen
aber dennoch einen Blick auf einige wesentliche Erkenntnisse werfen
und daraus Regeln ableiten.

Regel 1-1: eine maximale, externe Qualitat ist nicht erreichbar,
Schwerpunkte missen anhand klarer Anforderungen
gestellt werden.

Verbesserungen der Benutzerfreundlichkeit ziehen in der Regel eine
Verschlechterung der Sourcecode-Qualitat nach sich. Das liegt daran,
dass eine benutzerfreundlicher Oberflache in der Regel viele verschie-
dene, intelligente Méglichkeiten anbietet, um dasselbe Ziel zu erreichen

1.0.0210 /9033 © Integrata AG 1-7

Was ist Qualitat?

und damit den Code mit sehr vielen Fallunterscheidungen anreichert,
was sich insbesondere deutlich negativ auf die Les- und Testbarkeit
auswirkt.

Regel 1-2: Verbesserungen der Benutzerfreundlichkeit sollten
wohl uberlegt sind und nur bei begriindeten Fallen
(Nutﬁerforderung!) tber ein Ubliches MaB hinaus ge-
hen.

Viele Verbesserungen an den externen Merkmalen bewirken potentiell
eine Verschlechterung der Lesbarkeit, was sich ggf. wieder negativ auf
andere Punkte auswirkt.

Regel 1-3: Eine Betonung eines externen Merkmal muss durch
Nicht-funktionale Anforderungen (NFAs) begriindet
sein.

Verbesserungen an Wartungsfreundlichkeit, Wiederverwendbarkeit,
Lesbarkeit und Testbarkeit (und in geringerem MalBe auch Verstand-
lichkeit) haben in der Regel positive Auswirkungen auf eine Vielzahl
anderer (insbesondere interner, aber auch externer) Merkmale. Gleich-
zeitig ziehen diese Verbesserungen keine negativen Konsequenzen
nach sich.

Regel 1-4: Wartungsfreundlichkeit, Wiederverwendbarkeit, Les-
barkeit und Testbarkeit sollten, solange der Aufwand
vertretbar ist, so hoch wie méglich sein.

Hohere Flexibilitat und héhere Effizienz bedeuten Abstriche in fast allen
anderen Bereichen.

Regel 1-5: Flexibilitat und Effizienz sollten in der Entwicklung ei-
ne geringe Prioritat haben.

Zusammengefasst wollen wir uns die betriebswirtschaftlich bzw. die
Programmierer-Sicht zu eigen machen. Dabei nehmen wir aber explizit
die Merkmale Flexibilitdt und Effizienz aus unseren Uberlegungen her-
aus, da diese eben im Gegensatz zu den anderen internen Merkmalen
deutliche, negative Nebeneffekte haben.

* Eine Multitouch-Eingabe flr eine normale Eingabemaske geht (zumindest derzeit)
Uber das Ublich Maf weit hinaus

1-8

© Integrata AG 1.0.0210/9033

Was ist Qualitat? 1

1.3

Extrinsische und Intrinsische Merkmale

Um diese Unterscheidung auch im Sprachgebrauch deutlich zu ma-
chen, unterscheiden wir die internen Merkmale weiterhin in intrinsische
und extrinsische Merkmale. Intrinsische sind dabei diejenigen Merkma-
le, die sich gegenseitig bedingen, aber nach auBBen hin wenig Auswir-
kungen haben (also die eigentliche Sourcecode-Qualitat), konkret: War-
tungsfreundlichkeit, Wiederverwendbarkeit, Lesbarkeit, Testbarkeit und
Verstandlichkeit, die beiden extrinsischen dagegen diejenigen, die eben
eine konkrete, von aufBen vorgegebene Forderung erflllen.

Die beiden extrinsischen Merkmale (Flexibilitdt und Portierbarkeit)
nehmen also eigentlich eine Zwitterstellung zwischen externen und in-
ternen Merkmalen ein. Zum einen kdnnten sie als extern betrachtet
werden, weil sie durch auBere Anforderungen begrindet werden, zum
anderen handelt es sich aber um Eigenschaften, die zu allererst direkt
den Programmierer betreffen.

Der Autor hat sich entschieden, sie fur diese Unterlage den internen
Merkmalen zugeteilt zu lassen, vor allem weil damit die Definition von
McConnell nicht verandert oder durch eine weitere Alternative ersetzt
wird.

1.0.0210 /9033 © Integrata AG 1-9

Was ist Qualitat?

1.4

1.4.1

1.4.2

1.4.3

5“

,,Code Smells®*“ — Anzeichen fur schlechten Code

Die Qualitatsmerkmale, auf die wir hinarbeiten wollen haben wir be-
sprochen. Bevor wir diese Kapitel schlieBen, wollen wir noch einen kur-
zen Blick auf die andere Seite werfen: auf schlechten Code und Anzei-
chen dafur.

Wer jetzt vermutet, dass wir dabei im Prinzip die Qualitdtsmerkmale
umdrehen, liegt sicher richtig. Wir wollen dennoch auf einige interes-
sante Punkte naher eingehen. Und wie Frage, was die Konsequenzen
von mangelnder Qualitat sind, kann uns natdrlich auch helfen, unser
Auge fir Qualitat weiter zu scharfen.

Starre

Ein System ist dann starr, wenn es nur schwer oder umstandlich zu
verandern ist. Das liegt in der Regel daran, dass eine Anderung viele
andere Anderungen nach sich zieht.

Ein Code Smell, den fast jeder Programmierer bereits erlebt hat. Man
bekommt einen einfachen Anderungsauftrag, schatzt seinen Aufwand
als auBerst gering ein (,mach ich in einer Stunde®) und ist nachher mit
Folgednderungen deutlich 1anger beschaftigt (,Es war doch komplizier-
ter als gedacht®).

Zerbrechlichkeit

Ein System ist zerbrechlich, wenn Anderungen an einer Stelle dazu flih-
ren kénnen, dass Bereiche nicht mehr funktionieren, die mit der gean-
derten Stelle eigentlich gar nichts zu tun haben (sollten).

In der Praxis &uBert sich das so, dass eine Anderung eine Vielzahl an
kleineren und gréBeren Problemen nach sich zieht, deren Behebung
wiederum eine Reihe neuer Probleme mit sich bringt (die hoffentlich
wenigstens frihzeitig durch Tests erkannt werden).

Diese problematischen Programmteile neigen dazu, ein wichtiger Be-
standteil des Systems zu sein, an den sich niemand mehr herantraut.
Probleme werden dann lieber an einer ganz anderen Stelle umgangen,
als an der Wurzel behoben.

Unbeweglichkeit

Ein unbewegliches System l&sst sich schwer in einzelne Komponenten
zerlegen, die dann in anderen Systemen wiederverwendet werden kén-
nen. Dieser Smell tritt dann auf, wenn einzelne (allgemein nitzliche)

® Ein Code Smell (Uibler Geruch des Codes) beschreibt ein negatives Anzeichen, dass
auf ein tieferliegendes Problem hindeutet.

© Integrata AG 1.0.0210/9033

Was ist Qualitat? 1

1.4.4

1.4.5

1.4.6

1.4.7

Teile des Codes so eng mit den speziellen Teilen vermischt sind, dass
ein Herauslésen nur unter gréBter Anstrengung méglich ist.

Zahflussigkeit

Ein System qilt als zahflissig (oder einfach nur zah), wenn es leichter
ist Dinge falsch (oder unsauber) umzusetzen (auch bekannt als
.Hacks", als es richtig zu machen.

Je schwerer es ist, die korrekte Lésung (die das Design nicht verletzt)
umzusetzen, desto gréBer ist die Versuchung die schnelle Lésung zu
wahlen.

Das muss sich nicht nur auf den Code selbst beziehen, auch das Um-
feld kann zahflissig sein. Dauert ein vollstandiger Build-Vorgang meh-
rere Stunden, so ist ein Entwickler versucht, nicht die Lésung zu wah-
len, die am besten das Design umsetzt, sondern die, die am wenigsten
Kompilier-Aufwand erfordert.

Unnotige Komplexitat

Ein ungemein haufig anzutreffender Code Smell. Er sagt aus, dass das
Design Elemente beinhaltet, die (derzeit) nicht bendtigt werden und nur
deshalb aufgenommen wurden, weil man sie ja ,spater brauchen kénn-
te®.

Der Entwickler sieht kommende Entwicklungen voraus und bereitet sich
darauf vor. Prinzipiell eine gute Sache, nur wird dabei meistens Uber
das Ziel hinaus geschossen. Der Schritt von der Flexibilitat zur unnéti-
gen Komplexitat ist ziemlich klein.

Unnétige Wiederholungen

Ein Versto3 gegen das uralte Prinzip der Softwareentwicklung: DRY —
Don'’t repeat yourself (Wiederhole Dich nicht). Das Problem mit sich
wiederholendem Code ist, dass eine Anderung an dem kopierten Code
an jeder Stelle vorgenommen werden muss, an die der Code gesetzt
wurde — eine unndtige Anstrengung, die in der Praxis teilweise auch
nicht mehr machbar ist.

Undurchsichtigkeit

Das genaue Gegenteil der Lesbarkeit. Je mehr Energie ein Program-
mierer aufbringen muss, um ein Stlick Code zu verstehen, je ofter er
beim Uberfliegen innehalten muss, um sich eine Passage genauer an-
zuschauen, desto undurchsichtiger ist der Code.

1.0.0210 /9033 © Integrata AG 1-11

Was ist Qualitat?

1.5

Was ist professioneller Code?

Kehren wir also zurlick zur Ausgangsfrage: ,was ist professioneller Co-
de?”

Flr uns ist also professioneller Code Sourcecode, der die intrinsischen
Qualitatsmerkmale (Wartungsfreundlichkeit, Wiederverwendbarkeit,
Lesbarkeit, Testbarkeit und Verstandlichkeit) maximiert, aber dabei na-
tirlich die erforderlichen externen Qualitadtsmerkmale umsetzt.

Im weiteren Verlauf dieser Unterlage werden wir uns mit den externen
Qualitatsmerkmalen nur noch am Rande auseinandersetzen, da diese
ja maBgeblich durch die NFAs bestimmt werden. Das Ziel, dass wir ab
hier verfolgen hei3t demnach, die intrinsischen Merkmale, also die Qua-
litdt unseres Sourcecodes so weit wie méglich zu steigern. Jede MaB3-
nahme wollen wir dabei direkt an den intrinsischen Merkmalen, die sie
beeinflusst, bewerten.

Wenn wir in Zukunft Regeln aufstellen, werden wir sie daher mit Kar-
zeln versehen, die die dazu gehdrigen intrinsischen Merkmale be-
schreiben (Wart, Wied, Lesb, Test, Vers).

Tatsachlich werden wir feststellen, dass dabei Lesbarkeit einen Gber-
proportional hohen Stellenwert bekommt. Bei genauerer Uberlegung
liegt das nattrlich nahe. Um einen Code zu warten oder ihn wiederzu-
verwenden, muss er ja zwangslaufig erst gelesen und verstanden wor-
den sein.

© Integrata AG 1.0.0210/9033

Objektorientierte Programmierung

2.1 EBinleitung......ooo i 2-3
2.2 Arten der Programmi€rung ... 2-3
2.2.1 Prozedurale Programmi€rung................eeeeeeeeeeemmmeemmmnnnnnnnns 2-3

2.2.2 Funktionale Programmierung..........ccccueueeeeeeeeeiemneineeeninnnns 2-3

2.2.3 Logische Programmi€rung................eeeeeeememmemmmemmmeennnnnnnnnnns 2-4

2.2.4 Objektorientierte Programmierung.........ccccccceveeeeeeinicinnnneen. 2-5

2.2.5 MiSCNfOrMENuuieiiiiiiiiii e 2-5

2.3 Grundséatze objektorientierter Programmierung.......cccccceeeeeeiiveneeee. 2-6
2.3.1 Unified Modeling Language (UML)oueviiiiiiiiiinininnnnes 2-6

2.3.2 Die Holper-Regel ... 2-6

2.3.3 ADSIraKiONeiiiiiiiiiiiiiii 2-7

2.3.4 KIGSSEN ..ttt 2-7

2.3.5 Komposition und Aggregation................eeeeeeeeeeeemmeeeeennnnnnnns 2-8

PR T T A XS1=To ¥4 - 11 o] o KU 2-10

LG I ARN (CoT0q] o o] gT=T 01 =1 o KU 2-11

2.3.8 VErerDUNGueeeiiiiiiiiiiiiiiiiiiei e 2-12

2.3.9 POIYMOIPNIEeiiiiiiiiiiiiee e 2-13
2.3.10 Sichtbarkeiteneueeeeeeeieiiiiiiiiiieeeeeeaeennees 2-14
2.3.11 PerSIStENZ oo 2-15
1.0.0210/ 9033 © Integrata AG 2-1

2 Objektorientierte Programmierung
2.3.12 Nachrichten.........couvviiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 2-15

2.4 Die drei ,K*“ der Objektorientierung......ccccceeeeeecieeiieeeeeee e, 2-16
2.41 Kapselung (encapsulation)eeeeeveeeieeeeeeiieeeinennnnns 2-16

2.4.2 Kopplung (COUPIING) ...uummmmiiiiiiiiiiiiiiii e 2-21

P G (Col F=E]To] o W (o7o] a1=T<1 o] 1) SRR 2-24

2.5 ZusSammenfasSUNGccoouuiiiiiiiiiiiiiiieieeeeeeee et 2-26

2-2 © Integrata AG 1.0.0210/ 9033

Objektorientierte Programmierung 2

2.1

2.2

2.2.1

2.2.2

Objektorientierte Programmierung

Einleitung

In diesem Kapitel werden wir uns mit einigen Grundsatzen und Begrif-
fen beschéaftigen. ,Objektorientierte Programmierung“ setzt sich aus
zwei Begriffen zusammen mit der Objektorientierung und der Program-
mierung. Folgerichtig werden wir im Folgenden beide Begriffe néher be-
leuchten. Wir werden die Objektorientierung mit anderen Programmie-
rer-Techniken vergleichen und daraus erste Konsequenzen fir die fol-
genden Kapitel ableiten. Naturgeman besitzen die folgenden zwei Kapi-
tel eine starke Schnittmenge zur Objektorientierten Analyse bzw. zum
Objektorientierten Design.

Arten der Programmierung

Lasst man spezielle und nur akademisch relevante Félle au3en vor, so
kénnen wir prinzipiell zwischen vier Programmier-Paradigmen unter-
scheiden.

Prozedurale Programmierung

Prozedurale Programmiersprachen stellen die ,klassische® Art zu Pro-
grammieren dar. Ein Programm besteht aus einer Reihe von Anwei-
sungen, die vom Rechner Schritt flir Schritt, eine nach der anderen
ausgefuhrt werden. Zwischenergebnisse kdnnen in Variablen abgelegt
und mehrere Programmier-Schritte zu einem Unter-Programm (eben
einer Prozedur) zusammengefasst werden.

Diese Arbeitsweise kommt dem Rechner sehr entgegen, da sie sehr
dicht an der Funktionsweise eines Rechners selbst liegt. Damit wird der
Aufwand, aus dem Quellcode ein ausfihrbares Programm herzustellen,
deutlich geringer als bei den anderen Alternativen.

Typische Vertreter prozeduraler Programmiersprachen sind Basic, Co-
bol oder C.

Funktionale Programmierung

Funktionale Programmiersprachen, die auch als deklarativ' bezeichnet
werden, beschreiben im Gegensatz zu prozeduralen Programmierspra-
chen nicht, wie etwas zu berechnen ist, sondern stattdessen, was zu

! Wobei deklarative Sprachen eine Obermenge darstellt zu der auch die im Folgenden
beschriebenen, logischen Sprachen gehéren.

1.0.0210 /9033 © Integrata AG 2-3

Objektorientierte Programmierung

2.2.3

berechnen ist. Sie besitzen keinen inneren Zustand und keine Schlei-
fen-Konstrukte, sondern ein Programm besteht aus einer Reihe von
Funktionsdefinitionen, die mittels Komposition, Verzweigung und Re-
kursion zusammengesetzt werden. Ein Funktionsaufruf liefert dabei das
Ergebnis zuriick, hat aber sonst keine Seiteneffekte.

Funktionale Programmierung hat einige Zeit ein Schattendasein gefihrt
und war schwerpunktmaiig an Universitaten interessant, erlebt aber in
letzter Zeit eine Renaissance. Das ist nicht zuletzt in der Tatsache be-
grindet, dass funktionale Programme viel leichter in eine Multi-
Threading Umgebung umzusetzen sind, als das bei prozeduralen und
objektorientierten Programmen der Fall ist. Mit der zunehmenden An-
zahl an Mehrkern-Prozessoren wird diese Art der Programmierung da-
bei immer wichtiger.?

Typische Vertreter funktionaler Programmiersprachen sind Haskell,
LISP und (als neue Sprache) Scala. Allen diesen Sprachen ist aller-
dings gemeinsam, dass sie Ansatze besitzen, die Uber einen reinen,
funktionalen Kern hinausgehen.

Logische Programmierung

Logische Programmiersprachen folgen einem ganzlich anderen Ansatz.
Ein Logik-Programm ist keine Sammlung von Anweisungen oder Funk-
tionen, sondern besteht aus einer Menge von Fakten (Axiomen) und
darauf aufbauenden Regeln. Eine Anfrage an das System ist dann die
Frage nach einer Folgerung aus Fakten und Regeln, um weitere, abge-
leitete Fakten zu generieren.

Das folgende, aus Wikipedia® (ibernommene, einfache Beispiel soll das
Prinzip verdeutlichen:

Fakten:
Lucia ist die Mutter von Minna.
Lucia ist die Mutter von Klaus.
Minna ist die Mutter von Nadine.
Regel:

Falls X ist die Mutter von Y und Y ist die Mutter
von Z Dann X ist die GrofSmutter von Z.

Frage/Ziel:
Wer ist die GrofSmutter von Nadine?

Antwort des Computers, Folgerung aus den Fakten und
Regeln:

Lucia

2 Vergleiche hierzu auch das Kapitel Gber Nebenlaufigkeit.

% http://de.wikipedia.org/wiki/Logische Programmierung

2-4

© Integrata AG 1.0.0210/9033

Objektorientierte Programmierung 2

224

2.2.5

Wie aus dem Beispiel ersichtlich werden durfte, ist die logische Pro-
grammierung nur fir einen deutlich umrissenen Problembereich (vor al-
lem kinstliche Intelligenz bzw. Expertensysteme) sinnvoll.

Ein typischer Vertreter dieser Sprachen ist Prolog.

Objektorientierte Programmierung

Wie auch der prozeduralen liegt der objektorientierten Programmierung
der Gedanke zu Grunde, dass dem Rechner Schritt flir Schritt vorgeben
wird, was er tun soll. Der Unterschied liegt in der Verbindung von An-
weisungen und Daten.

Ein Programm besteht in der objektorientierten Programmierung aus
einem Zusammenschluss von einzelnen Objekten. Ein Objekt verbindet
dabei eine Reihe von Daten (der Zustand) mit einem Verhalten (die
Anweisungen, mit denen das Objekt gesteuert werden kann).

Die Vorteile der objektorientierten Programmierung liegen in der Tatsa-
che, dass sich die Realitat (bzw. ein System) objektorientiert in der Re-
gel leichter formulieren I&sst, als das mit ausschlieBlich prozeduralen
Hilfsmittel mdglich wéare. AuBerdem erleichtert die objektorientierte Pro-
grammierung das Zerlegen eines Programms in einzelne Partitionen
(Komponenten), was der Wiederverwendbarkeit zugute kommt.

Nachdem sich diese Unterlage konkret auf die objektorientierte Pro-
grammierung bezieht, werden wir uns mit diesem Thema natdrlich im
Folgenden noch ausfihrlicher auseinandersetzen.

Typische Vertreter objektorientierter Programmiersprachen sind C++,
Java und Smalltalk.

Mischformen

In der Softwareentwicklung setzen sich seit einiger Zeit immer mehr
Mischformen zwischen den einzelnen Arten zu Programmieren durch.
So kann beispielsweise das steuernde Framework objektorientiert, die
eigentliche Fachlichkeit aber funktional realisiert sein. Gerade im Java-
Umfeld werden Kombinationen aus Java, Scala und einer Skriptsprache
immer beliebter.

Ein Beispiel hierflir kdnnte eine Prozessmodelierung sein. Die Prozess-
ablaufsteuerung selbst (der Server und/oder das Framework) sind in
Java geschrieben, die einzelnen Business Komponenten in Java oder
Scala und die (recht dynamischen) Entscheidungsknoten des konkreten
Proiess dann in einer Skriptsprache (zum Beispiel Groovy oder JRu-
by).

* Skriptsprache bedeutet in diesem Fall, dass der Code nicht vorher kompiliert wird,
sondern dynamisch erst zur Laufzeit des Programms.

1.0.0210 /9033 © Integrata AG 2-5

Objektorientierte Programmierung

2.3

2.3.1

2.3.2

Grundsatze objektorientierter Programmierung

Im folgenden Abschnitt wollen wir zunachst einige typische, objektorien-
tierter Begriffe definieren, und uns dann mit den Prinzipien dieser Art zu
Programmieren beschaftigen. Unser besonderes Ziel sollte dabei sein,
die objektorientierte Programmierung dazu zu benutzen, die intrinsi-
schen Qualitatsmerkmale unserer Software zu verbessern.

Unified Modeling Language (UML)

Wir werden die folgenden Punkte mit UML-Diagrammen erganzen.
UML ist eine formale, grafische Beschreibungssprache, die unter ande-
rem dazu genutzt wird, Beziehungen zwischen Klassen zu visualisieren.
Fur alle wichtigen Konzepte gibt es in der UML festgeschriebene Nota-
tionen. FUr unseren Anwendungsbereich reicht aber ein kleiner Aus-
schnitt der Sprache, den wir im Folgenden mit beleuchten wollen.

UML unterscheidet zwischen drei verschiedenen Sichtweisen auf eine
Architektur:

o Konzeptionell: Die konzeptionelle Sichtweise beschreibt die Kon-
zepte der Domanen-Sprache. Das Diagramm ist also ein fachliches
Modell mit mdglichst wenig Rucksicht auf die spatere, technische
Implementierung. Die konzeptionelle Sicht ist damit sprachunabhan-

g19.
o Spezifikation: Die Spezifikation definiert die Schnittstellen und wie

diese miteinander interagieren, aber nicht die konkrete Implementie-
rung (vgl. hierzu den Abschnitt ,Klasse” weiter unten).

¢ Implementierung: In dieser Sicht werden tatsachliche Klassen mit
ihren Implementierungsdetails modelliert. Die Praxis zeigt, dass die-
se Sicht am haufigsten verwendet wird, wobei es sinnvoller ware,
haufiger die Spezifikation zu modellieren.

Far unsere Zwecke sind die Unterscheidungen nicht wirklich von Be-
deutung, sie wirken sich aber auf die Terminologie der einzelnen Ele-
mente aus. So spricht man in der Konzeptionellen Sicht beispielsweise
von einem Attribut, in der Implementierung aber von einem Feld.

Es gibt derzeit zwei gebrauchliche Versionen von UML, Version 1.4 und
Version 2. Die Unterschiede sind flr uns aber nicht weiter relevant, wir
werden uns an der 1.4 Notation orientieren.

Die Holper-Regel

In den Grundkonzepten der Objektorientierung wird in der Literatur im-
mer wieder auf Sprechweisen eingegangen (Ein Pferd ist ein (eine be-
sondere Form) von Tier), die wir im Folgenden auch wiederholen. Hier-
bei handelt es sich keineswegs nur um eine Verstandniserleichterung
oder Eselsbricke. Vielmehr kénnen wir diese Sprechweise auch als
PrOfstand flr unsere Architektur benutzen. Klingt der passende Satz

2-6

© Integrata AG 1.0.0210/9033

Objektorientierte Programmierung 2

2.3.3

2.34

holprig oder ,unfertig“ ist das ein gutes Zeichen daflr, dass unsere Ar-
chitektur bzw. unser Design noch nicht ausreichend ausgefeilt ist.

Regel 2-1: (1. Holper-Regel) Klingt eine Sprechweise fiir ein ob-
jektorientiertes Konzept holprig, so ist das Konzept
nicht korrekt angewendet. (Vers)

Abstraktion

Jedes Objekt im System kann als ein abstraktes Modell ei-
nes Akteurs betrachtet werden, der Auftrage erledigen, seinen Zustand
berichten und andern und mit den anderen Objekten im System kom-
munizieren kann, ohne offenlegen zu muissen, wie diese Fahigkeiten
implementiert sind. Solche Abstraktionen sind entweder Klassen (in der
klassenbasierten Objektorientierung) oder Prototypen (in der prototyp-
basierten Programmierung).

Grundsétzlich ist die Abstraktion kein Begriff, der sich ausschlieBlich auf
die objektorientierte Programmierung bezieht, sondern auch durchaus
in der prozeduralen Programmierung Anwendung findet. Er geht in der
Objektorientierung allerdings noch weit Gber dieses Maf3 hinaus.

Klassen

In der Objektorientierung werden Objekte haufig durch ihre Klasse defi-
niert. Eine Klasse fast dabei gleichartige Objekte zusammen. Gleichar-
tig bedeutet dabei, dass die Objekte ein vergleichbares Verhalten und
die gleiche Art von Zustand besitzen. Eine Klasse beschreibt genau je-
nes Verhalten und die Art des Zustandes (mit eventuellen Standardwer-
ten), die konkreten Objekte (die Instanzen der Klasse) den konkreten
Zustand. Zustande bezeichnet man in der Objektorientierung als Attri-
bute, Member- oder Instanzenvariablen, Fahigkeiten als Methoden.®

Beispiel:

Die Klasse ,Kreis” wird definiert durch den Mittelpunkt, den Radius
sowie die Farbe. Jeder Kreis besitzt die Fahigkeit, seine Flache und
seinen Umfang zurlick zu berechnen und zurtick zu liefern.

Eine Instanz der Klasse Kreis besitzt den Mittelpounkt (10 3), den Ra-
dius 23 und die Farbe ,Rot“. Eine weitere Instanz besitzt Mittelpunkt
(0 0), den Radius 1 sowie die Farbe ,Blau*.

Wir unterscheiden bei einer Klasse zwischen der &uBeren und der inne-
ren Sicht. Die duBere Sicht (die sogenannte Schnittstelle) beschreibt
dabei die Fahigkeiten der Klasse, ohne konkret darauf einzugehen, wie
diese realisiert werden. Die innere Sicht (der eigentliche Programmcode
bzw. die Implementierung) beschreibt dagegen, wie die Methode tat-
sachlich funktioniert, also die einzelnen Anweisungen, die fir diese Me-

® Traditionell wird aber fiir eine Methode ohne Seiteneffekte auch weiterhin haufig der
Begriff ,,Funktion“ gebraucht.

1.0.0210 /9033 © Integrata AG 2-7

Objektorientierte Programmierung

2.3.5

thode ausgefuhrt werden. Viele Programmiersprachen bieten die M&g-
lichkeit, beide Sichten voneinander zu trennen®.

Eine Klasse wird in UML als Kasten dargestellt, der in drei Bereiche
eingeteilt ist. Zuoberst steht der Name der Klasse, gefolgt von den Att-
ributen und zuletzt den Methoden (bzw. in der UML-Terminologie: Ope-
rationen). Interfaces, also die Trennung von Schnittstelle und Imple-
mentierung (und damit auch vom Zustand) werden als ,Klasse* darge-
stellt, die keinen Attribut-Bereich besitzt und zuséatzlich mit dem Stereo-
typ «interface» markiert ist.”

Kreis <<interface>>
x : float Kreis
y : float berechneUmfang() : float
radius : float berechneFlache() : float

Farbe : String

berechneUmfang() : float
berechneFlache() : float

Abbildung 2-1: Eine Klasse und ein Interface

Komposition und Aggregation

Objekte, deren Zusténde ihrerseits wieder durch Objekte beschrieben
werden, sind sogenannte Kompositionen. Abgegrenzt ist dieser Begriff
zur Aggregation, die im Programmcode in der Regel identisch aussieht
(auch hier sind die Attribute eines Objektes wieder Objekte), aber eine
inhaltlich etwas unterschiedliche Bedeutung hat. Eine Komposition be-
deutet dabei eine so enge VerknlUpfung, dass die Bestandteile (die
Komponenten) in der Regel alleine keinen Sinn machen bzw. ihre Le-
bensdauer an die des Komposites (des ,Besitzers®) geknlpft sind.

Eine gangige Sprechweise flir Komposition ist ,besteht aus® bzw. in
umgekehrter Richtung ,ist Bestandteil von*.

Ein Auto besteht aus vier Reifen, einem Motor und einer Karosserie.
Ein Motor ist Bestandteil eines Autos.

¢ 7.B. bei Java durch Interfaces, bei C++ durch Header-Dateien.

’ Ein Stereotyp ist eine Méglichkeit, in UML zusétzliche Informationen unterzubringen,
die an anderer Stelle definiert wurden. Stereotypen werden in franzdsischen Anfih-
rungszeichen eingefasst («stereotyp»). Einige Stereotypen (wie «interface» sind in
der UML-Definition vorbelegt.

2-8

© Integrata AG 1.0.0210/9033

Objektorientierte Programmierung 2

Ohne das Auto machen die einzelnen Komponenten allerdings wenig
Sinn®.

Eine Aggregation kénnte man dagegen als ,hat Zugriff auf‘ oder ,hat
eine direkte Beziehung zu* formulieren®:

Eine Person hat eine direkte Beziehung zu ihrem Partner.

In diesem Fall bedeutet das Ende der Person nicht das Ende des Part-
ners (aus Objektsicht betrachtet).®

Grundsétzlich ist die Frage, ob eine Beziehung zwischen zwei Objekten
eine Aggregation oder eine Komposition darstellt, auch immer durch die
Fachlichkeit beeinflusst. Trotzdem wollen wir zumindest zwei Grundsat-
ze beschreiben, die bei der Auswahl nitzlich sein kénnten:

e Ein Objekt kann immer nur Teil einer einzigen Komposition sein.
Taucht das Objekt als Attribut weiterer Objekte auf, sind diese Be-
ziehungen zwangslaufig Aggregationen.

e Eine Komposition ist immer gerichtet. Ist eine Beziehung beidseitig,
so kann nur eine Richtung die Komposition sein, die andere muss
zwangslaufig eine Aggregation sein (Ein Auto besteht (unter ande-
rem) aus einem Motor, ein Motor hat eine direkte Beziehung zu sei-
nem Auto).

Im UML-Diagramm werden Kompositionen als Linie mit einer ausgefull-
ten Raute auf Besitzer-Seite dargestellt, bei Aggregationen ist die Rau-
te nicht gefullt. Die beiden Seiten der Linien werden mit Angaben der
Kardinalitat versehen. Diese wir in Ublicher Form mit 1, 1..*, 0..* oder
einer festen Zahl dargestellt. Gegenlber der Kardinalitat kann die Rolle
der Zielklasse angegeben werden, die diese in der Assoziation belegt,
ublicherweise steht hier der Name des Attributes, unter dem die Ziel-
klasse im Besitzer abgelegt ist. Ist kein Name angegeben, so wird der
Name der Zielklasse angenommen. Bei einer Komposition ist die Kardi-
nalitat auf Komposite-Seite logischerweise immer 1.

8 Was naturlich von der fachlichen Aufgabe abhangt. Fir die Verwaltung eines Auto-
teile-Zulieferers macht es natirlich sehr wohl Sinn, die Komponenten einzeln zu be-
trachten.

® Kennt“ wiirde zwar oft auch Sinn machen, ist aber in der Objektorientierung bzw. in
der Modellierung mit UML schon vorbelegt.

' Wenn man von gewissen Brauchen der alten Pharaonen bewusst absieht.

1.0.0210 /9033 © Integrata AG 2-9

Objektorientierte Programmierung

Reifen

reifen
1 ‘

Auto

Person 0.1 partner

fahren() : void

1

karosserie motor 1

Karosserie Motor

2.3.6

Abbildung 2-2: Komposition und Aggregation

Assoziation

Eine Assoziation stellt eine deutlich leichtere Verbindung von einem
Objekt zu einem anderen (bzw. einer Klasse zu einer anderen) dar. Ei-
ne Assoziation wird formuliert als ,kennt®. Kennen bedeutet in diesem
Fall, die Fahigkeiten des anderen Objektes kennen und damit auch da-
rauf zugreifen kénnen. Eine andere Sichtweise ware: Der Name der ge-
kannten Klasse taucht im Code der kennenden Klasse auf und ist auch
zur Kompilierzeit der Klasse verfugbar (ggf. als Header-Datei oder Inter-
face).

Kompositionen sind in der Regel auch Assoziationen, fur Aggegrationen
gilt das haufig auch (aber nicht so haufig wie bei Kompositionen). Ein
Auto, das unter anderem aus einem Motor besteht, wird normalerweise
auch die Klasse Motor kennen, umgekehrt wird der Motor haufig auch
Zugriff auf sein Auto haben und es damit kennen. Denkbar ist allerdings
auch, dass dieses Kennen explizit nur in Gegenrichtung der Kompositi-
on / Aggregation existiert.

Ein Beispiel:

In einem Baumdiagramm kennt jeder Knoten seinen Vaterknoten,
aber der Vaterknoten selbst kennt seine Kinder nicht.

2-10

© Integrata AG 1.0.0210/9033

Objektorientierte Programmierung 2

2.3.7

In UML werden Assoziationen als einfache Linien dargestellt, ggf. um
eine Pfeilspitze erweitert, die die Richtung angibt. Ist diese nicht vor-
handen, so bedeutet das entweder, dass die Richtung beidseitig ist,
oder dass sie nicht bekannt ist.

<<interface>>
Gehaltsrechner

berechneGehalt(Person : void) : int

<<interface>>
Angestellter

Abbildung 2-3: Assoziation

Komponenten

Eine Komponente ist eine weitere Abstraktionsebene oberhalb der
Klasse. Es handelt sich um den Zusammenschluss einer Reihe von
Klassen zu einem gemeinsamen Zweck. Dabei werden weitere Imple-
mentierungsdetails verborgen und die Komponente zeigt nach auf3en
eine oder mehrere Schnittstellen. Die Bestandteile einer Komponente
sind dabei in der Regel Gber Komposition und Aggregation mit einander
verknupft. Eine Komponente kann wiederum aus Unterkomponenten
bestehen. Auf diese Weise entsteht eine Architektur, die bei jedem
Schritt einen Abstraktionslevel tiefer geht. Je nach Programmiersprache
gibt es Sprachelemente, die entweder direkt Komponenten darstellen
oder dazu genutzt werden kénnen."

Komponenten sind wieder tber Assoziationen mit anderen Komponen-
ten verknupft.

Eine Komponente wird in UML als Kasten mit zwei kleinen Rechtecken
auf der linken Seite dargestellt.'?

" In Java sind das Beispielsweise Pakete (packages)

'2 Das gilt fir UML 1.4. In UML 2 wird die Komponente als Rechtecke mit dem «com-
ponent» Classifier und einem Komponentensymbol in der rechten oberen Ecke
dargestellt. FUr unsere Zwecke ist aber auch diese Unterscheidung unerheblich.

1.0.0210 /9033 © Integrata AG 2-11

Objektorientierte Programmierung

2.3.8

Buchhaltung Versand

e I A 57
[-

Abbildung 2-4:Komponenten

Vererbung

Klassen kdénnen in der Regel voneinander erben. Man bezeichnet das
Erben auch als Spezialisierung einer Basisklasse. Die erbende Klasse
dbernimmt damit alle Fahigkeiten der Oberklasse, kann diese aber ge-
gebenenfalls erweitern oder Uberschreiben. Auch der Zustand wird ge-
erbt, wobei nicht gesagt ist, dass die Unterklasse auch direkten Zugriff
auf ihren ererbten Zustand hat (vgl. Sichtbarkeiten). Der Zweck der
Vererbung liegt darin, Gemeinsamkeiten zusammen zu fassen, was
insbesondere im Zusammenspiel mit der Polymorphie (vgl. folgenden
Abschnitt) sehr saubere und zukunftssichere Architekturen ermdglicht.

Man kann eine Vererbungsbeziehung auch als ,ist ein“ (oder ,ist eine
besondere Form von®) Satz formulieren:

Ein Angestellter ist eine (spezielle) Person
Ein Hund ist ein Tier.

Aus auBerer Sicht (der Schnittstellen-Sicht) stellt eine Unterklasse im-
mer nur eine Erweiterung ihrer Oberklasse dar, d.h. eine Fahigkeit der
Oberklasse kann einer Unterklasse nicht wieder aberkannt werden. Aus
innerer Sicht kann sich die Unterklasse aber sehr wohl anders verhal-
ten.

Erbt eine Klasse von einem Interface (also auf Implementierungsebe-
ne), so nennt sich die Vererbung auch ,Realisierung“ bzw. Implementie-
rung.

In UML wird eine Spezialisierung durch einen Pfeil mit einer dreieckigen
Spitze dargestellt (die zur Basisklasse zeigt), bei der Realisierung ist
der Pfeil selbst gestrichelt dargestellt.

2-12

© Integrata AG 1.0.0210/9033

Objektorientierte Programmierung 2

2.3.9

Auto <<interface>>

Angestellter

fahren() : void

A

Benzinauto Zeitarbeiter

tanken() : void

Abbildung 2-5: Vererbung

Polymorphie

Ein wichtiges Konzept der Vererbung ist die Polymorphie (Vielgestaltig-
keit). Sie sagt aus, dass ein Objekt auch als eine Instanz seiner Ober-
klasse angesprochen werden kann, bzw. dass der aufrufende Code
nicht einmal Kenntnis dartber benétigt, um was flr eine Klasse es sich
bei dem agierenden Objekt konkret handelt.

Ein Beispiel:

Die Klasse Auto besitzt eine Methode ,fahren”. Damit ist garantiert,
dass jede Unterklasse von Auto diese Fahigkeit auch besitzt (nicht
aber, was die jeweilige Unterklasse im Einzelnen tut). Fligen wir nun
dem Beispiel zwei Unterklassen hinzu: Elektroauto und Benzinauto.
Beide kénnen .fahren®, allerdings mit unterschiedlichen Ergebnissen
— so wird der Verbrauch sicher unterschiedlich berechnet und von
anderen Betriebsstoffen abgezogen.

Eine Klasse Person, die nur das Auto kennt (aber nicht die Unter-
klassen), kann trotzdem alle drei Auto-Arten fahren, da sie nur Fa&-
higkeiten nutzen muss, die ihr auch bekannt sind.

Erst zur Laufzeit wird , anhand der tatsédchlichen Klasse des Autos,
entschieden, welche Methode tatsdchlich aufgerufen wird.

Die Person ist allerdings nicht in der Lage, die Autos aufzutanken, da
die Fahigkeit ,tanken” bzw. ,laden* teil der jeweiligen Unterklasse ist.

1.0.0210 /9033 © Integrata AG 2-13

Objektorientierte Programmierung

2.3.10

Auto

Person
< ______

fahren() : void

2\

Elektroauto Benzinauto

laden() : void tanken() : void

Abbildung 2-6: Polymorphie

Sichtbarkeiten

Sichtbarkeiten definieren, wer welche Methode und Felder einer Klasse
nutzen kann. Welche Sichtbarkeiten konkret zur Verfligung stehen, ist
von der genutzten Programmiersprache abhangig. Die vier Sichtbarkei-
ten, die die Sprache Java bietet, decken aber den Normalfall ab und
finden sich auch ahnlich in der UML-Darstellung wieder. Zum Vergleich
werden wir hierbei auch die C++-Sichtbarkeiten auffiihren. In UML wer-
den Sichtbarkeiten durch ein einzelnes Symbol vor dem Feld oder der
Methode dargestellt (was natdrlich in der Implementierungssicht wirklich
Sinn macht).

e Public(+): Public Methoden oder Felder sind flir alle sicht- bzw.
nutzbar, unabhangig davon, aus welcher Klasse Sie aufgerufen wer-
den. Das gilt sowohl fir C++ als auch far Java.

o Private(-): Private Methoden und Felder sind nur in der Klasse sicht-
bar, in der sie definiert wurden — also auch nicht in Unterklassen.
Auch das ist in C++ und Java gleich.

¢ Protected(#): Protected Methoden und Felder sind unter C++ nur flir
die Klasse und ihre Unterklassen sichtbar. Darlber hinaus sind pro-
tected Methoden unter Java zusétzlich auch fur Klassen im gleichen
Paket sichtbar.

e Package(~): Die Methoden und Felder sind nur fir Klassen im eige-
nen Paket sichtbar. C++ hat keine direkte Entsprechung fiir diese
Sichtbarkeit, unter Java wird sie auch als default-Sichtbarkeit be-
zeichnet, da sie glltig ist, wenn nicht explizit eine Sichtbarkeit ange-
geben ist.

2-14

© Integrata AG 1.0.0210/9033

Objektorientierte Programmierung 2

2.3.11

2.3.12

SichtbarkeitsDemo

-privAttr @ int
~defAttr : int
#protAttr : int
+pubAttr : int

-privOp() : void

~defOp() : void

#protOp() : void
(

+pubOp() : void

Abbildung 2-7:Sichtbarkeiten

In der Praxis gehéren Sichtbarkeiten zu den Elementen, bei denen es
sich selten lohnt, sie im UML-Diagramm aufzufihren, da sie sich sowie-
so im Laufe der Zeit &ndern werden. Ein einfacher Ansatz lautet: Attri-
bute sind standardmaBig private (dazu spater mehr) und werden nur
dann markiert, wenn es Grinde gibt, davon abzuweichen. In das Dia-
gramm eingetragene Methoden sind dagegen standardmaBig public.
Grundséatzlich bleibt dann zu klaren, in wieweit nicht-public Methoden
Uberhaupt in das Diagramm aufgenommen werden sollten.

Persistenz

Persistenz ist in der heutigen Programmierung ein doppeldeutiger Beg-
riff. Die géngige Bedeutung lautet, dass ein Objekt langer lebt, als das
Programm lauft, also irgendwo auBerhalb der Programms auf einem
nicht-flichtigen Speicher abgelegt wird (h&dufig eine Datenbank oder
das Dateisystem).

In der urspringlichen Bedeutung ist damit allerdings gemeint, dass Ob-
jekte langer leben als nur fir einen Methodenaufruf, wie das mit Variab-
len in der prozeduralen Programmierung in der Regel der Fall ist.

Nachrichten

Auch der Nachrichtenbegriff ist mittlerweile mehrfach belegt. Heute ver-
steht man darunter in der Regel eine Nachricht (also Objekt oder Da-
tenstruktur), die mittels eines Dienstes innerhalb eines Programms oder
zwischen Programmen und Rechnern, meist asynchron, ausgetauscht
wird. FUr diese Art der Programmierung, die in erster Linie der Entkopp-
lung von Teilsystemen gilt, gibt es einige ,Buzz-Words®, wie zum Bei-
spiel ,Message-oriented-Middleware (MOM)“ oder ,Enterprise Service
Bus (ESB)“. Auch das Schlagwort ,SOA (Service oriented architecture)”
zielt oftmals in diese Richtung.

1.0.0210 /9033 © Integrata AG 2-15

Objektorientierte Programmierung

2.4

2.41

2411

In der urspringlichen Sprachweise der Objektorientierung bedeutet ,ei-
ne Nachricht versenden® aber lediglich, eine Methode eines Zielobjek-
tes aufzurufen bzw. auszuflhren. Mit dieser Terminologie sollte der Ei-
genstandigkeits-Gedanke der Objekte unterstrichen werden.

Die drei ,,K“ der Objektorientierung

Nachdem wir uns bisher mit den (handwerklichen) Grundséatzen der Ob-
jektorientierung beschéaftigt haben, werden wir uns als nachstes mit den
Regeln fir gutes Design auseinandersetzen. Es gibt in der Objektorien-
tierung drei Eigenschaften, die gutes Design férdern kénnen. Diese be-
zeichnen wir im Folgenden als ,die drei K der Objektorientierung®.

Kapselung (encapsulation)

Die Kapselung (auch: ,Datenkapselung“) hat ihren Ursprung in den
Abstrakten Datentypen in der prozeduralen Programmierung. Grundge-
danke dabei ist, dass der Zugriff auf die eigentlichen Daten nur tber de-
finierte Prozeduren maoglich ist. Damit wird die Datenstruktur nicht mehr
durch ihren internen Aufbau, sondern durch ihr Verhalten bestimmt'®.

In der objektorientierten Programmierung bedeutet Kapselung, das Imp-
lementierungsdetails verborgen werden und ein Objekt nur Gber eine
wohldefinierte Schnittstelle genutzt oder verédndert werden kann. Typi-
sche Implementierungsdetails sind dabei Felder (Instanzvariablen) und
Hilfsmethoden.

Indem mit technischen Hilfsmitteln verhindert wird, dass der Nutzer ei-
nes Objektes direkt auf Implementierungsdetails zugreift, hat der Pro-
grammierer der Klasse des Objektes die Mdglichkeit, diese Details je-
derzeit zu verandern, ohne die Funktionalitdt andere Elemente zu ge-
fahrden'.

Werkzeuge zur Kapselung sind die oben erwahnten Sichtbarkeiten und
Zugriffsmethoden (sog. Getter und Setter). Bei letzterem handelt es
sich um Methoden, die in der Regel nur ein Feld auslesen und zurtck-
liefern oder das Feld neu setzen.

Sichtbarkeiten

Durch eingeschréankte Sichtbarkeiten verhindern wir, dass bestimmte
Methoden von aufBBen aufgerufen werden. Als Faustregel gilt: alles was
zur offentlichen Schnittstelle gehért, sollte auch als public deklariert
sein. Was nicht dazu gehoért, sollte eine eingeschrankte Sichtbarkeit be-
sitzen (welche, werden wir gleich noch beleuchten).

' Was eine Vorstufe zur echten Objektorientierung darstellt.

' Weil die Implementierung dabei ,geheim“ bleibt, ist ein weiterer Name ,Geheimnis-
prinzip®

2-16

© Integrata AG 1.0.0210/9033

Objektorientierte Programmierung 2

Mit jeder Gffentlichen Methode definieren wir einen Vertrag (englisch:
Contract) Uber das Verhalten unserer Klasse. Andern wir eine 6ffentli-
che Methode in ihrem Verhalten (ob nun in der Signatur oder im Algo-
rithmus), so verandern wir auch diesen Vertrag, mit dem Ergebnis, dass
wir sicherstellen missen, dass jeder Code, der diese Methode nutzt,
ebenfalls geédndert (oder zumindest Uberprift) werden muss. Jede 6f-
fentliche Methode stellt also einen potentiellen Kopplungspunkt fir an-
dere Klassen dar. Dass das einen groBen Aufwand nach sich ziehen
kann, darfte klar sein. Um diesen klein zu halten, definieren wir eine
Regel:

Regel 2-2: Die Signatur und das Verhalten von Schnittstellen-
Methoden sollte nachtraglich nur noch in Ausnahmefal-
len gedandert werden (Wart, Wied).

Das hat umgekehrt die Konsequenz, dass wir die Schnittstellen eben so
klein wie mdglich halten sollten.

Regel 2-3: Neue Methoden sollten der Schnittstelle nhur dann hin-
zugefugt werden, wenn es dafir einen konkreten An-
wendungsfall gibt (Wart).

Damit bleibt nur die Frage offen, welche Sichtbarkeit statt public verge-
ben werden soll. Ein sinnvoller Ansatz ist es, so eingeschrankt wie
moglich zu programmieren, d.h. grundsétzlich ist jedes Feld und jede
Methode, die nicht zur 6ffentlichen Schnittstelle gehért, zunachst private
und wird erst bei einer Notwendigkeit sichtbarer gemacht.

Der Vorteil der Lésung Uber private ist, dass auf diese Art auch eine in-
nere Kapselung erreicht wird. Dabei kapselt sich eine Klasse nicht nur
gegen fremde Klassen, sondern effektiv auch gegen ,freundliche” Klas-
sen (sprich Klassen im selben Paket / in derselben Komponente) und
ihre eigenen Unterklassen ab.

Ob das sinnvoll und notwendig ist, hangt von den Umstanden ab. So er-
leichtert die innere Kapselung natirlich auch interne Veranderungen an
der Klasse. Das wird aber durch zusatzlichen Aufwand erkauft. Gibt
man statt dessen Feldern und internen Methoden die Sichtbarkeit pa-
ckage, so entsteht zwangslaufig eine engere Kopplung zwischen den
Klassen des Pakets. In der Regel ist der damit verbundene Zusatzauf-
wand aber vertretbar, es sei denn, die Komponente ist ungewdhnlich
groB3, stark volatil oder wird durch einen weit verzweigten Entwickler-
kreis weiterentwickelt.

Ob die Sichtbarkeit protected Sinn macht, héngt vor allem davon ab, ob
die Klasse dazu entwickelt wurde, durch andere Entwickler bzw. in an-
deren Projekten abgeleitet zu werden (also Teil einer offenen API ist).
Ist das der Fall, so schafft man effektiv eine zweite Schnittstelle mit der
Sichtbarkeit protected, fir die die beiden oben aufgefiihrten Regeln
ebenso gelten missen.

Es gibt aber zumindest einen guten Grund flr den Verzicht von private
zugunsten von package: Unit-Tests. Wir werden uns mit dem Thema

1.0.0210 /9033 © Integrata AG 2-17

Objektorientierte Programmierung

2.4.1.2

Testen spéater noch naher befassen, das wichtigste soll aber hier schon
vorab genannt sein: Unit-Test sind separate Klassen (Testklassen), de-
ren Aufgabe es ist, die Funktionalitat ihrer zu testenden Klasse sicher-
zustellen. Sie kénnen entweder als reine Schnittstellen-Tests (sog.
Black-Box-Tests) implementiert werden, bei denen ausschlieBlich die
6ffentliche Schnittstelle getestet wird, oder aber als White-Box-Tests,
die eben auch die Interna (also beispielsweise Hilfsmethoden) testen.
Zu bevorzugen ist natlrlich eine Kombination aus beidem, wobei die
White-Box-Tests natirlich eng mit dem eigentlichen Code gekoppelt
sind und deshalb bei Anderung i.d.R. mit angefasst werden muissen.

Aber was hat das mit der Sichtbarkeit zu tun? Nun, wenn White-Box-
Tests Internas testen wollen, so missen sie auch Zugriff auf diese ha-
ben, was mit private nicht gestattet ware. Liegen die Tests aber im glei-
chen Paket wie die zu testende Klasse, so reicht die Sichtbarkeit ,pa-
ckage“ aus, um diesen Zugriff zuzulassen.™

Fassen wir noch einmal in einer Regel zusammen:

Regel 2-4: Felder sollten standardmaBig private, Hilfsmethoden
standardmaBig package-visible sein. (Wart, Test)

Getter und Setter

Effektiv haben wir damit also den direkten Feldzugriff im Code durch
den Zugriff auf eine Methode ersetzt. Das scheint in erster Linie noch
keinen groBen Unterschied zu machen, aber der Schein trigt. Dadurch,
dass die Zugriffsmethoden eben Methoden sind, sind sie Teil der
Schnittstelle unserer Klasse. Das hat einige positive Konsequenzen:

e Durch die Aufnahme in die Schnittstelle machen wir deutlich, dass
wir erwarten, dass dieses Attribut von anderen genutzt wird. Damit
haben wir auch eine gute Stelle, um Konsequenzen des Zugriffs zu
dokumentieren (Seiteneffekte).

e Dadurch, dass der Zugriff Gber eine Methode lauft, kdbnnen wir den
Zugriff kontrollieren. Damit kénnen zum Beispiel Einschrankungen
auf das Feld (nur positive Werte) oder Invarianten auf die ganze
Klasse durchgesetzt werden:

Eine Klasse Rechnungszeile besitzt zwei Attribute: Grundpreis und
Menge. Dazu eine Methode berechneGesamtpreis (), die tut,
was der Name suggeriert. Eine sinnvolle Invariante’® fir unsere
Klasse wére, dass die Menge niemals negativ sein darf'”.

1% Existiert in der Sprache keine Paket-Sichtbarkeit (wie beispielsweise in C++), wo
muss man adaquate Alternative suchen (im Falle von C++ z.B. friendly)

'® Eine Invariante ist eine Regel die zu jeder Zeit (genauer gesagt zu Beginn und zum
Ende jeder Schnittstellen-Methode) glltig sein muss.

" Den Grundpreis schranken wir dagegen nicht ein, so sind auch Rabatte und Gut-
schriften abbildbar.

2-18

© Integrata AG 1.0.0210/9033

Objektorientierte Programmierung 2

Greift ein Client direkt auf die Felder zu, so muss die Methode be-
rechneGesamtpreis () zusatzlich noch die Gultigkeit der Werte
sicherstellen (was dem ,Einzelne-Verantwortungs-Prinzip“ wider-
sprechen wirde, dazu spater mehr). Gleichzeitig ware die ,Invarian-
te“ damit in diesem Fall eigentlich gar keine Invariante, sondern le-
diglich eine Regel. Mit einer Setter-Methode kann aber schon beim
Setzen des Wertes festgestellt werden, ob dieser gegen Regeln ver-
stoBt und damit eine echte Invariante umgesetzt werden. AuBBerdem
muss die Uberprifung so nur einmal stattfinden. Bei direktem Feld-
zugriff musste die Uberprifung ja auch in einer weiteren Methode
berechenMehrwertssteuer () erfolgen.

public class Rechnungszeile ({
public int menge;

public int grundpreis;

public int berechneGesamtpreis() {
if (menge < 0) throw new IllegalStateException() ;

return menge * grundpreis;

}

public class RechnungszeileBesser {

private int menge;

private int grundpreis;
. welitere getter und setter ..
public void setMenge (int menge) {

if (menge < 0) throw new IllegalArgumentException) ;

this.menge = menge;

public int berechneGesamtpreis () {

return menge * grundpreis;

Bleibt noch zu erwahnen, dass das die Verwendung von Zugriffsme-
thoden fir den aufrufenden Code nur minimale Veranderungen er-
fordert.

Bei einigen Programmiersprachen ist die Benutzung von Zugriffsme-
thoden sogar gar nicht zu vermeiden. So sind beispielsweise in
Smalltalk Felder immer private, d.h. der Zugriff kann nur Uber Getter
und Setter erfolgen.

1.0.0210 /9033 © Integrata AG 2-19

Objektorientierte Programmierung

e Die Getter und Setter missen nicht zwangslaufig auf real existierende

Felder verweisen. Sie kénnen auch sogenannte virtuelle Felder be-
schreiben, also Felder, bei denen die Schnittstelle nur so aussieht, als
ob diese Felder existieren. Das ist nutzlich, wenn der Wert eines Fel-
des sich aus einem anderen berechnen lassen kann (Radius und
Durchmesser eines Kreises), oder aber, wenn die Implementierung —
also konkret die Felder — einer Klasse im Nachhinein geandert werden
mussen.

Auch hierzu ein Beispiel:

public class Rectangle ({
public int top, left;
public int width, height;

}

Wird nun spater in der Entwicklung entschieden, dass der innere Zu-
stand nicht mehr aus top, left, width und height bestehen soll, sondern
sinnvollerer zwei gegenuberliegende Ecken mit ihren Koordinaten an-
geben werden sollen (also top, left, bottom, right), so muss jeder Co-
de, der die Klasse benutzt im Zuge dieser Veranderung angepasst
werden — was einen immensen Aufwand nach sich ziehen wirde.

Hatte man stattdessen die Klasse mit Gettern und Settern modelliert,
so hatte die Umstellung keinerlei Auswirkungen auf aufrufenden Code,
d.h. dieser arbeitet immer noch mit den fir ihn bekannten ,Feldern®
height und width:

public class RectangleGetterSetter (public class RectangleGetterSetterNeu

private int top, left; private int top, left;

private int width, height; private int bottom, right;
public int getHeight () { public int getHeight ()

return height; return bottom - top;

public void setHeight (int height) { public void setHeight (int height)
this.height = height; this.bottom = top + height;

// ... set/getWidth analog // ... set/getWidth analog

// weitere getter und setter // weitere getter und setter

Auf diese Art und Weise haben wir natirlich die Wartungsfreundlich-
keit unsere Klasse deutlich verbessert.

2-20

© Integrata AG 1.0.0210/9033

Objektorientierte Programmierung 2

2.4.2

2.4.2.1

Getter und Setter zu verwenden, hat natiirlich auch Nachteile:

e Der Code selbst wird deutlich langer, und das in der Regel um Inhal-
te, die keine Informationen bringen (sog. Boilerplate-Code).

e Je nach Anwendung und Programmiersprache kann das Verwenden
einer zusatzlichen Methode GeschwindigkeitseinbuBBen mit sich brin-
gen.

Zum ersten Nachteil gibt es je nach Programmiersprache einige Ansat-
ze, um das Problem zu reduzieren, z.B. in dem die Zugriffsmethoden
automatisch im Buildprozess generiert werden.

Der zweite Nachteil ist je nach Programmiersprache minimal bzw. gar
nicht vorhanden (in neueren Java-Versionen ist die Zugriffszeit sogar
identisch!). Grundsétzlich sollte man aber vermeiden, aus Geschwin-
digkeitsgrinden vom guten Stil abzuweichen (es sei denn, es liegt ein
konkretes Performanceproblem vor, vgl. hierzu das Kapitel Optimie-
rung).

Regel 2-5: Felder sollten immer gekapselt werden, der Zugriff dar-
auf darf nur iber Getter und Setter méglich sein. (Wart,
Wied)

Kopplung (coupling)

Kopplung beschreibt, wie eng zwei Klassen zusammenhangen, bzw.
wie eigenstandig die Klassen (bzw. Korr_l_ponenten18) sind. Umgekehrt
sind sie daher ein Maf3 daflr, wie viele Anderungen das Andern einer
abhangigen Komponente nach sich zieht.

Je loser die Kopplung, d.h. je weniger Abhéngigkeiten zu anderen Klas-
sen existieren, desto isolierter ist eine Klasse. Das erhdht die Wieder-
verwendbarkeit und - wie wir spater noch sehen werden - auch die
Testbarkeit einer Klasse.

Wir unterscheiden zwischen verschiedenen Arten der Kopplung:

Inhaltskopplung (enge Kopplung)

Die Klasse greift auf Internas der jeweils anderen Klasse zu. Das wich-
tigste innere Detail sind dabei natlrlich die Felder, die eben nicht direkt
zugreifbar sein sollten. Inhaltskopplung ist damit ein Gegenstlck zur
Kapselung. Anders formuliert: eine starke Kapselung vermeidet eine In-
haltskopplung.

'8 Kopplungen zwischen Klassen und Kopplungen zwischen Komponenten folgen ex-
akt den gleichen Prinzipien, nur in unterschiedlichen GréBenordnungen. Das gleich
gilt auch fur die spater angesprochene Kohasion. Wir werden im Folgenden der
Lesbarkeit halber nur noch von Klassen sprechen und Komponenten implizit ein-
schlieBen.

1.0.0210 /9033 © Integrata AG 2-21

Objektorientierte Programmierung

2.4.2.2

Eine Inhaltskopplung stellt eine enge Kopplung dar, die wir unbedingt
vermeiden wollen. Sind zwei Klassen inhaltlich eng gekoppelt, so wird
jede Anderung der einen Klasse eine potentielle Anderung der anderen
Klasse nach sich ziehen, was die Wartbarkeit natlrlich immens ver-
schlechtert. Auch die Verstandlichkeit leidet deutlich unter einer engen
Kopplung, da man zum Verstandnis einer Klasse zwangslaufig auch die
andere verstehen muss.

Schnittstellenkopplung (lose Kopplung)

Gibt es ein derartiges Konzept in der verwendeten Programmierspra-
che, so sind Interfaces das beste Mittel, um enge Kopplungen zu ver-
meiden. Da der aufrufende Code hier in der Regel nur die Schnittstelle
zu sehen bekommt, kann er eben auch nicht auf Implementierungsde-
tails zugreifen. Gibt es kein eigenes Interface-Konzept in der Sprache,
so werden stattdessen abstrakte Klassen ohne konkrete Implementie-
rung verwendet.

Das entbindet den Programmierer natlrlich nicht von der Notwendig-
keit, seine Klasse stark zu kapseln, er sollte die Klasse so programmie-
ren, als wirde ein Client-Code direkt (ohne das Interface) auf die Klas-
se zugreifen. Anders formuliert: die Klasse selbst sollte nicht mehr Imp-
lementierungsdetails preisgeben, als es das Interface tut.

Regel 2-6: Jede Klasse sollte mit einem entsprechenden Interface
gekapselt sein. Client-Code sollte ausschlieBlich liber
das Interface auf die Klasse zugreifen. (Wart, Wied,
Test)

Im Idealfall sollte also die konkrete Implementierung im Quellcode der
aufrufenden Klasse gar nicht vorkommen. Anders formuliert: im UML-
Diagramm sollte keine Assoziation von einer Klasse zu einer anderen
Klasse, sondern immer nur zu einem Interface erfolgen.

Eine weitere Moglichkeit, die die Schnittstellenkopplung uns bietet, ist
die Implementierung nicht nur zu veréndern, sondern vollstédndig auszu-
tauschen.

Ein einfaches Beispiel soll das verdeutlichen:
TODO: Besseres Beispiel

Damit das Prinzip allerdings vollstandig umgesetzt werden kann, darf
auch die konkrete Instanz des Interfaces niemals direkt in der aufrufen-
den Klasse erzeugt werden, sonst wére ja zumindest an dieser einen
Stelle eine enge Kopplung gegeben. Um diese Dilemma zu lésen kann
man sich eines von zwei Design Patterns (dazu spater mehr) zunutze
machen:

e Das FAcTORY-Pattern: Nicht die Klasse selbst erzeugt das Obijekt,
sondern eine Hilfsklasse, deren einziger Zweck es ist, Instanzen zu
erzeugen, die das Interface implementieren (welche konkreten In-
stanzen erzeugt werden, muss nattrlich irgendwo festgelegt werden.

2-22

© Integrata AG 1.0.0210/9033

Objektorientierte Programmierung 2

2.4.2.3

Damit hat die Factory zwar potentiell eine enge(re) Kopplung zu den
Implementierungen, aber eben nicht mehr die aufrufende Klasse.

e Das DEPENDENCY INJECTION Pattern (auch bekannt als INVERSION
OF CoNTROL oder 10C): Die Klasse holt sich ihre Abhangigkeiten
Uberhaupt nicht selbst, sondern bekommt diese von auf3en ,unterge-
schoben®, durch Setter-Methoden oder im Konstruktor.

Naturlich sollte abschlieBend die Frage erlaubt sein, wann denn von
dieser Regel abgewichen werden darf oder sollte. Grundsatzlich ist die-
ser Ansatz umso wichtiger, je volatiler (veranderlicher) die Zielklasse
ist. Ist diese in einem stabilen Zustand (wie das zum Beispiel fir Basis-
klassen und reine Datenklasse haufig der Fall ist), so ist das Erstellen
eines zusatzlichen Interfaces nicht notwendig und fahrt ggf. sogar zu
unnétiger Komplexitat.'®

Datenkopplung (freie Kopplung)

Datenkopplung bedeutet, dass die eigentliche Kopplung nicht mehr
tber eine fachliche Schnittstelle erfolgt, sondern nur noch Uber ein ge-
meinsames Austauschformat. Das kénnte zum Beispiel ein String sein,
der die auszuflihrende Anweisung enthalt. (Statt dass eine Methode
berechneSteuer () aufgerufen wird, wird eine Methode tuEs () mit
dem Parameter berechneSteuer aufgerufen). Es handelt sich damit
effektiv um den Austausch des Protokolls, mit dem die beiden Klassen
mit einander sprechen, von einem sprachabhangigen Protokoll (dem
Aufruf von Methoden) zu einem selbst-implementierten Modell.

Wo liegt nun der Vorteil dieser Methode? Wir erreichen dadurch die
kleinst-mdgliche Kopplung zwischen den Komponenten (auf Klassen-
ebene macht die Datenkopplung wenig Sinn). Eine Komponente kann
damit zur Laufzeit Funktionalitat aufrufen, die zum Zeitpunkt der Pro-
grammierung noch Uberhaupt nicht bekannt war.

AuBerdem wird damit erleichtert, mit anderen Programmiersprachen zu
kommunizieren, da es nun nicht mehr notwendig ist, dass alle Sprachen
die gleichen Fahigkeiten besitzen. Es reicht im obigen Beispiel schon
aus, dass die Zielsprache mit Zeichenketten umgehen kann — sie muss
nicht einmal objektorientiert sein. Diese freie Kopplung ist das Prinzip
der Service-Oriented-Architectures (SOA), die beispielsweise Uber
WebServices mit einander kommunizieren.

Der Nachteil dieser Kopplung ist allerdings, dass hier der Compiler kei-
ne Hilfestellungen mehr liefern kann (z.B. bei Tipp-Fehlern). AuBerdem
leidet die Lesbarkeit des Codes in der Regel deutlich.

Deshalb sollte freie Kopplung nur dann eingesetzt werden, wenn es
fachlich wirklich notwendig ist.

'¥ Niemand wiirde unter Java fir die Klasse String ein extra Interface verwenden —
selbst wenn dies mdglich ware.

1.0.0210 /9033 © Integrata AG 2-23

Objektorientierte Programmierung

243

Kohasion (cohesion)

Kohasion bedeutet wortlich Gbersetzt Zusammenhalt oder Bindung. Es
beschreibt die fachliche/inhaltliche Bindung der Elemente einer Klasse
untereinander. Aus fachlicher Sicht besitzt eine Klasse also dann eine
hohe Kohasion, wenn ihre Felder und Methoden fachlich zusammenge-
héren. Ein erster Prifstein hierflir ist der Klassename. Passt dieser zu
allen Methodennamen bzw. zu allen Feldern, verflgt die Klasse vermut-
lich Uber eine hohe Kohasion?.

Aus technischer Sicht ist ein gutes Maf fiir Kohasion, wie viele Felder
eine Methode benutzt. Je mehr Felder sie nutzt, desto enger hangt die
Methode mit ihrer Klasse zusammen. Eine maximal kohasive Klasse
ware demnach eine Klasse, bei der sdmtliche Methoden samtliche Fel-
der nutzen. Dass das in der Realitat kaum zweckmaBig ware, dirfte
klar sein (zumal damit ja auch Getter und Setter nicht benutzt werden
durften). Trotzdem sollte unsere Kohasion mdglichst hoch sein. Folgt
eine Klasse nur einem bestimmten Zweck, so ist ihre Wiederverwend-
barkeit deutlich héher, als wenn sie mehrere Verantwortlichkeiten
gleichzeitig bedient.

Ein Beispiel:

Die Klasse Warteschlange dient dazu, Person-Objekte einzureihen
und wieder zurtickzuliefern.

public class Warteschlange ({
private int naechstesElement = 0; // Feld (1)
private List<Person> eintraege

= new LinkedList<Person>(); // Feld (2)

public int groesse() { // nutzt (1)

return naechstesElement;

public void hinzufuegen(Person p) { // nutzt (1) und (2)
naechsteskElement++;

eintraege.add (p) ;

public Person naechstePerson() { // nutzt (1) und (2)
if (naechstesElement == 0)
throw new SchlangeleerException() ;
naechsteskElement--;

Person result = eintraege.get (naechstesElement) ;

20 Passen*“ bedeutet hier aus der Sicht eines Sprechers der benutzen Sprache
(Deutsch, Englisch, ...), nicht der Programmiersprache!

2-24

© Integrata AG 1.0.0210/9033

Objektorientierte Programmierung 2

eintraege.remove (naechstesElement) ;

return result;

}

‘ public String personAlsString (Person p)

return p.getVorname () + " " + p.getNachname () ;

Die ersten drei Methoden besitzen eine starke Kohasion, die letzte Me-
thode allerdings Uberhaupt keine. Das ist ein guter Hinweis darauf, dass
diese Methode hier fehl am Platze ist und besser ausgelagert werden
sollte (z.B. in die Klasse Person).

Regel 2-7: Klassen sollten eine starke Kohasion besitzen (Wied,
Lesb, Vers)

1.0.0210 /9033 © Integrata AG 2-25

Objektorientierte Programmierung

2.5

Zusammenfassung

Wir haben uns in diesem Kapitel mit den Grundséatzen der objektorien-
tierten Programmierung auseinandergesetzt. Insbesondere haben wir
wesentliche Begriffe wiederholt und dabei die drei ,K“ der Objektorien-
tierung naher beleuchtet.

Wir haben erste Regeln fiir professionellen Code aufgestellt — auf diese
wollen wir im nachsten Kapitel weiter aufbauen.

2-26

© Integrata AG 1.0.0210/9033

Professionelle Klassen und Objekte

3.1
3.2

3.3

3.4

3.5

Binleitung ...
KlassenhierarChienccoooeeuiiiiiiiiie e,
3.2.1 Das Liskovsche Substitutionsprinzip (LSP)..................
3.2.2 Die Holper-Regel ...
3.2.3 Mehrfachvererbungen..........ccccooiiiiie
SChNittStElIEN ...
3.3.1 Hierarchieschnittstellen..........ccccoovvviiiiciiiii e,
3.3.2 Fahigkeitsschnittstellen................eeeeeeiiiiiiiiiiiiiiiiiiiiiiens
3.3.3 MiX-INS ceeeiieeee e
3.3.4 Parallele Schnittstellen-Hierarchien.............................
3.3.5 Client-Schnittstelleneeueeeeeeeemieiiieieieeeeeeennns
3.3.6 Das Schnittstellen-Abgrenzungs-Prinzip (Interface-
Segregation-Principle ISP).........euveeiiiiiiiiiiiiiiiiiiiiians
(S E=TSTST=Y T [(o] 7= o
3.4.1 Das Visions-Prinzip.........cccoiiiiiiiiiieee e
3.4.2 Das Einzelne-Verantwortlichkeits-Prinzip
(Single-Responsibility-Principle — SRP)ccccevvveeee....
Anderungen ermoOgliChen ...

3.5.1 Das Offen-Gesperrt-Prinzip

(Open-Closed-Principle — OCP).....ccoovvviiiiieiieiiee.

1.0.0210 /9033 © Integrata AG

3-1

3 Professionelle Klassen und Objekte
3.5.2 Das Prinzip der umgekehrten Abhéngigkeiten

(Dependency-Inversion-Principle — DIP)........cccccoenneee 3-26

3.6 ZusammenfasSUNGeeeeiiieiiiiiiiiiiieiee e 3-28

3-2 © Integrata AG 1.0.0210 /9033

Professionelle Klassen und Objekte 3

3.1

3.2

Professionelle Klassen und Objekte

Einleitung

In diesem Kapitel bauen wir auf den Grundlagen des vorherigen Kapi-
tels auf, und beschaftigen uns mit den Details, die eine gute Klasse von
einer professionellen Klasse unterscheiden. Wir beschaftigen uns ins-
besondere mit dem Zusammenspiel mehrerer Klassen, sei es Uber
Vererbung oder Assoziationen.

Weiterhin legen wir einige Regeln und Prinzipien fest, die wir auch in
weiteren Kapiteln immer wieder aufgreifen werden.

Insbesondere gehen wir dabei auf finf Prinzipien zur Klassenmodellie-
rung ein, die Robert C. Martin in einem Artikel' formuliert bzw. zusam-
mengefasst? hat.

Klassenhierarchien

Zunéchst wollen wir uns mit Klassenhierarchien auseinandersetzen und
dabei insbesondere mit der Frage, wann es sinnvoll ist, eine Klasse von
einer anderen abzuleiten. Um diese Frage zu motivieren, beginnen wir
mit einem kleinen Beispiel:

Es gibt eine Klasse Person und eine Klasse Buchhaltung. Beide be-
sitzen eine Methode darstellungsName (), der den fachlichen
Namen der jeweiligen Instanz in einer nutzerfreundlichen Form zu-
rickliefert.

Person Buchhaltung

darstellungsName() : String darstellungsName() : String

Abbildung 3-1: Zwei Basisklassen

Eine Md&glichkeit, die sich leicht aufzudrdngen scheint, ist es, eine ge-
meinsame Oberklasse zu schaffen, die eben die Methode darstel-
lungsName () definiert (wahrscheinlich abstrakt). Aufdrangen deshalb,

! http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

2 Nicht alle diese Prinzipien stammen von ihm selbst.

1.0.0210 /9033 © Integrata AG 3-3

Professionelle Klassen und Objekte

weil leider die erste Begrindung fur Vererbung die Vermeidung von
doppeltem Code zu sein scheint. Tatsachlich wird diese Begriindung in
Ausbildung und Unterricht aber nur deshalb oft zuerst genannt, weil
diese Begriindung deutlich leichter zu verstehen und einzusehen ist, als
das Konzept der Polymorphie.

Tatsachlich ist es unzweckmaBig bzw. in der Regel sogar schlichtweg
falsch, hier eine gemeinsame Oberklasse einzubringen. Der erste und
vornehmlichste Zweck der Vererbung ist eben nicht, Code einzusparen,
sondern Beziehungen zwischen den beteiligten Klassen darzulegen
(ist-ein-Beziehungen, bzw. Spezialisierungen). Bringt man eine Klasse
in eine Vererbungsbeziehung mit einer anderen Klasse, mit der Sie in-
haltlich nichts zu tun hat, so missbraucht man den Mechanismus, wor-
unter zu allererst die Verstandlichkeit leidet.

NatUrlich gibt es Situationen, in denen Beziehungen notwendigerweise
gegen diesen Grundsatz verstoBen (allen voran haben objektorientierte
Sprachen ja in der Regel eine gemeinsame Oberklasse, von der alle
Klassen ableiten — im Falle von Java ist das java.lang.Object), und
wir werden weiter unten auch einen Mechanismus kennenlernen, mit
dem wir die ja ohne Zweifel vorhandenen Gemeinsamkeiten zusam-
menfassen kdnnen, ohne die Vererbung zu verbiegen.

Regel 3-1: Vererbung sollte nur dazu benutzt werden, tatsachliche
Spezialisierungen zu beschreiben. (Vers)

Allerdings ist hier zumindest in bestimmten Fallen Vorsicht geboten,
manchmal kann die Spezialisierungseigenschaft auch in die Irre flhren.

Ein klassisches Beispiel ist das Kreis-Ellipse-Problem:

Es gibt eine Klasse Kreis und eine Klasse Ellipse. Aus geometrischer
Sicht ist folgende Aussage sicher richtig:

Ein Kreis ist eine spezielle Ellipse (bei der eben beide Halbachsen
gleich lang sind).

Leider kann das aus objektorientierter Sicht je nach Anwendungsfall
in die falsche Richtung fuhren. Unsere Ellipse kénnte beispielsweise
zwei Methoden skaliereX () und skaliereY() besitzen (bei-
spielsweise in einem Grafikprogramm). Da Kreis eine Unterklasse
von Ellipse ist, wirde Kreis diese beiden Methoden erben, die aber
fur einen Kreis unzuldssig wéren, da nach einer Anwendung der
Kreis wahrscheinlich kein Kreis mehr wére.

3-4

© Integrata AG 1.0.0210/9033

Professionelle Klassen und Objekte 3

3.2.1

3.2.2

Das Liskovsche Substitutionsprinzip (LSP)

Eine Mdglichkeit, dieses Problem zu erkennen, bietet das Liskovsche
Substitutionsprinzip®. Es lautet folgendermaBen:

Sei q(x) eine beweisbare Eigenschaft von Objekten x des Typs T.
Dann soll q(y) fur Objekte y des Typs S wahr sein, wobei S ein Un-
tertyp von T ist.

Versuchen wir, diesen ziemlich akademischen Satz auf unser Kreis-
Ellipse-Problem anwenden: Unsere beweisbare Eigenschaft lautet in
diesem Fall ,,die Achsen kénnen unabhéngig voneinander skaliert wer-
den® (beweisbar bedeutet in diesem Fall: die Methoden werden korrekt
ausgefuhrt und das Ergebnis ist das zu erwartende®).

Versuchen wir noch zwei weitere Formulierungen:

Uberall, wo die Oberklasse verwendet wird, muss auch bedenkenlos
eine Instanz der Unterklasse eingesetzt werden kénnen.’

Oder, im Vorgriff auf Unit-Tests:

Alle Tests, die auf eine Instanz der Oberklasse korrekt ausgefiihrt
werden, missen auch auf Instanzen der Unterklasse korrekt ausge-
fuhrt werden kénnen.

Das Liskovsche Substitutionsprinzip ist eines der erwahnten finf Prinzi-
pien von Robert C. Martin. Allerdings hat er sich einer einfacheren For-
mulierung bedient, die ungefahr unserer ersten Umdeutung entspricht:

Regel 3-2: (LSP) Unterklassen miissen an die Stelle ihrer Oberkla-
sen treten konnen. (Test, Vers)

Die Holper-Regel

Offen bleibt natlrlich die Frage, wie man erkennt, ob eine Vererbung
sinnvoll ist oder nicht. Im vorangegangen Kapitel haben wir die Holper-
Regel definiert, die wir im Folgenden noch um eine zweite Regel erwei-
tern wollen:

Regel 3-3: (2. Holper-Regel) Lasst sich fiir die Anwendung einer
objektorientierten Technik kein vernlinftiger (nicht-
holpriger) Name finden, so ist die Technik nicht korrekt
angewendet. (Vers)

Wenden wir die Holper-Regeln auf das obige Beispiel an. Wie kdnnte
eine gemeinsame Oberklasse heiBen? Zwei wenig sinnvolle Mdglich-

%1993 von Barbara Liskov und Jeannette Wing formuliert

* Ansonsten ware es ja auch denkbar, dass skaliereX() und skaliereY() fir einen Kreis
einfach das gleiche tun wirden. Das wére aber keinesfalls das zu erwartenden Er-
gebnis.

® Was ja das Grundprinzip der Polymorphie ist.

1.0.0210 /9033 © Integrata AG 3-5

Professionelle Klassen und Objekte

3.2.3

keiten waren DarstellungsObjekt oder DarstellbaresObjekt.
Beides klingt schon ziemlich gekilnstelt. Auch die Sprechweise klingt
nicht besser:

Eine Person ist eine (besondere Form) eines darstellbaren Objektes.

Beide Holper-Regeln deuten also deutlich darauf hin, dass eine ge-
meinsame Oberklasse hier nicht das Mittel der Wabhl ist. Bleibt natirlich
die Frage: Wenn nicht so, wie dann? SchlieBlich wollen wir ja trotzdem
doppelten Code vermeiden.

Mehrfachvererbungen

Eine mdgliche Lésung ware die Verwendung von Mehrfachvererbun-
gen. Hierbei handelt es sich um eine Architektur, in der eine Klasse von
zwei Oberklassen erbt. In der Sprechweise ware das eine ,und“ Ver-
kndpfung von zwei ,ist-ein“-Bedingungen.

Ein Amphibienfahrzeug ist ein Landfahrzeug und ein Wasserfahrzeug.

Zunéachst erscheint der Satz vollstandig sinnvoll und logisch, verstéit
also nicht gegen die Holper-Regel. Allerdings gibt es im Detail einige
Probleme:

e Es kann zu Uberschneidungen bei Methoden und Attributnamen
kommen, die Uber sprachliche Mittel behandelt werden missen, was
die Lesbarkeit in der Regel deutlich erschwert.

e Es kann zum klassischen Diamant-Problem kommen, bei der eine
Klasse von zwei Oberklassen erbt, die wieder von einer gemeinsa-
men Klasse erben.

In unserem Beispiel erben sowohl Landfahrzeug als auch Wasser-
fahrzeug von Fahrzeug. Besitzt nun Fahrzeug eine Methode fah-
ren (), welche Methode wird dann aufgerufen, wenn auf einer In-
stanz eines Amphibienfahrzeuges fahren () aufgerufen wird? Die
des Landfahrzeuges, des Wasserfahrzeuges oder beide? Wird das
Fahrzeug konkret als Wasserfahrzeug oder als Landfahrzeug ange-
sprochen, ist der Fall recht klar. Bei einem Amphibienfahrzeug direkt
kennt der Entwickler zumindest die Problematik und kann mit ange-
ben, welche Methode gemeint ist.

Problematisch wird es aber, wenn die Methode fahren () auf ein
beliebiges Fahrzeug aufgerufen wird, das tatsachlich ein Amphibien-
fahrzeug ist. Méglicherweise kennt der aufrufende Code die Unter-
klassen gar nicht und hat somit gar keine Chance, auszuwéhlen,
welche Methode ausgeflihrt wird.

3-6

© Integrata AG 1.0.0210/9033

Professionelle Klassen und Objekte 3

Fahrzeug

fahren() : void

Landfahrzeug Wasserfahrzeug

fahren() : void fahren() : void

Amphibienfahrzeug

fahren() : void

Abbildung 3-2: Diamant-Vererbung

Relativ schnell fallt auf, dass diese Struktur natirlich das Liskovsche
Substitutionsprinzip zumindest gefahrdet. Um dieses Problem zu be-
handeln, haben unterschiedlich Programmiersprachen verschiede L6-
sungen bereitgestellt. Die einfachste lautet: Mehrfachvererbung ist nicht
erlaubt, zumindest nicht was die Implementierung angeht (Java erlaubt
beispielsweise, das eine Klasse mehrere Interfaces (also Schnittstel-
lenbeschreibungen) implementiert, aber konkrete Methoden werden nur
von einer einzigen Klasse, namlich der Oberklasse geerbt, womit das
obige Problem effektiv verhindert wird).

In der Theorie fihren Mehrfachvererbungen haufig zu Lagerkampfen, in
der Praxis zu schwer nachvollziehbarem Code, was uns zur nachsten
Regel motiviert:

Regel 3-4: Mehrfachvererbung ist zu vermeiden. (Lesb, Vers)

1.0.0210 /9033 © Integrata AG 3-7

Professionelle Klassen und Objekte

3.3

3.3.1

Schnittstellen

Hierarchieschnittstellen

Interfaces haben wir bisher als Mdéglichkeit kennengelernt, Schnittstel-
len von der Implementierung zu trennen. In diesem Fall erfillt die
Schnittstelle normalerweise die Aufgabe einer abstrakten Klasse in der
Vererbungshierarchie, d.h. die Schnittstelle selbst wird wie eine Ober-
klasse behandelt®. Diese Schnittstellen wollen wir, wenn die Unter-
scheidung deutlich gemacht werden soll, als Hierarchieschnittstelle be-
zeichnen. Sie ist aus objektorientierter Sicht keine echte Schnittstelle,
sondern eigentlich eine abstrakie Klasse ohne implementierte Metho-
den und ohne Felder’.

Far Hierarchieinterfaces gelten im GroBen und Ganzen die gleichen
Regeln wir fir normale Klassen auch: Der Name sollte ein Substantiv
sein, auf hohe Kohasion und gute Kapselung ist zu achten (wobei gera-
de die Kapselung hierbei natlrlich nur deutlich schwacher ausgepragt
ist — gute Kapselung bedeutet hierbei, das nur Dinge in die Schnittstelle
aufgenommen werden, die auch wirklich 6ffentlich gemacht werden sol-
len).

Benzinauto

tank :int
<<interface>> Autolmpl <} Elektroauto

Auto tanken() : void

gefahren : int batterie : Int

fahren() : void <J----- <

fahren() : void

laden() : void

Abbildung 3-3: Hierarchieschnittstelle

Die Sprechweise ist die gleiche, wie bei der normalen Vererbung, und
damit gilt auch die Holper-Regel. Eine alternative Formulierung, die fir
die direkte Beziehung zwischen AutoImpl und Auto einen saubereren
Satz ergibt, lautet ,ist eine Implementierung von“ oder ,ist ein konkre-
tes*.

Weil eine Hierarchieschnittstelle prinzipiell eine (maximal) abstrakte
Klasse ist und wir weiter oben bereits Mehrfachvererbungen ausge-
schlossen haben, kénnen wir hier unsere Regel noch ein wenig ver-
deutlichen:

® Fr Sprachen, die kein eigenes Sprachelement fiir Schnittstellen besitzen, ist das
sowieso der Normalfall.

” Dennoch wird man in Sprachen, die es unterstiitzen, das Sprachelement fir Schnitt-
stellen dafir verwenden (z.B. Interfaces in Java)

3-8

© Integrata AG 1.0.0210/9033

Professionelle Klassen und Objekte 3

Regel 3-5: Eine Klasse sollte immer nur entweder von einer Ober-
klasse ableiten oder eine Hierarchieschnittstelle imp-
lementieren. (Vers)

Umgekehrt wird eine Hierarchieschnittstelle hdufig nur eine direkte Imp-
lementierung besitzen (wenn man von Dummy-Implementierungen o0.a.
fir Tests absieht).

Namen von Hierarchieschnittstellen

Wir sollten uns einen Moment mit der Vergabe von Namen bei Hierar-
chieschnittstellen beschéaftigen. Zwischen einer Schnittstelle und ihrer
direkt implementierenden Klasse existiert zwangslaufig eine sehr enge
Bindung, die sich auch im Namen wiederfindet. Hier existieren zwei
gangige Varianten:

<<interface>> <<interface>>
Auto |Auto
JAN JAN
| I
| |
| |
| |
Autolmpl Auto

Abbildung 3-4: Schnittstellennamen

Der Autor bevorzugt die erste Variante. Wenn wir uns die Regeln der
Kopplung zu Eigen machen, dann werden wir méglichst immer nur mit
den Schnittstellen und nicht mit den konkreten Implementierungen ar-
beiten, der Name der Schnittstelle wird also haufig in unserem Code
vorkommen (je nach Variante also Auto oder TAuto). Da das zusatzli-
che ,I“ keine neue Information einbringt, den Lesefluss aber mdglicher-
weise hemmt, erscheint die erste Variante die sinnvollere. Das kénnen
wir auch wieder als Regel definieren:

Regel 3-6: Der Name des Konstruktes (Klasse, Schnittstelle), der
im Code am haufigsten verwendet wird, sollte der
»Schonste” sein. (Lesb)

Mit der Namensvergabe werden wir uns in einem spateren Kapitel noch
ausfahrlicher beschaftigen.

Bleibt hinzuzufligen, dass in beiden Sprachvarianten abstrakte Klassen,
die nur dazu dienen, gemeinsame Funktionalitdt vorzudefinieren (also

1.0.0210 /9033 © Integrata AG 3-9

Professionelle Klassen und Objekte

3.3.2

ein reines, technisches Hilfsmittel flir Ableiter sind) mit dem Wort ,Abs-
tract“ oder ,Abstrakt® beginnen sollten (also zum Beispiel Abstrac-
tAuto).

Fahigkeitsschnittstellen

Offen ist aber immer noch die Frage, wie wir unser Darstellungsproblem
aus Abschnitt 3.2 I16sen. Versuchen wir es zunachst mal mit einem bes-
seren Satz (kehren wir also die Holperregel um):

Eine Person ist darstellbar.
Eine Buchhaltung ist darstellbar.

Klingt zumindest nicht mehr holprig. Allerdings haben wir jetzt statt ei-
nes zweiten Substantivs ein Adjektiv in unserem Satz. Hierfir bietet die
Objektorientierung ein weiteres Konzept an, das der Fahigkeitsschnitt-
stelle. Eine Fahigkeitsschnittstelle beschreibt, was ein Objekt einer
Klasse tun kann, also welche Methode es besitzt. Sie beschreibt aber
nicht, wie diese Fahigkeit umgesetzt wird. Sie ist damit eine klassische
Schnittstelle.

Im Gegensatz zur Hierarchieschnittstelle kann eine Klasse beliebig vie-
le Fahigkeitsschnittstellen (zuséatzlich zu ihrer einen Oberklasse bzw. ih-
rer Hierarchieschnittstelle) besitzen. Eine andere Bezeichnung fir Fa-
higkeitsschnittstelle ist Querschnittschnittstelle, weil sie querschnittliche
Aufgaben abbildet.

Dlenst

I

Buchhaltung

Person <<interface>>

darstellungsName() : String | - _ _]y Darstellbar
darstellungsName() : String | _ _ _ _ _ _ _ _ _ _ _ _ _ _ ________ [> darstellungsName() : String

Abbildung 3-5: Fahigkeitsschnittstelle

Der groBBe Vorteil an Fahigkeitsschnittstellen ist, dass auch sie poly-
morph eingesetzt werden kénnen, d.h. eine (eher technische) Kompo-
nente, die das konkrete, fachliche Objekt Gberhaupt nicht kennen muss,
kann dennoch mit allen Objekten, die dieses Interface implementieren,
zusammenarbeiten. Das reduziert die Kopplung und erhéht die Wieder-
verwendbarkeit dieser Komponente ungemein.

In dem konkreten oberen Beispiel kénnte man beispielsweise eine
Klasse ,ListenDruck” erwarten, deren Aufgabe es ist, dem Nutzer ei-

3-10

© Integrata AG 1.0.0210/9033

Professionelle Klassen und Objekte 3

ne Liste von Objekten auszudrucken. Statt nun fir jedes ausdruckbare
Objekt eine eigene Methode zu definieren, reicht es, eine einzige Me-
thode drucke(Liste<Darstellbars>) zu erstellen.

Ein anderes, konkretes Beispiel aus der Java-Klassenbibliothek (leicht
modifiziert):

Das Interface Comparable beschreibt die Féhigkeit ,vergleichbar®,
d.h. jedes Objekt einer Klasse, die dieses Interface implementiert, ist
mit anderen Objekten derselben Klasse vergleichbar (bezliglich einer
Reihenfolge, der natirlichen Ordnung). Die einzige Methode des In-
terfaces, compareTo (Object) liefert nur mit einer Zahl zuriick,
welches von beiden Objekten kleiner ist. Kann man alle Elemente ei-
ner Liste paarweise mit einander vergleichen, so kann man damit ef-
fektiv die Liste auch sortieren, was durch die statische Methode
Collections.sort (List) auch ermdglicht wird. Durch das Aus-
lagern dieser querschnittlichen, nicht fachlichen F&higkeit in ein ei-
genes Interface kann man jetzt mit minimalem Aufwand Listen von
eigenen, fachlichen Objekten sortieren.

- - Teilnehmer
Collections <<interface>>
Comparable <]_ ______ | _ |geburtstag : Date
sort(List<Comparable> : list) : void compareTo(other : void) : int
1
1
:
positiv, wenn das andere Objekt kleiner ist
negativ, wenn das andere Objekt groBer ist
0, wenn keine Aussage mdglich (Objekte gleich)

3.3.3

Abbildung 3-6: Das Comparable Interface

Regel 3-7: Querschnittliche Fahigkeiten werden iUber Fahigkeits-
schnittstellen realisiert. (Wied, Vers, Test)

Fahigkeitsschnittstellen sind also ein auBerst nitzliches Hilfsmittel und
umgehen dabei die Probleme von Mehrfachvererbung, da jede Metho-
de nur einmal implementiert sein kann.

Mix-Ins

Der Nachteil von Fahigkeitsschnittstellen ist, dass dadurch der dupli-
zierte Code noch nicht verschwindet. Besteht die Schnittstelle nur aus
disjunkten Methoden (bzw. aus einer einzigen Methode), so ist die Imp-
lementierung dieser Methode sicher vom eigenen Objekt abhéangig.
Was aber, wenn die Implementierungen der Methoden aufeinander
aufbauen?

1.0.0210 /9033 © Integrata AG 3-11

Professionelle Klassen und Objekte

Definieren wir eine Schnittstelle Rechteckig. Passend dazu zwei
Klassen, Rechteck und Bildausschnitt, die aus fachlichen
Griinden keinen gemeinsamen Vorfahren haben, aber beide Recht -
eckig implementieren.

<<interface>>
Rechteckig

Zusatzlich Setter fur
getOben() :int == -=-1 oben, unten, links, rechts
getLinks() :int

getRechts() : int

getUnten() : int

breite() : int

hoehe() : int

flaeche() :int

skaliere(x : float,y : float) : void
bewege(x : int,y : int) : void

A A

1 1

Rechteck Bildausschnitt

Abbildung 3-7: Nicht-disjunkte Schnittstellen-Methoden

Zusdtzlich besitzt das Interface flir die vier Koordinatenvariablen
auch noch Setter, die wir hier aus Platzgrinden nicht aufgeftihrt ha-
ben.

3-12

© Integrata AG 1.0.0210/9033

Professionelle Klassen und Objekte 3

Wenn wir nun beide Klassen implementieren, dann werden zumin-
dest die Implementierungen der unteren, nicht kursiven Methoden
sich auf die Implementierungen der Getter und Setter abstitzen und
deshalb in beiden Implementierungen identisch sein:

public int breite()
return getRechts() - getLinks();

public int hoehe() {
return getUnten() - getOben();

public int flaeche() {

return breite() * hoehe () ;

public void skaliere(float x, float y) {
setRechts (getLinks () + breite * x);
setUnten (getOben () + hoehe * y);

public void bewege (int x, int y) {
setLinks (getLinks () + x);
setRechts (getRechts () + x);
setOben (getOben () + v);
setUnten (getUnten() + y);

Tatséchlich wurden diesen Methoden in fast allen Implementierungen
von Rechteckig genauso aussehen. Um diesen duplizierten Code zu
vermeiden, gibt es Techniken, die eine Hilfsklasse nutzen, die die ge-
meinsamen Methoden als statische Methoden anbieten.

Die Alternative dazu sind sogenannte Mix-Ins, die einige Sprachen (z.B.
Scala) liefern (ein anderer Name ist Trait). Mix-Ins sind abstrakte Klas-
sen, die als Fahigkeitsschnittstellen auftreten, d.h. sie definieren nicht
nur die Schnittstelle, sondern auch konkrete Implementierungen der
abgeleiteten Methoden.

Ein weiteres nitzliches Beispiel ware ein erweitertes Comparable In-
terface, das zusatzlich noch (abgeleitete) Methoden wie grea-
terThan (), lessThan (), equals (), notEquals () usw. definieren
kénnte. Damit hat man durch das Implementieren einer Methode (com-
pareTo ()) auf einen Schlag die restlichen Methoden ,fur lau® gewon-
nen.

1.0.0210 /9033 © Integrata AG 3-13

Professionelle Klassen und Objekte

3.3.4

Nicht verschwiegen werden darf allerdings, dass natdrlich bei Mix-Ins
die Gefahren der Mehrfachvererbung zumindest wieder denkbar sind,
auch wenn sie deutlich geringer sind, da wir es hier ja nicht mit fachli-
chen, sondern mit querschnittlichen Schnittstellen zu tun haben.

Parallele Schnittstellen-Hierarchien

Eine besondere Alternative zu den Hierarchieschnittstellen stellen die
parallelen Hierarchien dar. Hierbei wird jede Vererbung sowohl mit
Schnittstellen als auch mit Implementierungen abgebildet. Der Vorteil ist
eine saubere Architektur (modelliert wird nur mit dem Interface-Baum)
und die Mdglichkeit einer auBBerst losen Kopplung, ohne die Fahigkeiten
der Polymorphie aufzugeben.

Als Beispiel sei hier ein Auszug aus dem Collection-Framework von Ja-
va gegeben:

. AbstractCollection
|<<interface>> |
Collection <] _________________________

A

<<interface>> <<interface>: AbstractSet HashSet AbstractList ArrayList

Set List <]_

~ -
~ -
S -
-
S .
N -
N -

<<interface>> AbstractSortedSet TreeSet

SotedSet |, | <

Abbildung 3-8:Parallele Hierarchien

Regel 3-8: Fachliche Vererbungen sollten als Parallele Hierarchien
abgebildet werden. (Wied, Test)

Der Nachteil dieser Technik soll natlrlich auch nicht verschwiegen wer-
den: Die Anzahl der Klassen und Dateien steigt damit nattrlich enorm
an.

3-14

© Integrata AG 1.0.0210/9033

Professionelle Klassen und Objekte 3

3.3.5

3.3.6

Client-Schnittstellen

Im Laufe der Entwicklung wachsen Schnittstellen naturgeman immer
weiter an. Neue Funktionalitét, die ein Client benétigt, wird mit aufge-
nommen und die Schnittstelle immer schwergewichtiger. Irgendwann
kristallisiert sich heraus, dass bestimmte Clients auch nur bestimmte
Teile der Schnittstelle nutzen. Die Schnittstelle selbst verliert ihre Koha-
sion.

Das Schnittstellen-Abgrenzungs-Prinzip (Interface-Segregation-
Principle ISP)

Ein weiteres der Martin-Prinzipien ist das Schnittstellen-Abgrenzungs-
Prinzip, das sich mit genau diesem Problem beschéftigt. Es lautet fol-
gendermalen:

Regel 3-9: Clients sollten nicht gezwungen sein, sich auf Schnitt-
stellen abzustiitzen, die sie nicht benutzen. (Test, Vers,
Wied)

Tun sie das namlich doch, so koppelt man unweigerlich die unter-
schiedlichen Clients aneinander. Eine Anderung an einem Client kann
durchaus eine Anderung des Server-Interfaces nach sich ziehen, eine
Anderung, die sich damit auch wieder auf alle Clients auswirkt — was
zumindest Kompilierzeit kostet, gerade wenn die verwendete Program-
miersprache nur statisch verlinkt.

Das Problem der ja eigentlich vernachlassigbaren Kompilierzeit ist aber,
dass wir als Programmierer ja schnell dazu neigen, einem Problem aus
dem Weg zu gehen. Wenn wir die Wahl haben, eine saubere Lésung
fir ein Problem umzusetzen, die allerdings eine Stunde Kompilierzeit
nach sich zieht (man denke nur an die notwendigen Tests!) oder eine
Quick-And-Dirty-Lésung, die aber eigentlich an der véllig falschen Stelle
ansetzt, anzugehen, so wird bei steigendem Zeitdruck nattrlich die
Versuchung der zweiten Losung immer gréBer.

Schauen wir uns das Prinzip an dem Beispiel an, mit dem das Prinzip
ursprunglich motiviert wurde.

Eine Ttr kann versperrt und entsperrt werden und kennt ihren Zu-
stand (bezliglich der Sperre).

Eine Anwendung dieser Klasse ist TimerTtr, die einen Alarm signa-
lisiert, wenn sie zu lange offen steht. Zu diesem Zweck registriert sie
sich bei einer Instanz der Klasse Timer.

Ein Timer kann TimerClient-Objekte registrieren und deren Me-
thode t imeout () aufrufen, wenn die Zeit abgelaufen ist.

1.0.0210 /9033 © Integrata AG 3-15

Professionelle Klassen und Objekte

Erste Moglichkeit: Normale Vererbung

Die Frage ist jetzt, wie Tur beide Interfaces implementieren kann. Falls
die verwendete Programmiersprache keine Mehrfachvererbung und
keine Interfaces unterstitzt, ist die einzige Méglichkeit TimerClient
und TUr von einander ableiten zu lassen. Da TimerClient das weit-
aus generischere Interface ist (wahrscheinlich werden mehr Projekte
Timer bendtigen als Turen), sollten wir natirlich das TimerClient-
Interface so rein wie mdglich halten.

<<interface>> Timer
TimerClient

timeout() : void registriere(client : TimerClient) : void

<<interface>>
Tar

sperre() : void
entsperre() : void
istGesperrt() : boolean

se

BrandschutzTCr TimerTUr

sperre() : void sperre() : void
entsperre() : void entsperre() : void
istGesperrt() : boolean istGesperrt() : boolean
timeout() : boolean timeout() : void

Abbildung 3-9: Einfache Vererbung

Das Problem an dieser Ldsung ist, dass eine andere Tur, die Uber-
haupt nichts mit einem Timer zu tun hat (z.B. BrandschutzTlr),
trotzdem das Interface TimerClient erbt und damit immer eine zu-
satzliche Last mit sich herumtragt. Man kann das zwar vom Schreib-
aufwand her begrenzen, indem man TimerClient eine leere Imple-
mentierung fir timeout () mitgibt, es bleiben aber dennoch drei Prob-
leme:

¢ Wenn TimerClient:timeout () nicht mehr abstrakt ist, so unter-
stiitzt der Compiler uns bei Klassen, die wirklich einen Timer nutzen

3-16

© Integrata AG 1.0.0210/9033

Professionelle Klassen und Objekte 3

wollen nicht mehr, indem er uns zwingt, die Methode auch tatséch-
lich zu implementieren.

e Die Schnittstelle von Brandschut zTur ist trotzdem durch fachfrem-
de Inhalte verschmutzt.

e Jede Anderung am TimercClient fiihrt ggf. dazu, dass auch
BrandschutzTur (und damit jede Klasse, die BrandschutzTur
oder eine andere Tur nutzt) neu kompiliert werden muss.

Zweite Moglichkeit: Mehrfachvererbung

Die zweite Mdglichkeit, die wir haben, besteht in der Mehrfachverer-
bung. Tar und TimerClient sind unabhdngig voneinander, der Ti-
mer bekommt nur einen beliebigen TimerClient zu sehen, und ein
Benutzer nur das Tur Interface. Trotzdem muss natirlich TimerTur
beide Interfaces implementieren und damit auch alle Methoden beinhal-

ten.
<<interface>> <<interface>>
Tdr TimerClient
sperre() : void timeout() : void
entsperre() : void N
istGesperrt() : boolean T
1
A L :
I
! l l
! | |
! I I
: : : Timer
1 TimerTar

BrandschutzTlr2

registriere(client : TimerClient) : void

sperre() : void
sperre() : void entsperre() : void
entsperre() : void istGesperrt() : boolean
istGesperrt() : boolean timeout() : void

Abbildung 3-10: Mehrfachvererbung

Diese (im Artikel von R. Martin favorisierte) Loésung hat allerdings aus
Sicht des Autors immer noch einige Nachteile:

e Die Implementierung von TimerTur ist immer noch nicht koh&siv.

e TimerTur besitzt eine Methode timeout (), die fachlich keine
Aussagekraft besitzt, ihr Name wird nicht durch ihre fachliche Aufga-
be definiert, sondern durch die Definition der Komponente Timer.

e Die Art des Timers, also welche konkrete Klasse genutzt wird, sollte
eigentlich ein Implementierungsdetail von TimerTur sein, ein Nutzer
der TimerTur wird nie direkt auf den Timer zugreifen. Trotzdem ist
der Timer indirekt sichtbar gemacht.

1.0.0210 /9033 © Integrata AG 3-17

Professionelle Klassen und Objekte

e Sie verstdBt gegen die Regel, dass eine Klasse nur eine einzige Hie-
rarchie-Schnittstelle oder Oberklasse haben sollte, hier sind es zwei.
Das kénnten wir allerdings dadurch lésen, dass wir TimerClient in
eine Fahigkeitsschnittstelle umwandeln (durch Umbenennen in Zeit-
gesteuert, bzw. indem wir sie einfach als solche betrachten).

e Wenn mehr als ein Timer genutzt wird (beispielsweise noch ein T1i -
mer der einmal im Monat die Tur 6ffnet und wieder schliet, damit
sie sich nicht festfrisst), muss die Methode timeout () noch deutlich
mehr bewéltigen (ndmlich auch noch Uberprifen, welcher Event das
eigentlich war).

Die aus Sicht des Autors beste Lésung ist die dritte Mdglichkeit:
Dritte Moglichkeit: Das ADAPTER Pattern

Auf Design Patterns gehen wir spater noch ausfihrlicher ein. FUr jetzt
soll die Definition genlgen, dass ein Design-Pattern eine formulierte
Lésung flr ein gangiges Problem ist. Das Adapter-Pattern l6st das
Problem, dass eine Schnittstelle kompatibel zu einer (dhnlichen) ande-
ren gemacht werden soll, ohne die Schnittstellen selbst zu verandern.
Die Ldsung erfolgt tber einen Ubersetzer (den Adapter), der nach au-
Ben das neue Interface implementiert, innen aber Zugriff auf das eigent-
liche Objekt (mit der alten Schnittstelle hat) und die Aufrufe Ubersetzt
und weiterleitet.

In unserem Fall ware der Adapter also ein TurTimerAdapter, eine
Klasse, die nach auBen als TimerClient auftritt und daher beim Ti-
mer registriert werden kann, innen aber Zugriff auf eine Instanz von
TimerTUr hat und jetzt die externe Nachricht (timeout ()) in eine in-
terne fachliche Nachricht umwandelt (z.B. alamiere ()). Alamiere ()
ist im Gegensatz zu timeout () nicht nur fachlich, was uns die ge-
wilnschte Trennung zwischen fachlichen und technischen Elementen
erlaubt, sie muss darlUber hinaus auch nicht public sein (in der Regel
reicht package, da ja der TurTimerAdapter im gleichen Paket liegt),
was wiederum unsere Kapselung fordert.

3-18

© Integrata AG 1.0.0210/9033

Professionelle Klassen und Objekte 3

Timer

registriere(client : TimerClient) : void

<<interface>>
Tar

sperre() : void <<interface>>
entsperre() : void TimerClient
istGesperrt() : boolean) -
timeout() : void
a8 A
]
1 1 |
| I |
| | |
| I 1
1 .- N
BrandschutzTar2 TimerTar2 1 TarTimerAdapter
<
sperre() : void sperre() : void timeout() : void
entsperre() : void entsperre() : void |
istGesperrt() : boolean istGesperrt() : boolean L
~alamiere() : void timeout() ruft alarmiere() auf lﬁ

Abbildung 3-11: Tir mit Adapter

Wichtig an dieser Ldsung ist, dass TurTimerAdapter eine rein tech-
nische Klasse ist, die dementsprechend auch nur technische Aufgaben
erfullt. Sie Ubersetzt Aufrufe in einer ,Sprache” (die des Timers) in Auf-
rufe in der Sprache der TimerTur, damit sollten sie sich auch darauf
beschranken. In ihren Aufgabenbereich fallt umwandeln von Parame-
tern und (primitives) prifen von Wertebereichen, aber alles andere ist
Aufgabe der fachlichen Methode in TimerTur.

Wollen wir das oben kurz erwéhnte Beispiel von mehr als einem Timer
(Alarmierung und monatliches Bewegen), so haben wir jetzt die Mdg-
lichkeit, zwei Adapter zu schreiben (die dann aber andere Namen ha-
ben sollten, z.B. AlarmierungTimerAdapter und WartungTimerA-
dapter), oder es bei einem Adapter zu belassen, dieser muss dann in
seiner timeout ()-Methode entscheiden, welche Methode von Ti-
merTur endgultig aufgerufen wird.

Ein weiterer Vorteil dieser Ldésung ist, dass sie auch anwendbar ist,
wenn die verwendete Sprache weder Mehrfachvererbung noch Inter-
faces unterstitzt.

Unter Java lasst sich diese Struktur sehr elegant mit dem Mechanismus
der inneren Klasse I6sen (eine Klasse, die in eine andere eingebettet ist
und implizit Zugriff auf die Instanz der auBern Klasse hat, die sie er-
zeugt hat). Damit kénnten die fachlichen internen Methoden alarmie-
re () und wartung () sogar private sein (eine innere Klasse unter
Java kann auf private-Methoden der duBBeren Klasse zugreifen). Da die

1.0.0210 /9033 © Integrata AG 3-19

Professionelle Klassen und Objekte

3.4

innere Klasse fest der auBeren zugeordnet ist, kann man den Namen
damit sogar noch etwas klrzen (TimerAdapter, vollstdndig heif3t die
Klasse dann TimerTUr.TimerAdpater).

Regel 3-10: Das Interface-Segregation-Principle sollte mit Hilfe
des ADAPTER-Patterns umgesetzt werden. (Lesb, Vers,
Wied)

KlassengroBen

In diesem Abschnitt beschéaftigen wir uns mit der GréBe einer Klasse.
Hierflr definieren wir als erstes zwei Regeln:

Regel 3-11: Klassen sollten klein sein. (Lesb, Vers, Test)
Regel 3-12: Klassen sollten noch kleiner sein. (Lesb, Vers, Test)

Je kleiner eine Klasse ist, desto leichter ist sie zu Uberblicken und dem-
entsprechend auch zu verstehen.

Dabei stellt sich die Frage, wie die GrdBe einer Klasse definiert werden
kann. Ein trivialer Ansatz ware, Zeichen zu zahlen — was naturlich als
Metrik vollkommen ungeeignet ist.

Die nachste Uberlegung, eine Metrik, die lange Zeit recht beliebt war,
ist die Anzahl der Zeilen (LOC — Lines of Code). Allerdings kann diese
je nach Sourcecode-Formatierung schon deutlich abweichen. Eine et-
was bessere Metrik sind Anweisungen, genauer Nicht-Kommentar-
Anweisungen (NCSS — Non commenting source statements), diese
sind genauer, aber aufwendiger zu zahlen / zu berechnen.

Allerdings sind beide Varianten eher dazu geeignet, Methoden zu be-
werten. FUr Klassen empfiehlt sich eine andere Metrik: Die Anzahl der
Verantwortlichkeiten. Die Nahe des Begriffs der Verantwortlichkeit zur
Kohasion sollte deutlich werden. Wenn alle Methoden fachlich zusam-
menhangen, dann wird die Klasse auch nur eine Verantwortlichkeit ha-
ben. Das ist aber nur zum Teil richtig, Verantwortlichkeiten kénnen tat-
séachlich feiner sein, als fachliche Zusammenhéange.

3-20

© Integrata AG 1.0.0210/9033

Professionelle Klassen und Objekte 3

Betrachten wir ein gekirztes Beispiel (entnommen aus ,Clean Code*
von Robert C. Martin):

public class SuperDashboard

extends JFrame

implements MetaDataUser ({
public String getCustomizerLanguagePath() ;
public void setSystemConfigPath (String systemConfigPath) ;
public String getSystemConfigDocument () ;
public void setSystemConfigDocument (String systemConfigDocument) ;
public boolean getGuru() ;
public boolean getNoviceState() ;
public boolean getOpenSourceState() ;
public void showObject (MetaObject object) ;
public void showPreogress (String s) ;
public boolean isMetadataDirty () ;
public void setMetadataDirty (boolean isMetaDataDirty) ;
public Component getLastFoucedComponent () ;
public void setLastFocusedComponent (Component lastFocused) ;
public boolean isMouseSelected() ;
public void setMouseSelectState (boolean isMouseSelected) ;
public LanguageManager getLanguageManager () ;
public Project getProject() ;
public Project getFirstProject () ;
public Project getLastProject () ;
public String getNewProjectName () ;
public void setComponentSizes (Dimension dim) ;
public String getCurrentDir () ;
public void setCurrentDir (String currentDir) ;
public void updateStatus (int dotPos, int markPos) ;
public void Properties getProps|() ;
public void String getUserHome () ;
public void String getBaseDir() ;
public int getMajorVersionNumber () ;
public int getMinorVersionNumber () ;
public int getBuildNumber () ;
public void processMenultems () ;
public void runProject () ;

// weitere public Methoden

// jede Menge private Methoden

1.0.0210 /9033 © Integrata AG 3-21

Professionelle Klassen und Objekte

3.4.1

Das diese Klasse zu groB ist, sollte nattrlich klar sein. Der geneigte Le-
ser kann versuchen, diese Klasse anhand der Methodennamen in ein-
zelne Verantwortlichkeiten zu zerlegen. AuBerdem stellt die Klasse
noch ein deutliches Beispiel flr einen Versto3 gegen das Interface-
Segragation-Principle dar.

Betrachten wir eine bessere Version aus demselben Buch:

public class SuperDashboard
extends JFrame
implements MetaDataUser
public Component getLastFoucedComponent () ;
public void setLastFocusedComponent (Component lastFocused) ;
public int getMajorVersionNumber () ;
public int getMinorVersionNumber () ;

public int getBuildNumber () ;

Sieht schon deutlich besser aus. Allerdings enthélt diese Klasse noch
mehr als eine Verantwortlichkeit.

Das Visions-Prinzip

Einen ersten Lackmus-Test flir unsere Klasse erreichen wir mit Hilfe
des Visions-Prinzips. Es lautet folgendermalen:

Regel 3-13: (Visions-Prinzip) Jedes Konzept (Pakete, Klassen, Me-
thoden) muss sich verstandlich in einem Hauptsatz
(der Vision) beschreiben lassen. (Vers, Wied)

Diese Beschreibung muss nicht alle Feinheiten beinhalten, sollte aber
fir sich alleine aussagekraftig genug sein. Ein typisches Zeichen flr ei-
nen Verstol3 gegen dieses Prinzip ist die Verwendung von Bindewértern
wie ,und®, ,oder, ,falls“ oder ,aufBer*.

Versuchen Sie doch einmal, eine Vision fir die zweite Version zu for-
mulieren.

SuperDashboard liefert uns Zugriff auf die Komponente, die zuletzt
den Fokus hatte, und gibt die aktuelle Version und Build-Nummer zu-
rdck.

Das Visions-Prinzip offenbart uns also, dass unsere Klasse offensicht-
lich zu viel tut.

3-22

© Integrata AG 1.0.0210/9033

Professionelle Klassen und Objekte 3

3.4.2

Das Einzelne-Verantwortlichkeits-Prinzip (Single-Responsibility-
Principle — SRP)

Das Single-Responsibility-Principle ist ein weiteres der flinf Prinzipien
von Robert C. Martin. Es lautet folgendermaBen:

Regel 3-14: (SRP) Fir jede Klasse sollte es nur einen einzigen
Grund geben, sie zu @ndern. (Vers, Wied)

Verantwortlichkeit wird also mit Anderungsgrund gleichgesetzt. Uberle-
gen wir, welche Grinde es geben kénnte, unser SuperDashboard zu
andern:

e Eine neue Version wird ausgeliefert (d.h. die Versionsnummer &ndert
sich)

o Die Benutzeroberflache &ndert sich.

Beide Anderungen sind disjunkt. Zwar wiirde sich bei einer Anderung

der Oberflache wahrscheinlich auch die Versionsnummer andern, aber
umgekehrt eben nicht.

Anhand potentieller Anderungsgriinde lassen sich die Methoden einer
Klasse oft leichter aufteilen. In unserem Beispiel kdnnten wir die Versi-
ons-Methoden in eine separate Klasse auslagern:

public class Version {
public int getMajorVersionNumber () ;
public int getMinorVersionNumber () ;

public int getBuildNumber () ;

Diese Klasse hat definitiv nur eine Verantwortlichkeit, damit eine hohe
Kohésion und einen starken Wiederverwendbarkeitswert.

Naturlich fuhrt das Zerlegen unserer Klassen in immer mehr kleine
Klassen zu einer deutlichen héheren Anzahl an Gesamtklassen. Die
Komplexitat unseres Codes erhdht sich dadurch aber nicht. Vielmehr
findet man sich eher leichter zurecht, da das Konzept einer Klasse bes-
ser durch den Namen beschrieben werden kann.

Wichtig ist dabei nur, dass man seine Klasse vernilnftig organisiert, in
Komponenten und Paketen.

Unser Ziel ist damit das folgende:

Unser System besteht aus einer Vielzahl kleiner Klassen (statt weniger
groBer). Jede Klasse kapselt eine einzelne Verantwortlichkeit, hat nur
einen einzigen, potentiellen Anderungsgrund und arbeitet mit wenigen

1.0.0210 /9033 © Integrata AG 3-23

Professionelle Klassen und Objekte

3.5

3.5.1

and%ren Klassen zusammen, um das gewlinschte Verhalten abzubil-
den.

Anderungen erméglichen

Wir haben zu Beginn dieses Kapitels die flnf Prinzipien von Robert C.
Martin erwahnt, bisher aber nur drei davon besprochen (das Single-
Responsibility-Principle, das Liskov-Substitution-Principle und das Inter-
face-Segregation-Principle).

Mit den beiden fehlenden Prinzipien wollen wir uns im Folgenden be-
schaftigen.

Das Offen-Gesperrt-Prinzip (Open-Closed-Principle — OCP)

Das Open-Closed-Principal beschéftigt sich mit der Problemstellung
nachtraglicher Anderungen an Klassen oder Modulen. Das Ziel sollte es
sein, dass jede nachtragliche Anderung (Erweiterung) an einer Klasse
nicht dazu flihrt, dass bestehender Code beeinflusst wird (bzw. dass
dieser nicht einmal neu kompiliert werden muss).

Das Prinzip lautet:

Regel 3-15: (OCP) Klassen sollten offen fir Erweiterungen, aber
gesperrt fir Veranderungen sein. (Wied, Wart)

Zerlegen wir diese Aussage in ihre zwei Bestandteile:
= ,Offen fir Erweiterungen®

Das Verhalten der Klasse (des Moduls) muss erweiterbar sein. Das
hei3t, wir konnen die Klasse bei neuen Anforderungen so erweitern,
dass die Anderungen eingearbeitet werden. Wir kénnen also das
Verhalten des Moduls andern.

= ,Gesperrt fir Veranderungen®

Das Erweitern des Verhaltens sollte nicht dazu flhren, dass die
Klasse selbst verandert wird. Im Klartext: weder der Sourcecode der
Klasse, noch die aus dieser Klasse generierten Artefakte (Class-
oder Object-Dateien, DLL- und Jar-Dateien, andere Bibliotheken)
sollten durch die Erweiterung verandert werden.

Zusammen genommen stellen uns diese beiden Aussagen naturlich vor
eine schwierige Aufgabe. Die offensichtlichste Art, das Verhalten einer
Klasse zu @andern, namlich die Klasse selbst zu modifizieren, wird durch
die zweite Bedingung effektiv verhindert.

Der Schlussel liegt natirlich in der Abstraktion. Wir erweitern unsere
Klassen, indem wir von ihnen erben und verwenden umgekehrt in unse-

® Ein Satz, der sich lohnt, auf einem groBBen Plakat in den Entwicklerblros aufgehangt
zu werden.

3-24

© Integrata AG 1.0.0210/9033

Professionelle Klassen und Objekte 3

rem Client-Code nur die abstrakten Oberklassen oder Interfaces (letzte-
res zieht sich ja durch alle Prinzipien).

Das bedeutet, wir missen uns friihzeitig Gedanken dariiber machen,
ob eine Klasse Uberhaupt erweiterbar sein soll, und wenn ja, in welchen
Methoden. Und diese Tatsache muss deutlich dokumentiert sein!

Umgekehrt muss verhindert werden, dass Klassen und Methoden, die
nicht Uiberschrieben werden sollen, das auch gar nicht zulassen diirfen®.
Hierunter fallen zum Beispiel Methoden, die Invarianten (den Contract
der Klasse) verletzen kénnten.

Formulieren wir das als Regel:

Regel 3-16: Potentielle Oberklassen sollten verhindern, dass ihre
Kind-Klassen jemals das Liskovsche Substitutions-
prinzip verletzen konnen. (Wied, Wart)

Schauen wir uns das Prinzip an einem einfachen Beispiel an.

Wir haben bei der Definition der Fahigkeitsschnittstelle (Abschnitt 3.3.2,
Seite 3-10) das Java-Interface Comparable kennengelernt. Nehmen
wir nochmal unsere Klasse Teilnehmer hinzu, die dieses Interface imp-
lementiert, und zwar in der Art, dass Teilnehmer nach ihren Nachna-
men sortiert werden (mit Hilfe der Methode Collections.sort ()).

Wie kénnen wir jetzt das Verhalten dndern, dass Teilnehmer nach ih-
rem Geburtstag sortiert werden?

Die Methode sort () zu &ndern scheidet aus, da es sich dabei um ei-
ne Java-Basisklasse handelt, die wir nicht andern kbnnen.

Wir kénnten die Methode compareTo () unseres Teilnehmers Uber-
schreiben (die ja zwei Teilnehmer mit einander vergleicht), aber damit
wirden wir gegen das ,Closed“-Prinzip verstoB3en, da sich diese Ande-
rung sofort auf alle Module, die Teilnehmer nutzen, auswirken wirde.

Eine Alternative ware, eine Unterklasse von Teilnehmer zu schreiben,
die nur die compareTo ()-Methode ersetzt (z.B. GeburtstagsSor-
tierterTeilnehmer), dadurch wirden wir dem Prinzip genlge tun.
Damit wirden wir aber sehr deutlich gegen die Holper-Regel versto3en.

Die Alternative, die die Java-Entwickler gewahlt haben, nutzt das
STRATEGY-Pattern, ein Pattern das beschreibt, wie die konkrete Imple-
mentierung eines Algorithmus in eine separate Klasse ausgelagert wird.
Konkret hei3t das, es gibt eine zweite sort () -Methode, die zusatzlich
ein Comparator-Objekt bekommt. Comparator ist ein Interface, dass
nur eine Methode besitzt: compare () (nicht compareTo()!). Diese
bekommt zwei Parameter und liefert zurlick, wie die beiden zueinander
stehen (kleiner 0 -> das linke ist kleiner, gréBer 0 -> das linke ist gréBer,
gleich 0 -> beide sind nicht unterscheidbar).

® Das wird zum Beispiel in Java mit dem Schliisselwort final sichergestellt.

1.0.0210 /9033 © Integrata AG 3-25

Professionelle Klassen und Objekte

3.5.2

Wir kénnen also eine neue Sortierung definieren, in dem wir eine neue
Implementierung von Comparator schreiben (ohne dabei die sort () -
Methode oder die Klasse Teilnehmer anzurihren).

Collections

<<interface>>
Comparator

sort(list : List<Comparable>) : void - - - -
sort(list : List,comp : Comparator) : void compare(left : Object,right : Object) : int

JAN JAN

1
1
1
1
T
1
GeburtstagsComparator :
1

Teilnehmer

geburtstag : Date compare(left : Object,right : Object) : int Nachnahme Comparator

nachname : String

compare(left : Object,right : Object) : int

Abbildung 3-12: Comparator

Das Prinzip der umgekehrten Abhangigkeiten (Dependency-
Inversion-Principle — DIP)

Das Prinzip der umgekehrten Abhangigkeiten beschreibt, wie einzelne
Klassen und Komponenten voneinander abhangen. In der ,klassischen®
(prozeduralen) Softwareentwicklung gilt der Grundsatz, dass hochlevli-
ge Module auf niedriglevlige Module zurtickgreifen (ein Druckvorgang
besteht aus dem Drucken von Zeichen und der Druckersteuerung).

Das Prinzip der umgekehrten Abhangigkeiten kehrt diese Ansicht um.
Im Kern besteht es aus zwei Regeln:

Regel 3-17: (DIP) Hochlevlige Module sollten nicht von niedrig-
levligen Modulen abhangen. Beide sollten nur von
Abstraktionen abhdngen (Wied, Wart, Test).

Regel 3-18: (DIP) Abstraktionen sollten nicht von Details abhan-
gen. Details sollten von Abstraktionen abhangen.
(Wied, Wart, Test)

3-26

© Integrata AG 1.0.0210/9033

Professionelle Klassen und Objekte 3

Wo besteht nun das Problem? Die hochlevligen Module sind die Be-
standteile unserer Software, in der die ,interessanten®, fachlichen Ent-
scheidungen getroffen werden, die niedriglevligen diejenigen, die ,in der
Schlammzone® die ganzen Details umsetzen. Andert sich jetzt eines
dieser Details, so hat das natirlich auch Auswirkungen auf die davon
abhangigen Komponenten, als die hochlevligen Anteile unserer Soft-
ware. Ein Implementierungsdetail andert also mdglichweise unsere
fachlichen Elemente! Umgekehrt wollen wir natlrlich wenn mdglich die
hochlevligen Elemente auch wiederverwenden, denn diese enthalten ja
den ,interessanten“ Code — mit der klassischen Abhangigkeit kbnnen
wir diese aber eben nicht von der Schlammzone trennen.

Diese Regel beschreibt nattrlich im GroBen und Ganzen, was wir wei-
ter oben schon recht ausfuhrlich diskutiert haben: Die Kopplung zwi-
schen Modulen sollten nicht eng — tGber Klassen —, sondern lose — Uber
Abstraktionen, also Interfaces — erfolgen. Der Leser sei hierzu insbe-
sondere auf den Abschnitt zur Schnittstellenkopplung im vorherigen
Kapitel verwiesen.

1.0.0210 /9033 © Integrata AG 3-27

3 Professionelle Klassen und Objekte
3.6 Zusammenfassung
Wir haben uns in diesem Kapitel mit den tiefergehenden Grundsatzen
des Klassendesigns auseinandergesetzt. Dabei haben wir besprochen,
wie Klassenhierarchien sinnvollerweise aufgebaut sein sollten, welche
Grundsatze fur die GrdBe einer Klasse an sich gelten und wie wir unse-
re Klasse offen flr Verdnderungen machen kénnen.
In diesem Zusammenhang haben wir einige Prinzipien kennengelernt,
die wir hier noch einmal aufzdhlen wollen. Die funf Martin-Prinzipien
lassen sich dabei mit dem Akronym SOLID auflisten, das letzte Prinzip
(das Visions-Prinzip) ist davon unabhéngig.
Single-Responsibility-Principle
SRP | Fir jede Klasse sollte es nur einen einzigen Grund geben, sie
zu andern.
Open-Closed-Principle
OCP | Klassen sollten offen fiir Erweiterungen, aber gesperrt fir Ver-
anderungen sein.
Liskov-Substitution-Principle
LSP | Unterklassen miissen an die Stelle ihrer Oberklasen treten kdn-
nen.
Interface-Segregation-Principle
ISP | Clients sollten nicht gezwungen sein, sich auf Schnittstellen ab-
zustitzen, die sie nicht benutzen.
Dependency-Inversion-Principle
Hochlevlige Module sollten nicht von niedriglevligen Modulen
DIP | abhangen. Beide sollten nur von Abstraktionen abhangen.
Abstraktionen sollten nicht von Details abhangen. Details sollten
von Abstraktionen abhangen.
Das Visions-Prinzip
Jedes Konzept (Pakete, Klassen, Methoden) muss sich verstandlich in
einem Hauptsatz (der Vision) beschreiben lassen.
3-28 © Integrata AG 1.0.0210/ 9033

Namen

o I |] (=11 (0T PP 4-3
4.2 Welche SPprache? ... 4-3
4.3 Bedeutungsvolle Namen ... 4-4
4.3.1 KIGSSEN e 4-5

4.3.2 Abstrakte Klassen.........ouuueiiiiiiiiiiieeccee e 4-5

4.3.3 INerfaces....couieiiiiiiieieeeee e 4-6

4.3.4 MethOden.......cooeiiiiieieeeeeeeee e 4-6

4.3.5 KONSIrUKIOIENcoevieieeeeeeee e 4-7

4.3.6 Namen und KONteXIeuuuuiiiiiiiiieeeeiiccie e 4-8

4.3.7 Besondere Namen........cccooeeiiiiiiieeiciiiceeeeeeeeeeeeve e 4-8

4.3.8 Missverstandliche Namen..........cooovvviiiieeiieeeecceeceee e 4-10

4.3.9 TexXtrauSCNENcoouuiiiiiice e 4-11
4.3.10 Doméanen-Sprache vs. Lésung-Sprache............cccuvveeee... 4-12
4.3.11 Ein Konzept, ein WOortooieiiiiieeceeeeeeeeeeeee e 4-12
4.3.12 Verwandte KONZEepte.........uuuuuuiuuuiiiiiiiiiiiiiiiiiiiiiiiiineniiinnnens 4-13

4.4 Namen und ihre FOrM.. ... 4-14
4.41 GroB- und Kleinschreibungcoooooiiiiiiiieeiieeeeeee, 4-14

4.4.2 Optische Verwechslungencccoooiiiiiiiiiiiiinece, 4-14

4.4.3 Aussprechbare Nameneeueueiiiiiiiiiiiiiiiiiiiiiiiiieieanns 4-15
1.0.0210 /9033 © Integrata AG 4-1

4 Namen
4.4.4 Typ- und Kontextbezeichner (encodings)ccccuvveeeeen. 4-16

4.45 Wortspiele und ,SIang”ccccceeeeiiiiiiiiiieeee e 4-17

T Vo] o =] o= o [P 4-18
451 Andern von Namen........cccccveeeeeeeeeeeeeeeeee e, 4-18

4.5.2 Der Style-GUIdeccoeeeiiiiiiiiiiiiieee e 4-19

4.6 ZuSammeENTaSSUNG ...cceeiiiiiiiiiiiiiiiiiiieiieeee et et et ee e e e e e e e e e e e e eeeeeeeeees 4-20

4-2 © Integrata AG 1.0.0210/ 9033

Namen

4.1

4.2

Namen

Einleitung

Nachdem wir uns in den letzten Kapitel mit objektorientierten Grundsat-
zen beschaftigt haben, werden wir uns jetzt ein wenig davon Iésen und
uns mit Namen in unserem Programmcode beschéaftigen.

Allen voran geht es hier natirlich um die Namen, die wir unseren Vari-
ablen geben, aber natlrlich auch um die Namen fir Methoden, Klassen
und Komponenten.

Die Vergabe von guten Namen ist eines der wichtigsten Werkzeuge,
das wir besitzen, um unseren Code lesbar und verstandlich zu machen,
und das mit in der Regel auBerst geringem Aufwand.

Wir werden uns im Folgenden mit einzelnen Prinzipien far gute und fir
schlechte Namen auseinandersetzen. Diese Prinzipien sind dabei wei-
testgehend eigenstandig und unabhangig voneinander.

Welche Sprache?

Die erste Entscheidung, die zu treffen ist (bzw. die meist schon lange
fir uns getroffen wurde) ist die Frage, in welcher (menschlichen) Spra-
che soll unser Code geschrieben sein, und in welcher Sprache die
Kommentare.

In der Regel bleiben eigentlich nur zwei Optionen: Die Muttersprache
des Teams oder Englisch. Der Vorteil der Muttersprache besteht darin,
dass die Entwickler ggf. weniger Energie in die Ubersetzung ihrer
Kommentare stecken muissen. Ist auf der anderen Seite Englisch ge-
fordert, so kénnte ein Entwickler zu der Einsicht kommen, lieber keine
oder nur einfache Kommentare zu schreiben, statt sich die Bl6Be zu
geben, falsches Englisch einzusetzen.

Umgekehrt gilt dieses Problem in der Zeit multinationaler Kooperation
und Outsourcings natirlich auch fiir Team-Mitglieder deren Mutterspra-
che eine andere ist.

Schwierig wird es insbesondere, wenn ein nationales Team erst spéater
internationalisiert wird, weil zum Beispiel ein Teil der Softwarepflege in
ein auBer-europaisches Land outgesourced wird. Hier kdnnen im Zwei-
felsfall deutlich Mehrkosten fir eine Ubersetzung entstehen (die ja teil-
weise gar nicht mehr mdglich ist); nachtraglich Klassen und Methoden
umzubenennen ist kaum maoglich.

1.0.0210/

9033 © Integrata AG 4-3

4 Namen
Ein weiterer Punkt der flr Englisch spricht, ist die Tatsache, dass die
meisten Programmiersprachen selbst (also die Schllisselwérter wie z.B.
if, while goto, ...) eben auch in ,Englisch” verfasst sind. Verwendet
man englische Namen, so ist das Ergebnis ndher an einem lesbaren
Satz, als beim Wechsel zwischen den Sprachen. Das gleiche gilt fur
Sprachkonventionen wie Getter und Setter.

Im Normalfall ist das natirlich keine Entwicklerentscheidung, sondern
wird in den Firmen- oder Projektrichtlinien festgeschrieben.

4.3 Bedeutungsvolle Namen
Der Name einer Variablen sollte aussagen, was diese Variable bedeu-
tet bzw. woflr sie gedacht ist. Moderne Programmiersprachen lassen
heute beliebige Langen flr Variablennamen zu, und auch der zusatzli-
che Platzbedarf der Quelldateien ist kein Kriterium mehr.

Schauen wir uns ein Beispiel an:
for (int i = 1; 1 < m; i++) {
boolean b = true;
for (int j = 2; j < i; j++) {
if (1 %3 == 0) {
b = false;
break;
1
1
if (b) {
System.out.println(i) ;
1

1
Was machen die einzelnen Variablen? Was macht der gesamte Code-
Block? Ersetzen wir die Namen, ist der Algorithmus schon deutlich bes-
ser lesbar:

for (int possiblePrime = 1; possiblePrime < maxNumber; possiblePrime++) {

boolean isPrime = true;
for (int possibleDivider = 2; possibleDivider < possiblePrime; possibleDivider++) {
if (possiblePrime % possibleDivider == 0) {
isPrime = false;
break;
1
1
if (isPrime)
System.out.println(possiblePrime) ;
1

1
Natdrlich l&sst sich dieser Code-Block noch weiter verbessern, aber da-
zu spater mehr.

4-4 © Integrata AG 1.0.0210/ 9033

Namen

4.3.1

4.3.2

Regel 4-1: Variablen sollten Namen haben, die ihre Bedeutung
wiederspiegeln. (Lesb)

Klassen

Die objektorientierte Lehre verlangt, dass Klassennamen Substantive
oder zusammengesetzte Substantive sind, also Employee, Person oder
Document.

,Weichmacher“-Bezeichnungen wie Manager, Service, Processor, Data
oder Info sollten mdglichst nicht in einem Klassennamen vorkommen,
diese deuten in der Regel auf einen VerstoB gegen das Single-
Responsibility-Principle hin.

Implementiert eine Klasse direkt ein (Hierarchie-)Interface, so ist das In-
terface die zu benutzende Abstraktion, die Klasse tragt dann den Inter-
face-Namen + ,Impl“.

Abstrakte Klassen

Wir unterscheiden hier zwischen zwei Arten von Abstrakten Klassen:
Echte Abstraktionen im fachlichen Sinnen, also Oberklassen, die selbst
nur nicht instanziiert werden kénnen, aber im Client-Code polymorph
verwendet werden (und teilweise auch als Ersatz flr Hierarchie-
Schnittstellen oder parallele Hierarchien verwendet werden, wenn die
verwendete Sprache keine echten Interfaces kennt):

Player ist eine abstrakte Oberklasse von Golfer und VideoGamer.
Car ist eine abstrakte Oberklasse von GasolineCar und ElectroCar.

In diesem Fall gelten die gleichen Namensregeln wie fir konkrete Klas-
sen.

Die zweite Variante sind Implementierungsdetails, die fiir den Client-
Code niemals sichtbar sind sondern dem Implementierer einer Schnitt-
stelle als Ausgangspunkt dienen. Diese stehen in der Regel zwischen
dem Hierarchie-Interface und den konkreten Implementierungen. Diese
Klassen sollten im Namen deutlich machen, dass sie nur abstrakte
Hilfskonstrukte sind. Das wird durch das Préfix ,Abstract” verdeutlicht.

Im Java Collection Framework gibt es zu dem Interface List eine Imp-
lementierung namens AbstractList. Diese erlaubt es, neue Listen
zu implementieren, indem nur zwei Methoden realisiert werden (die
in AbstractList abstrakt sind). Alle anderen (zahlreichen) Metho-
den von List sind bereits in AbstractList als Abstltzung auf die
beiden abstrakten Methoden realisiert.

Regel 4-2: Klassen und Abstraktionen tragen die Namen von (ggf.
zusammengesetzten) Substantiven. (Vers)

Regel 4-3: Abstrakte Klassen als Implementierungshilfen sollten
mit dem Prafix , Abstract“ versehen werden. (Lesb,
Vers)

1.0.0210/

9033 © Integrata AG 4-5

Namen

4.3.3

4.3.4

Interfaces

Zur Benennung von Interfaces haben wir in den vorangegangenen Ka-
piteln ja schon einiges gesagt. Fassen wir noch einmal zusammen:

(Parallele) Hierarchie-Interfaces sind Abstraktionen und folgen damit
den Regeln fir Klassen.

Regel 4-4: Fahigkeits-Interfaces und Mixins tragen Adjektive als
Namen. (Vers)

Beispiele fur Fahigkeitsinterfaces sind: Interruptible, Compa-
rable, Serializable, etc...

Methoden

Regel 4-5: Methoden sollten Verben oder aus Verben abgeleitete
Bezeichnungen als Namen tragen. (Lesb, Vers)

Beispiele: printPrimes (), postSave (), start ()

Besitzt die Methode ein einzelnes Argument’, dessen Bedeutung nicht
direkt aus dem Namen der Methode hervorgeht, so kann der Name um
Beziehungsworter angereichert werden:

Beispiel:

Statt printPrimes (int max) kann man auch printPrimesUp-
To (int max) schreiben. Der Aufruf liest sich dann eleganter:
printPrimesUpTo (15).

Regel 4-6: Zugriffsmethoden sollten mit get, set oder is anfangen.

Andere Methoden sollten diese Prafixe nicht benutzen.
(Lesb)

String name = participant.getName () ;
employee.setSalary (500) ;

if (printjob.isRunning()) ..

Grundsatzlich sollten Methoden aus Sicht des aufrufenden Clients be-
nannt werden. Klingt die Methode in der Klasse selbst also ungewéhn-
lich (nicht falsch oder holprig) und dafiir in einem Aufrufszenario gut
und ,richtig®, so ist das vollkommen zu verschmerzen.

' Eine monadische Methode. Vergleiche hierzu auch das spéatere Kapitel tiber Funkti-
onen.

4-6

© Integrata AG 1.0.0210/9033

Namen 4

4.3.5 Konstruktoren

Naturlich ist der Begriff Konstruktor hier ein wenig ungewdéhnlich, da wir
ja in den meisten Sprachen den Konstruktor nicht umbenennen kénnen.
Stattdessen kdnnen wir aber statische Factory-Methoden (vgl. vorheri-
ges Kapitel) verwenden, die dann wieder sprechende Namen haben
kénnen. Das ist umso wichtiger, wenn wir Uberladene Konstruktoren
verwenden.

Beispiel:

Eine Klasse Point besitzt zwei Konstruktoren, einen, der den Punkt
mittels kartesischer Koordinaten (also x und y) erstellt, und einen zwei-
ten, der diesen Punkt mittels Polarkoordinaten (Winkel und Abstand
zum Ursprung) erstellt.

Mittels Konstruktoren wirde der aufrufende Code folgendermafen aus-
sehen:

Point upperLeft = new Point (10, 20);

Point lowerRight = new Point (10f, 20f);

Die Unterschiede zwischen den beiden Konstruktor-Aufrufen sind hier
nicht wirklich eingangig. Nur das Vorhandensein des ,£“ bei den Argu-
menten unterscheidet die beiden Aufrufe, aber das Ergebnis ist natlr-
lich grundverschieden.

Mittels einer Factory-Methode sieht das ganze schon wesentlich besser
aus:

Point upperLeft = Point.FromCartesian (10, 20);

Point lowerRight = Point.FromPolar (10f, 20f);

Die Verwechslungsmdglichkeiten sind hiermit ausgeschlossen. Bleibt
anzumerken, dass die zweite Zeile immer noch darunter leidet, dass die
beiden Argumente vom gleichen Typ sind, aber ihre Reihenfolge nicht
unbedingt eingangig ist (bei x und y ist das in der Regel besser). Ele-
ganter kénnte man hier durch die Verwendung des BUILDER-Patterns
werden:

Point lowerRight =

Point.buildWith() .angle(10f) .distance (20£f) .build() ;

Das ist zwar ein wenig mehr Schreibarbeit, aber dafir véllig unmissver-
standlich.?

Regel 4-7: Unklare Konstruktoren sollten durch Factory-Methoden
,benannt“ werden. Der Konstruktor selbst sollte dann
nicht mehr sichtbar sein. (Lesb, Vers)

2 Alternativ kénnte man die Builder Methoden noch »,menschlicher“ formulieren und
den Aufruf mit Bindewoértern (and () in diesem Fall) erweitern.

Point.buildWith () .angleOf (10f) .and () .distanceOf (20f) .andReturnIt ()

1.0.0210 /9033 © Integrata AG 4-7

Namen

4.3.6

4.3.7

Namen und Kontexte

Namen stehen immer in einem bestimmten Kontext, und auch nur in
diesem missen sie gultig sein. Das Feld name kann vieles bedeuten,
aber im Kontext einer Klasse Person ist seine Bedeutung klar. Kontext
bedeutet in der Regel entweder Klasse oder Methode, seltener auch
Schleifenkonstrukt.

Es besteht ein grundsatzlicher Zusammenhang zwischen der GréBe
des Kontexts und der Lange des Variablennamens: Je gréBer der Kon-
text, desto langer und eindeutiger muss auch der Name der Variablen
sein. Oder umgekehrt: Flr einen sehr kurzen und einfachen Kontext ist
es durchaus erlaubt, auch einen kurzen Namen zu wahlen (Beispiel:
der Schleifenzahler).

Verlasst eine Variable den Kontext, so muss der Kontext dem Vari-
ablennamen beigefligt werden:

Person user = ...;

String userName = user.getName () ;

Besondere Namen

Es gibt in der Softwareentwicklung einige Namen, die typischerweise
immer gleich benutzt werden. Ein Beispiel daflir ist der Schleifenzahler
i. Er ist so haufig und traditionell, dass wir in unbedenklich verwenden
kénnen. Warum haben wir das im Beispiel weiter oben nicht getan?
Weil der Zahler dartber hinaus auch noch eine fachliche Bedeutung
hatte.

Als Faustregel gilt: Dient der Zahler nur zum Durchlaufen einer Daten-
struktur, so ist in der Regel die Benutzung von i und j unproblematisch.

Sind Schleifen geschachtelt (was wir, wie wir spater sehen werden, na-
thrlich als erstes beheben wollen), so sind / und j eher unzweckmaBig,
weil die Ubersichtlichkeit hier ganz schnell leidet.

Andere Standardnamen werden sich einbirgern, sollten aber in den
Programmierrichtlinien formuliert worden sein.

Einige Beispiele fur derartige Konventionen:

e Der Rickgabewert, der im Laufe einer Methode berechnet oder zu-
sammengebaut wird, heil3t immer result.

e Die Variable, die beim lterieren das jeweils nachste Element auf-
nimmt, lautet next.

4-8

© Integrata AG 1.0.0210/9033

Namen 4

e Der Iterator in einer Schleife heif3t it.

public int sum(int[] wvalues)

{

int result = 0;

for (int next : values) {

result += next;

}

return result;

L}

Regel 4-8: Eine Handvoll definierter Standardnamen erleichtert die
Ubersichtlichkeit, wenn sie allen Entwicklern bekannt
sind. (Lesb)

Eine weitere Art von besonderen Namen sind zusammengesetzte.
Nehmen wir eine Methode an, die aus einem Array von Employee-
Objekten das Durchschnittsgehalt bestimmt. Wahrscheinlich wird die
aufnehmende Variable in der Methode selbst den Namen result ha-
ben. Aber welcher Variablen im aufrufenden Code wird dieser Wert zu-
geordnet:

int avg = averageSalary (employees) ;

Was ware hier ein sinnvoller Name fliir avg? Es gibt einige denkbare
Optionen:

e Prefix: averageSalaryOfEmployees
o Suffix: employeesAverageSalary

e Kurz: averageSalary

o Kurz, suffix: salaryAverage

Die Prefix-L6sung besticht durch die Tatsache, dass der der Variablen-
name fast genauso aussieht/klingt, wie der Methodenaufruf, der das
Ergebnis geliefert hat. Wichtig ist dabei, dass des Argumente-Teil nicht
dem Typ der Argumente, sondern den tatsachlich Gbergeben Argumen-
ten entspricht:

int averageSalaryOfPartTimeWorkers = averageSalary (partTimeWorkers) ;

Der Vorteil der beiden Suffix-Lédsungen, dass das entscheidende fachli-
che Konzept (Employee bzw. Employee.salary) zuerst genannt wird,
wird dadurch erkauft, dass es sprachlich ein wenig holprig klingt — ein
Ziel, das wir spater noch naher formulieren wollen, ist, dass sich unser
Code fast wie Text liest. Die Suffix-Formen laufen diesem Ziel entge-
gen.

Die normale Kurzform (die eigentlich nur aus dem Methodennamen oh-
ne seine Argumente besteht) ist natlrlich kurz und kompakt, stitzt sich

1.0.0210 /9033 © Integrata AG 4-9

Namen

4.3.8

aber relativ stark auf ihren Kontext ab. Ist dieser eindeutig und hinrei-
chend kurz, so ist die Kurzform nattrlich vollkommen ausreichend.

Regel 4-9: Variablen, die das Ergebnis einer Methode aufnehmen,
sollten den Namen dieser Methode tragen. Gibt es Ver-
wechslungsgefahr, so sind dem Namen die Argumente
des Aufrufs beizufligen. (Lesb)

Gelegentlich kann es notwendig sein, der Ergebnisvariablen auch noch
den Namen der Instanz, auf der die Methode ausgeflihrt wurde, beizu-
flgen.

public void createFamilyName (Person mother, Person father) ({
String fatherLastName = father.getLastName () ;
String motherLastName = mother.getLastName () ;

return fatherLastName + "-" + motherLastName;

Missverstandliche Namen

Ein Name sollte ein Konzept vermitteln. Passt der Name allerdings nicht
zum Konzept oder deutet er sogar auf ein anderes Konzept hin, so wird
die Name missverstandlich.

Der Name employeeList fUr eine Variable sollte auch nur dann ver-
wendet werden, wenn es sich tatsachlich um eine List (den Datentyp)
handelt, nicht etwa bei einem Array oder einer eigenen Klasse. Besser
waren Namen wie employeeGroup oder einfach nur employees.

Genauso sollte eine Methode auch nur dann mit set beginnen, wenn
es sich dabei tatsachlich um einen Setter handelt. Das heif3t nicht, dass
unbedingt genau diese Variable unter der Haube gesetzt wird (das ware
ja ein Implementierungsdetail), aber die Semantik sollte einem Setter
entsprechen:

public void setRunning() {

controlThread.start () ;

}

Hier hat ein Programmierer zumindest noch die Chance zu erkennen,
dass es sich bei der Methode nicht um einen Setter handelt, da die Sig-
natur nicht passt (kein Argument). Bek&dme setRunning () jetzt auch
noch ein boolean Argument, ware aber auch das dahin. Ein besserer
Name wére startControlThread ().

4-10

© Integrata AG 1.0.0210/9033

Namen 4

4.3.9 Textrauschen

Als Textrauschen bezeichnen wir Anhange an Variablennamen, die wir
nur deshalb verwenden, damit ,der Compiler sich nicht beschwert”. Ein
haufiger anzutreffendes Rauschen sind Zahlen:

public void addEvenValues (
List<Integer> listl, List<Integer> list2) {
for (Integer next : listl) {
if (next % 2 == 0) {
list2.add (next) ;

}

Listl und list2 haben hier unterschiedliche Bedeutungen. Bessere
Bezeichnungen wéren hier source und destination gewesen, damit
ware die Routine deutlich besser lesbar.

Eine Variante davon sind beabsichtigte Schreibfehler (zum Beispiel
Pointer und Pointr), eine weitere Flllwérter wie ,,a“ und ,the“ (was
ist der Unterschied zwischen aPoint und thePoint?).

Eine andere Form von Textrauschen sind inhaltlich bedeutungslose
Woérter wie Info und Data. Was ist der Unterschied zwischen den Klas-
sen Person und PersonInfo>? Wie unterscheiden sich Payment
und PaymentObject.

Auch redundante Informationen sind unnétig. Den Namen einer Person
als NameString zu bezeichnen ist eine solche Redundanz.

Um es noch einmal deutlich zu machen: Fir alle oben genannten Félle
kann es Sinn machen, den Code doch so zu schreiben. Wenn aber ei-
ner der Punkte nur angewendet wird, um zwei Variablen voneinander
zu unterscheiden, dann ist es Textrauschen.

Regel 4-10: Die Unterschiede zwischen zwei gewahlten Namen
miussen so gewahlt werden, dass der Leser sie inhalt-
lich versteht. (Lesb, Vers)

® Natiirlich mag es vollkommen begriindete Situationen, in denen genau dieses Kon-
strukt verwendet werden sollte, aber diese Falle sind dann API spezifisch und dort
auch entsprechend dokumentiert.

1.0.0210 /9033 © Integrata AG 4-11

Namen

4.3.10 Domanen-Sprache vs. Losung-Sprache

4.3.11

Wenn wir Namen vergeben, missen wir uns entscheiden, aus welcher
Sprache wir unsere Namen wahlen. Dafiir gibt es zwei Mdglichkeiten:
Namen aus der Domanen-Sprache - also dem Fachbereich -, oder Na-
men aus der LOsungs-Sprache - grob gesagt unserer Programmier-
sprache mit Bibliotheken, Patterns und Konzepten.

Aus welcher Sprache sollten wir unsere Begriffe wahlen? Klar ist, dass
wir die wichtigen, fachlichen Klassen sicher in der Doméanensprache
schreiben werden. Auch die fachlichen Berechnungsmodule werden si-
cher fest in die Doméane eingebettet.

Die ganzen technischen Details allerdings sollten in der Lésungsspra-
che formuliert werden. Benutzen wir einen Observer (ein weiteres Pat-
tern), dann sollte die Klasse auch den Namen xyObserver bzw. xy-
Listener tragen.

Grundsatzlich wird der Code schlieBlich von Programmierern und nicht
von Angehdrigen der Fachabteilung gelesen.

Regel 4-11: Fachliche Konzepte sollten in Domanen-Sprache,
technische Details in der Losungssprache formuliert
werden. (Lesb, Vers)

Ein Konzept, ein Wort

Konzepte sollten durch ein einzelnes, durchgangig verwendetes Wort
beschrieben werden. Wechselndes Verwenden von get, retrieve
und fetch, um Objekte aus Datenstrukturen auszulesen, ist nicht nur
verwirrend zu lesen, es erschwert auch das eigentliche Schreiben von
Code.

Moderne IDEs bieten automatische Vervollstandigung. Wissen wir also,
dass wir aus unserer Datenstruktur ein Objekt mit retrieve... ausle-
sen kdnnen, nicht aber wie die Methode genau heif3t, liefern uns wenige
Tastendricke alle Methoden, die mit retrieve anfangen. Kennen wir
allerdings nicht einmal den Anfang, so missen wir zwangslaufig alle
Methoden der Klasse durchsehen, bis wir die richtige gefunden haben.

Umgekehrt sollte ein Wort aber auch nur ein Konzept ausdriicken. Um
bei dem obigen Beispiel zu bleiben: retrieveFirst () sollte nicht bei
der einen Datenstruktur nur das erste Element zurlickliefern, bei einer
anderen aber das erste Element entfernen und zurlckliefern.

Regel 4-12: Gleiche Konzepte sollten durch das gleiche Wort be-
schrieben werden, unterschiedliche Konzepte durch
unterschiedliche Worter. (Lesb, Vers)

4-12

© Integrata AG 1.0.0210/9033

Namen 4

4.3.12 Verwandte Konzepte

Oftmals finden wir in unserem Code verwandte Konzepte, die haufigste
Verwandtschaft ist dabei der Gegensatz (zum Beispiel add und remo-
ve). Um diese Konzepte zu beschreiben, gibt es im Sprachgebrauch
natlrlich Wortpaare. Diese Paarbildung sollten wir auch im Code ein-
halten.

HeilBt eine Methode, um einen Nutzer hinzuzuflgen addUser (), SO
sollte die Methode, um ihn wieder zu entfernen removeUser () und
nicht etwa deleteUser () heiBen.

Einige Beispiel fur gadngige Wortpaare:

add/remove insert/delete begin/end lock/unlock
show/hide create/destroy source/target start/stop
min/max next/previous open/close old/new

first/last up/down get/set get/put

Regel 4-13: Verwandte Konzepte sollten auch mit verwandten
Begriffen beschrieben werden. (Lesb, Vers)

1.0.0210 /9033 © Integrata AG 4-13

Namen

4.4

4.4.1

4.4.2

Namen und ihre Form

Nachdem wir oben auf die Bedeutung und den Inhalt eines Namens
eingegangen sind, beschaftigen wir uns jetzt mit der Form, die der (mitt-
lerweile hoffentlich bedeutungsvolle) Name annehmen sollte.

GroB- und Kleinschreibung

Folgen Sie bezogen auf Grof3- und Kleinschreibung den Konventionen
ihrer Sprache. Gibt es keine allgemeinen Konventionen, so sollten die-
se in den internen Programmierrichtlinien geschaffen werden. Selbst
wenn diese bereits existieren, sollten sie sich trotzdem in den Richtli-
nien wiederfinden.

Als Beispiel hier die Konventionen fir Java (C++ hat sehr ahnliche):

¢ Klassennamen beginnen mit einem GroBbuchstaben, gefolgt von
Kleinbuchstaben, Wortgrenzen werden durch einen weiteren GroB-
buchstaben kenntlich gemacht (sog. CamelCase).

Person, Player, Document

e Variablennamen beginnen mit einem Kleinbuchstaben und sind
ebenfalls in CamelCase.

document, numberOfPlayers

e Konstanten werden ganz in GroBBbuchstaben geschrieben, wobei
Wortgrenzen durch einen Unterstrich (_) deutlich gemacht werden.

MAX_VALUE, SQRT OF 2

e Der Unterstrich und das Dollarzeichen sind zwar gulltige Zeichen fur
einen Variablennamen, sollten aber nur in Ausnahmefallen benutzt
werden.

Optische Verwechslungen

Regel 4-14: Namen sollten sich optisch so weit unterscheiden,
dass man sie auf einen Blick auseinanderhalten kann.
(Lesb)

Wir begriinden diese Regel am besten mit einigen Gegenbeispielen:
Was tut folgender Code:

int a = 1;
if (0 == 1)
a = 01;

=
Il
o
=

4-14

© Integrata AG 1.0.0210/9033

Namen

4.4.3

Je nach verwendeter Schriftart muss man sich schon sehr dicht zum
Code vorbeugen, um noch zu erkennen, was tatsachlich gemeint ist. Zu
kurzen Variablennamen haben wir ja bereits einiges gesagt, hier sei nur
noch erwahnt, dass das Problem sich noch massiv verstarkt, wenn die
verwendeten Buchstaben das kleine L (Verwechslung mit der Ziffer 1)
und das groBBe O (Verwechslung mit der Ziffer 0) sind.

Das zweite Problem sind lange Namen, die sich nur in Nuancen unter-
scheiden: XxYzControllerForEfficientHandlingOfStrings und
irgendwo in einem anderen Modul die Klasse XYZControllerForEf-
ficientStorageOfStrings®. Sicher ist dieses Beispiel etwas kon-
struiert, aber es soll ja auch nur das Prinzip zeigen.

Aussprechbare Namen

Wenn wir Code (oder Text®) lesen, neigen wir dazu, ihn im Kopf ,vorzu-
lesen®. Deshalb ist eines unserer ersten Ziele, dass sich unser Satz so
einfach und ruhig wie mdéglich lesen lasst. Uberraschungen und Dinge,
die das Vorlesen ins Stocken bringen, fihren dazu, dass wir vom Uber-
fliegen des Codes in die konzentrierte, Wort-Fir-Wort Leseart wech-
seln, die natirlich deutlich langsamer ist. Selbst wenn wir uns das Aus-
formulieren im Kopf abgewdhnen, tritt das Problem trotzdem wieder zu
Tage, wenn wir mit anderen Entwicklern tGber den Code reden.

Einer dieser Stolpersteine sind Abkilrzungen. Betrachten wir folgenden
Code:

int mxNoPts = ..;
while (ptList.size() > mxNoPts) {
Point rmvd = ptList.removelast() ;

sprList.add (rmvd) ;

Die Namen haben alle eine Bedeutung, und nach einem Moment ver-
stehen wir auch was der Code macht. Versuchen Sie einmal diesen
Code laut vorzulesen. Bei jeder der Abkirzungen werden Sie wahr-
scheinlich ins Stolpern geraten und schlieBlich die abgeklrzten Variab-
len entweder durch ihren vollen Namen (,Max Number of Points®, das
ware die gute, aber unwahrscheinlichere Lésung), durch einen Aus-
spracheversuch (,mxnopts” als Wort) oder durch Buchstabieren (,m‘x
no Peh Teh Es") ersetzen. In jedem Fall muss lhr Gehirn zusatzliche
Arbeit aufwenden.®

* Beide Beispiele dieses Absatzes stammen aus ,Clean Code®
® Lassen wir Speed-Reading-Techniken mal auBen vor.

® Und das war noch ein relativ harmloses Beispiel. Betrachten Sie folgendes (echtes)
Beispiel: gaSuspSvcWOregLstnr() — falls Sie sich fragen: die Abklirzung steht flir
~Gather (oder get?) all suspended Services without registered listeners”

1.0.0210/

9033 © Integrata AG 4-15

4 Namen

Versuchen Sie das gleiche mit der korrigierten Fassung:

int maxNumberOfPoints = ..;
while (pointList.size() > maxNumberOfPoints) {
Point removed = pointList.removelast () ;

‘ sparelList.add (removed) ;

L3

Regel 4-15: Namen sollten aussprechbar sein. Abkiirzungen soll-
ten nur in Ausnahmefallen verwendet werden, und
auch dann nur sprechbare. (Lesb)

4.4.4 Typ- und Kontextbezeichner (encodings)

Friiher war es allgemein Gblich bzw. je nach Sprache sogar notwendig,
den Typ einer Variablen in den Namen mit aufzunehmen, entweder als
Prafix (die sogenannte Ungarische Notation: iLength, sName) oder
explizit (nameString, sizelInt).

In modernen, stark-getypten Sprachen ist diese Zusatzinformation nicht
mehr notwendig. Der Compiler fangt Zuweisungsfehler in der Regel
friihzeitig ab, damit werden diese Zusatze zu Textrauschen. Sie sind
sogar gefahrlich, wenn sich der Typ nachtraglich &ndert, die Anderung
aber nicht auf den Namen ausgeweitet wird. So kénnte eine Variable
den Namen phoneString besitzen, tatsachlich aber vom Typ Phone-
Number sein (Vergleiche hierzu auch 4.3.8 Missverstédndliche Na-
men).

Eine weitere, unnétige ,Verzierung® sind Kontextbezeichner, zum Bei-
spiel ,£..“ fir Felder, ,p..“ fir Parameter und kein Préfix fir normale lo-
kale Variablen. Moderne IDEs besitzen die Fahigkeit, unsere Variablen
je nach Kontext anders darzustellen (andere Farben oder Schriftstile),
weshalb auch hier nur unnétig redundante Informationen transportiert
werden. Das im vorigen Absatz angesprochene Problem mit nachtragli-
chen Anderungen gilt hier im Ubrigen analog. Wird durch Refactoring
ein Parameter in ein Feld umgewandelt (ein Vorgang, den die meisten
IDEs heute auch automatisieren), so kann dabei schnell vergessen
werden, den Name anzupassen.

Das Ergebnis ist leider oft: nach einer Weile stimmen die Encodings
sowieso nicht mehr und werden ignoriert. Ganz von der Tatsache ab-
gesehen, dass sie eben auch gegen die Regel der Aussprechbarkeit
verstof3en.

Regel 4-16: Encodings fur Typen und Kontexte sollten nicht be-
nutzt werden. (Lesb)

4-16 © Integrata AG 1.0.0210 /9033

Namen 4

4.45 Wortspiele und ,,Slang*

In gewachsenem Code findet man des Ofteren Methoden mit Name
wie: killThemAll (), bigBang() und call911()’. Diese Namen
scheinen auf den ersten Blick ja ganz witzig, aber was sagen sie Uber
unserer Professionalitat aus?

AuBerdem ist nicht gesagt, dass ein (gut englisch-sprechender) Mitar-
beiter notwendigerweise direkt erkennen kann, dass call911 () eine
Fehlermeldung an den Administrator versenden soll.

Auch Mode-Sprachen wie Leetspeak sollte man dringend vermeiden
(insertB4 () statt insertBefore ()).

” Alles tatséchliche Beispiele

1.0.0210 /9033 © Integrata AG 4-17

Namen

4.5

4.5.1

Vorgehen

Ein haufiges Argument, das gegen die obigen Regeln angeflihrt wird,
ist, dass sie zu viel mehr Code (also Speicherplatz) und Tipparbeit flih-
ren wirden.

Der zusatzliche Speicherbedarf ist nicht zu leugnen, allerdings fallt er
bei den heutigen Speichermedien nicht mehr wirklich ins Gewicht.

Und die zusatzliche Tipparbeit wird uns durch moderne IDEs fast voll-
stdndig abgenommen. Man muss einen komplexen Namen in der Pra-
xis nur genau einmal tippen, und das zu dem Zeitpunkt, an dem man
sich ja sowieso Uberlegen sollte, woflir die Variable oder Methode ei-
gentlich gedacht ist.

Tatsé&chlich kann es durchaus sinnvoll sein, zwei bis drei Stunden in ei-
ne interne Schulung zur effizienten Nutzung der IDE zu investieren.

Andern von Namen

Was ist zu tun, wenn ein Name nicht mehr passt? Formuliert man die
Frage so, ist die Antwort einfach: man &ndert ihn. Leider zeigt die Pra-
xis, dass man hier nur sehr zdgerlich voran geht.

Grundsatzlich hat das__Andern eines Namens zwei Konsequenzen: Zum
einen bedeutet das Andern selbst Aufwand, um ihn an allen Stellen
richtig zu andern, zum Anderen missen sich die Nutzer dann wieder an
einen neuen Namen gewohnen.

Beide Konsequenzen sind in der Praxis aber vernachlassigbar. Das
Umbenennen mit allen Nebeneffekten (ein Refactoring) erledigt die IDE
far uns, und die wenigsten Programmierer merken sich die tatsachli-
chen Namen. Stattdessen stitzen sie sich vielfach auf Code-
Erganzungen ihrer Entwicklungsumgebung ab, in dem sie sich einfach
alle anwendbaren Methoden als Auswahl anbieten lassen.

Eine Ausnahme gibt es allerdings (die wir in einem vorherigen Kapitel
schon erwahnt haben). Methoden einer 6ffentlichen Schnittstelle diirfen
natlirlich nicht einfach umbenannt werden®. Deshalb ist bei der Wahl
der Namen einer Schnittstelle nattrlich gréBere Sorgfalt angebracht.

Sollte es dennoch notwendig werden, eine Methode umzubenennen,
gibt es nattrlich Werkzeuge. Damit werden wir uns spater noch ausei-
nandersetzen.

® Es sei denn, die Schnittstelle hat unsere Entwicklergruppe noch gar nicht verlassen,
dann ist sie nicht wirklich ,6ffentlich®.

4-18

© Integrata AG 1.0.0210/9033

Namen 4

4.5.2 Der Style-Guide

Entscheidend flr sauberen, lesbaren Code ist eine Firmen- oder Pro-
jekt-interne Richtliniensammlung, die die Regeln, die fir die Software-
erstellung gelten, zusammenfassen. Ein guter Anfang dazu sind die
Regeln dieser Unterlage.

1.0.0210 /9033 © Integrata AG 4-19

Namen

4.6

Zusammenfassung

In diesem Kapitel haben wir uns mit einem der wichtigsten Grundsatze
von lesbarem (also professionellem) Code beschaftigt: den Namen. Es
gibt wenig Dinge, die einen Code so schnell unleserlich machen, wie
schlechte Namen.

Umgekehrt tragen gute Namen massiv zur Lesbarkeit eines Program-
mes bei.

4-20

© Integrata AG 1.0.0210/9033

Methoden

51 EBinleltung.....oooo i 5-3
5.1.1 Was ist eine Methode?ooevieviiiiiiiiiiieeeee e 5-3
5.2 FOIM e ———————— 5-4
B5.2.1 LANGE .ttt 5-4
SIV2Z R =1 (o Tor (o [£0] £1= o 1SN 5-11
5.2.3 NAMEN e 5-13
5.3 INNAI e ————— 5-15
5.3.1 EINE AUQADEuuiiiiiiiiiiie e 5-15
LR T2 I 1= VAT T o 5-16
5.3.3 Abstraktionsebenen ... 5-16
5.3.4 Die Stepdown-Regel........cccumviiiiiieiiiiieeeee e 5-17
5.4 ArQUMENTE ... 5-18
5.4.1 Niladische Methoden ... 5-18
5.4.2 Monadische Methoden............ccccciiiiiiiiiiiiiis 5-19
5.4.3 Dyadische Methodenccccoiiiiiiiiiiiiiiis 5-19
5.4.4 Triadische MethOdenccccuuuiiiiiiiiiiiiiiias 5-20
5.4.5 GroéBere (Polyadische) Methoden...........cccccvvveiinnninnnnnnns 5-20
546 Flags ..uuueiiei 5-21
5.4.7 Ausgabe Parameter..........ccccouuuiimiiiiiiiiiiiiiiiiiiiiiiiiiieniaees 5-22

1.0.0210 /9033 © Integrata AG 5-1

5 Methoden
5.4.8 Argument-Objekte........c.uuiiiiiiiiiiiieeee e 5-23

ST T (| SRR 5-24
55.1 Seiteneffeki. ..o 5-24

5.5.2 Befehl oder Abfrage (Command Query Separation)........ 5-24

5.5.3 Mehrere Exit-Punktecoovviiiiiiiiiiiiii 5-25

5.5.4 ReKUISIONEN.....ccciviiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeee e 5-25

5.6 ZusammenfasSUNgcooviiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeee e 5-27

5-2

© Integrata AG 1.0.0210 /9033

Methoden 5

5

5.1

5.1.1

Methoden

Einleitung

In diesem Kapitel werden wir uns mit den Grundsatzen guter Methoden
beschaftigen. Wir werden dabei auf Form und Inhalt genauso eingehen
wie auf Strategien flr Argumente und guten Stil.

Der Leser sei gewarnt, dass einiges in diesem Kapitel auf den ersten
Blick extrem erscheinen wird — oder zumindest gewéhnungsbedurftig.
Lasst man sich allerdings darauf ein, so wird man mit deutlich besser
lesbarem Code belohnt.

Was ist eine Methode?

Was eine Methode in der Objektorientierten Programmierung darstellt,
haben wir bereits im ersten Teil dieser Unterlage besprochen. Aller-
dings tauchen in der Literatur einige unterschiedliche Begriffe auf, die
wir zumindest ein wenig auseinander ziehen wollen. Leider widerspre-
chen sich die Definitionen teilweise, flr unseren Fall verwenden wir die-
jenigen, die aus Sicht des Autors am meisten Sinn machen.

Operation stammt aus der UML-Spezifikation und beschreibt die
Schnittstelle, also das, was derjenige, der die Operation aufruft, davon
sieht.

Methode beschreibt die eigentliche Implementierung der entsprechen-
den Operation — also das, was im Quelltext tatsachlich steht.

Der Unterschied beider Begriffe wird deutlich, wenn man Polymorphie
hinzuzieht: Einer Oberklasse Parent besitzt eine Methode doIt (),
sowie drei Unterklassen, die alle die doIt () Uberschreiben. Dann gibt
es eine Operation doIt () und vier Methoden, die diese implementie-
ren.

Eine Funktion ist eine Methode, die einen Rickgabewert liefert. Je
nach Definition kann man auch noch verlangen, dass die Funktion
selbst Seiteneffektfrei ist.

Eine Prozedur ist dementsprechend eine Methode, die keinen Riickga-
bewert liefert, bzw. (in der schérferen Definition) einen Seiteneffekt hat.

Eine Routine schlieBlich ist ein Oberbegriff, der noch aus pra-OO Zei-
ten stammt.

Oftmals werden die Begriffe in der Praxis aber auch bunt durcheinander
gewdarfelt. Wir werden in dieser Unterlage in Zukunft in der Regel von
Methoden sprechen und ggf. die Methodensignatur ansprechen. Gele-

1.0.0210 /9033 © Integrata AG 5-3

Methoden

5.2

5.2.1

gentlich werden wir auch den Begriff Funktion bemihen, und zwar in
der schéarferen Form (also keine Seiteneffekte).

Form

Zunéchst wollen wir uns mit der auBeren Form von Methoden beschaf-
tigen, also GréBen, Namen etc.

Damit wir das aber verninftig tun kénnen, missen wir zumindest zwi-
schen zwei Arten von Funktionen unterscheiden:

Schnittstellen-Methoden sind Methoden, die in der &ffentlichen
Schnittstelle definiert sind. Sie besitzen die Sichtbarkeiten public oder
protected, selten auch package.

Abstraktions-Methoden sind Methoden, die wir dazu nutzen unseren
Code besser lesbar zu machen. Sie sind Implementierungsdetails der
Schnittstellen-Methoden und haben daher die Sichtbarkeiten package
und private. Eine haufig zu findende Bezeichnung fir diese Art von Me-
thode ist Hilfsmethode, wir werden diese Bezeichnung aber hier be-
wusst vermeiden, denn sie deutet auf eine Methode zweiter Klasse hin
— eine Interpretation, von der wir uns im folgenden noch deutlich distan-
zieren werden.

Warum unterscheiden wir nun Uberhaupt zwischen diesen beiden Ar-
ten? Nun, der Grundgedanke der Kapselung ist, dass wir unsere Imp-
lementierungen jederzeit austauschen kénnen.

Das heif3t, wir kbnnen unsere Abstraktions-Methoden nach Herzenslust
umbenennen, umformulieren oder auf andere Art anpassen. Das Glei-
che qilt fur die Implementierungen der SchnittstellenMethoden. Beim
Verandern der Signatur der Schnittstellen-Methoden sollten wir aber
auBerst vorsichtig vorgehen, schlieBlich hat das Auswirkungen auBer-
halb unseres Moduls.

Lange

Wir haben uns bei der Frage, wie grof3 eine Klasse sein soll, schon mit
Metriken fir die GroBe beschaftigt. Bei einer Klasse haben wir die Ver-
antwortlichkeiten gezahlt, bei Methoden zahlen wir stattdessen Zeilen
(LOC) oder Anweisungen (NCSS) — bei gutem Methodendesign sollten
beide Werte sowieso annahernd gleich sein.

Bei der Besprechung der Klassengré3en haben wir auch zwei Regeln
aufgestellt. Die gleichen Regeln wollen wir auch fir Methoden anwen-
den:

Regel 5-1: Methoden sollten klein sein. (Lesb, Test)
Regel 5-2: Methoden sollten noch kleiner sein. (Lesb, Test)

5-4

© Integrata AG 1.0.0210/9033

Methoden 5

5.2.1.1

In der Literatur findet man sehr unterschiedliche Definitionen dartber,
was ausreichend klein ist. Auch in der Praxis finden wir sehr unter-
schiedliche Konventionen.

Tasten wir uns an den Begriff ein wenig naher heran.

200 Zeilen sind sicher zu viel. Ein alter Grundsatz war, das Methoden
(bzw. Prozeduren) nicht l&nger als eine Bildschirmseite seien sollten.
Das war in Zeiten, in denen Bildschirme eine feste Anzahl von Zeichen
aufnehmen konnten (z.B. 80x24), in der heutigen Zeit, mit immer gréBe-
ren Bildschirmen und immer hdheren Auflésungen bekommt man aber
durchaus auch 100 Zeilen auf einem Bildschirm unter.

Trotzdem sind die 20 Zeilen der alten Terminals erst einmal ein guter
Wourf (ein paar Zeilen gehen ja fur Editor-Funktionen, wie Zeilennum-
mern, Mends etc. verloren).

Das Hrair-Limit

Gehen wir aber noch einen Schritt weiter. 20 Zeilen sind immer noch zu
lang (wenn auch nicht immer vermeidbar!). Eine besserer Ansatz sind
zwei bis vier' (oder auch im Extremfall sieben) Zeilen. Das klingt nattir-
lich extrem, und um diese Struktur Uberhaupt erreichen zu kénnen,
mussen wir einige Grundsatze beherzigen, die wir im restlichen Kapitel
besprechen wollen.

Woher stammt nun aber diese Zahl? Zum einen aus der Praxis — fast
alles lasst sich auf diese GréBe reduzieren (wie, werden wir noch se-
hen).

Eine andere Erklarung liefert uns die Psychologie — schlieBlich geht es
ja um Menschen, die unseren Code lesen und verstehen sollen. Das
Verstandnis des Menschen flir komplexe Modelle ist grundsétzlich be-
grenzt. 1956 hat der Psychologe George Miller einen Grundsatz formu-
liert, der besagt, dass ein Mensch nur in der Lage ist 7+2 Entitaten oder
Konzepte gleichzeitig zu verarbeiten. Zusatzliche Konzepte werden
dann gruppiert und mit anderen Konzepten in Beziehung gesetzt. Die
genaue Zahl ist von Mensch zu Mensch unterschiedlicher.

Versuchen Sie einmal, die Seiten eines normalen Wiirfels (also die
Lage der Punkte zu beschreiben).

Haben Sie irgendwann damit begonnen, Gruppen zu bilden (die vier
sind zwei mal zwei Punkte, die sechs besteht aus zwei Reihen mit je
drei Punkten)? Das ist ein erstes Zeichen (aber natirlich kein Be-
weis!).

o 4, das ist kein Schreibfehler

1.0.0210 /9033 © Integrata AG 5-5

Methoden

5.2.1.2

Der Informatiker Grady Booch (einer der drei Urvater von UML) nannte
diese Grenze auch das Hrair Limit, ein Begriff, den wir in Zukunft auch
verwenden werden.?

Auf unsere Methodenlange bezogen bedeutet das, dass eine Methode
mit mehr als 9 Zeilen (Rumpf, die Signatur lassen wir auBBen vor) von
einem Menschen nicht mehr vollstandig erfasst werden muss — er muss
damit zusatzliche Energie (und Zeit) aufwenden, um die Methode zu
verstehen.

Regel 5-3: Methoden sollten dem Hrair-Limit geniigen (nicht mehr
als 7 Zeilen) (Lesb, Test)

Bleibt natlrlich der mdgliche Einwand: Wenn wir statt weniger, gro3er
Methoden viele kleine Methoden verwenden, haben wir das Problem
damit nicht nur eine Ebene nach oben verschoben (also mehr Metho-
den geschaffen, als wir erfassen kénnen)?

Die Antwort ist (hoffentlich nicht allzu Uberraschend) nein. Zum einen
liegen unsere Methoden in verschiedenen Abstraktionsebenen vor (sie-
he 5.3.3 Abstraktionsebenen, weiter unten), und wir betrachten immer
nur eine Ebene gleichzeitig (die oberste Ebene ist dabei die Schnittstel-
len-Ebene), zum anderen werden wir beim konkreten Lesen in der Re-
gel sowieso immer nur eine Methode einzeln betrachten.

Zu groBe Methoden haben wir behandelt. Aber was ist mit zu kleinen
Methoden?

1-zeilige Methoden

Machen Methoden mit nur einer Zeile Sinn? SchlieBlich ist hier der for-
male Anteil (Signaturen und Klammer bzw. Bock-Schliisselwort®) genau
so grof3 oder sogar noch gréBer, als der eigentliche Code!

Eine einzeilige Methode kann sehr wohl Sinn machen, wenn sie der
Lesbarkeit dient. Haufig sind diese Einzeiler Berechnungen, die einen
besseren Namen bekommen oder Brlicken zwischen fachlichem und
technischem Code (die fachliche Methode registerUser () flhrt in
ihrer Implementierung zur technischen Umsetzung user-
List.add (user)).

2 Hrair Limit oder Rule of Hrair bezieht sich auf den britischen Literatur-Bestseller (der
im englischsprachigen Raum haufig im Unterricht gelesen wird) ,Watership Down*
(deutsch: ,Unten am Fluss®). Die Hauptcharaktere sind dabei intelligente Hasen, die
allerdings nur bis vier zéhlen kénnen, alles dartber hinaus ist einfach ,Hrair® (fir
Lviele®)

% 7.B. BEGIN und END in Pascal

5-6

© Integrata AG 1.0.0210/9033

Methoden 5

5.2.1.3 Leere Methoden

Treiben wir das Ganze auf die Spitze. Machen leere Methoden Sinn?
Wenn keine Vererbung im Spiel ist, sicher nicht. Gerade leere Metho-
den, die einfach ,im Vorgriff“ eingefligt werden, gefahrden die Verstand-
lichkeit unseres Codes sehr deutlich (sie stellen auBerdem einen Ver-
sto3 gegen das Open-Closed-Principle dar). Entweder, wir brauchen
die Methode, oder wir brauchen sie nicht. Sollte aus irgendeinem (si-
cher nicht technischen Grund) eine Methode noch nicht implementiert
werden kénnen, die aber in der Schnittstelle bereits festgelegt ist, so
sollte diese Methode niemals leer sein. Ahnlich schlimm ist es, sie nur
mit einem TODO-Kommentar zu versehen. Warum? In beiden Fallen
haben wir eine Diskrepanz zwischen dem, was die Methode behauptet
zu tun (also ihrem Namen), und dem, was sie tatsachlich tut (namlich
nichts)*. Stattdessen legen wir ja eine Annahme fest: Diese Methode
wird derzeit noch nicht aufgerufen, sie ist nur da, damit der Compiler
zufrieden ist. So eine Behauptung sollten wir auch immer Uberprifen,
und eine harte Fehlermeldung werfen, wenn die Behauptung widerlegt
wird. In unserem Fall sollte einfach die Methode eine Exception (oder
ahnliches, je nach Programmiersprache werfen).

Bringen wir also eine Vererbung ins Spiel. Hier gibt es zwei Mdglichkei-
ten:

Die Methode der Oberklasse ist leer, die Unterklasse hat Inhalt:

In diesem Fall erflillt die Methode die Aufgabe einer abstrakten Metho-
de, die nicht unbedingt tGberschrieben werden muss. Die Gefahr hierbei
ist natlrlich, dass die Vererbungshierarchie dadurch unscharf wird, da
eine Oberklasse jetzt ,unnétige“ Fahigkeiten besitzt.

Es gibt dafir zwei Standardanwendungsfalle, wobei beide naturgeman
eher technischer Natur sind:

Lifecycle-Methoden sind Methoden, die zu einem bestimmten Zeit-
punkt im Leben eines Objektes aufgerufen werden, wobei die Objekte
dabei in der Regel keine fachlichen Objekte sind. So kénnte in einem
offenen Framework beispielsweise eine (abstrakte) Klasse System-
Service definiert sein, von der mehrere unterschiedliche Kindklassen
erben (DataBaseAccess, PrinterAccess). SystemService besitzt
drei Methoden: init(), execute() und destroy (). init () und
destroy () sind dabei die Lifecycle-Methoden, die durch das Frame-
work aufgerufen werden, wenn der jeweilige Dienst instanziiert bzw.
beendet wird, also technische Methoden, execute () die Methode, die
die eigentliche fachliche Aufgabe ausfiihrt®.

* Zugegeben, sollte die Methode doNothing () oder noOp () heiBen, hatten wir eine
andere Situation. Hier ware schon die Schnittstelle unsinnig.

® Und damit eine Ubersetzung zwischen technischen und fachlichen Komponenten
darstellt.

1.0.0210 /9033 © Integrata AG 5-7

Methoden

DataBaseAccess () kdnnte in init () eine Verbindung zur Daten-
bank herstellen. Bendtigt PrinterAccess aber keine Initialisierung, so
kann er einfach die leere Implementierung erben. Das reduziert den
unnétigen Code in der Quelldatei.

Keinen Sinn macht es dagegen, die execute () Methode leer zu imp-
lementieren, da ein SystemService ohne fachlichen Auftrag wenig
Sinn machen wirde.

Hook-Methoden folgen einem &hnlichen Prinzip, nur werden hier die
entsprechenden Methoden nicht von auf3en, sondern von der Klasse
selbst aufgerufen. Hier kommt das TEMPLATE-Pattern zur Anwendung,
ein Pattern, das garantiert, dass Methoden in der richtigen Reihenfolge
aufgerufen werden.

Ein Beispiel:

public abstract class Query (

protected void openConnection()

// open the connection...

protected void closeConnection()

// close the connection...

public abstract Answer execute (String command) ;

Man kénnte jetzt in die Dokumentation aufnehmen, dass die Methode
execute () zuerst openConnection () aufrufen muss, dann den
Fachcode ausflihnren und zum Schluss closeConnection () aufrufen.
Wie wir noch sehen werden, ist das Wort ,muss” in der Dokumentation
wenig wert, wenn die Umsetzung nicht irgendwo geprift wird.

© Integrata AG 1.0.0210 /9033

Methoden 5

Ein Programmierer, der vergisst, die Dokumentation zu lesen, wird erst
zur Laufzeit damit auf die Nase fallen.

public class NameQuery extends Query ({

@Override
public Answer execute (String command)
// Hier fehlt openConnection()!!!
Answer answer = connection.write("Hallo");
postProcess (answer) ;
closeConnection() ;
return answer;
}
private String postProcess (String answer)

// ..post process

Wie kann das TEMPLATE-Pattern uns hier helfen? Nun, zum einen muss
die Reihenfolge garantiert werden. ,Muss garantiert werden® deutet da-
rauf hin, dass es hier eine Methode gibt, die nicht Gberschrieben wer-
den darf — manche Programmiersprachen bieten daflr ein eigenes
Sprachelement an, z.B. £inal in Java. Kann die Methode nicht Uber-
schrieben werden, so ist das Verhalten garantiert.

1.0.0210 /9033 © Integrata AG 5-9

Methoden

In diese Template-Methode (Schablone) hangen wir nun unser veran-
derbares Verhalten ein, entweder als abstrakte Methode, wenn die Me-
thode implementiert werden muss, oder als leere Methode, wenn es ein
zusatzliches, optionales Verhalten ist (wie in unserem Beispiel

postProcess ()).

public abstract class Query2 ({
protected void openConnection()

// open the connection...

protected void closeConnection() {

// close the connection...
public final Answer execute (String command)
openConnection () ;

Answer answer = doExecute (command) ;

postProcess (answer) ;

closeConnection () ;

return answer;

protected abstract Answer doExecute (String command) ;

protected void postProcess (Answer answer) {

// empty, hook only

5-10

© Integrata AG 1.0.0210/9033

Methoden 5

5.2.2

public class NameQuery2 extends Query?2 {

@Override
protected Answer doExecute (String command) {

return connection.write("Hallo") ;

@Override
protected void postProcess (String answer) {

// ..post process

}

Bleiben nur noch zwei Anmerkungen:

e Der Name doExecute () ist wieder eine Konvention, die natirlich in
den Programmierrichtlinien definiert sein sollte.

e Natirlich ist unsere postProcess () Methode im obigen Beispiel
nicht leer, sie enthélt nur keinen Code. Eine gute Angewohnheit ist
es, vollstandig leere Blécke mit einem Kommentar zu versehen, wa-
rum sie leer sind.

Die Methode der Oberklasse hat Inhalt, die Unterklasse ist leer:

Diese Konstruktion ist auBerst gefahrlich. Die Oberklasse besitzt eine
Fahigkeit, die die Unterklasse nach aufBen hin noch besitzt, die aber zu
keinem Verhalten fuhrt. Das bringt uns gefahrlich nahe an einen Ver-
sto3 gegen das Liskovsche Substitutionsprinzip.

Grundsatzlich sollte man dieses Verhalten also vermeiden.

BlockgroBen

Die sinnvolle Lange von Methoden haben wir weiter oben schon be-
sprochen. Wenn unsere Methoden aber nur héchstens sieben Zeilen
haben dirfen, dann kénnen auch unsere Blocke nicht besonders grof3
sein.

13

Wir gehen einen Schritt weiter und formulieren ,nicht besonders grof3
noch scharfer:

Regel 5-4: Blocke sollten einzeilig sein. (Lesb, Test)

Das heif3t, dass jeder Block immer nur aus einer einzelnen Anweisung
bestehen sollte. Sind mehr als einen Anweisung nétig, so ist dafir eine
eigene Methode zu schreiben.

Eine Konsequenz davon ist, dass unsere Methoden nie tiefer als ein-
fach geschachtelt sind, was die Lesbarkeit und das Verstéandnis deutlich

1.0.0210 /9033 © Integrata AG 5-11

5 Methoden
verbessert. AuBBerdem schreiben wir jetzt in den Block hinein, was darin
fachlich passiert, indem wir einen geeigneten Methoden-Namen wéh-
len — was uns ggf. einen weiteren Kommentar einspart (mit Kommenta-
ren werden wir uns im n&chsten Kapitel noch ausfihrlich beschaftigen).
Schauen wir uns das Beispiel der Primzahlen aus dem letzten Kapitel
noch einmal an. Zunachst noch einmal die Ursprungsversion (allerdings
schon mit sprechenden Namen):
public void printPrimesUpTo (int maxNumber) {

for (int possiblePrime = 1; possiblePrime < maxNumber;
possiblePrime++) {
boolean isPrime = true;
for (int possibleDivider = 2; possibleDivider < possiblePrime;
possibleDivider++) {
if (possiblePrime % possibleDivider == 0) {
isPrime = false;
break;
}
}
if (isPrime) {
System.out.println (possiblePrime) ;
}
}
}
Und jetzt die nach der obigen Regel umgestellte Version:
public void printPrimesUpTo (int maxNumber) {
for (int i = 1; 1 < maxNumber; i++)
printIfPrime (i) ;
}
private void printIfPrime (int possiblePrime) {
if (isPrime (possiblePrime))
System.out.println (possiblePrime) ;
}
private boolean isPrime (int number)
for (int i = 2; i < number; i++)
if (isDividerOf (i, number)) return false;
return true;
}
private boolean isDividerOf (int i, int number) {
return number % i == 0;
}
Die zweite Variante ist deutlich besser lesbar. Und die langste Methode
ist drei Zeilen lang!
5-12 © Integrata AG 1.0.0210 /9033

Methoden 5

5.2.3

Auch hier bleiben zwei Dinge anzumerken:

¢ In der Methode isPrime () haben wir natlrlich getrickst, den eigent-
lich ist die Anweisung if (isDividerOf (i, number)) re-
turn false mehr als eine Anweisung. Hier haben wir aber direkt
das erste Beispiel, in dem die Regel nicht bis zum auBersten anzu-
wenden ist — ein Exit-Punkt kann eben nicht in eine Methode ausge-
lagert werden.

e Die Forderung, jeden Block nur noch einzeilig aufzusetzen, erlaubt
uns sogar, die geschweiften Klammern wegzulassen, ein zugegebe-
nermaBen gewagter und gewdhnungsbediirftiger Schritt®.

Eine letzte Warnung ist allerdings angebracht:

Diese Art der Programmierung erzeugt sehr viele Methoden, damit sehr
viele Methodenaufrufe. Das kann zu deutlichen Performance-Einbuf3en
fihren, wenn der Effekt nicht durch den Compiler (der hieraus einfach
wieder groBe Methoden erzeugt), oder zur Laufzeit durch einen Hot-
Spot-Compiler (wie zum Beispiel unter Java, der HotSpot-Compiler op-
timiert zur Laufzeit den Code, dabei bettet er unter anderem Methoden
wieder in andere ein) verhindert wird.

Andersherum: Mit einem optimierenden Compiler oder einem HotSpot-
Compiler ist das Laufzeitverhalten beider Versionen (beinahe) iden-
tisch!

Namen

Wir haben uns ja bereits im letzten Kapitel ausfihrlich mit Namen be-
schéaftigt. Wir wollen natdrlich nicht alles wiederholen, sondern nur noch
einmal den wichtigsten Grundsatz aufgreifen:

Namen von Methoden mulssen beschreiben, was die Methode tut. Der
Name kann dabei ruhig etwas langer sein, wir tippen ihn ja schlieBlich
in der Regel nur einmal vollstandig.

Ein guter Name flr eine Funktion ist ein Verb oder ein Verb in Verbin-
dung mit einem Substantiv. Das Substantiv dabei kann uns helfen, zu
verstehen, was die Aufgabe des Arguments in der Methode ist.

public void store (Order order)

Dieser Methodenname scheint gut verstandlich zu sein, kann aber
komplizierter werden, wenn der Name der Ubergebenen Variable nicht
ganz eindeutig ist:

backend.store (priority) ;

Natlrlich kdnnte man argumentieren, dass der Name flr die Priority
nicht besonders gut gewabhlt ist, aber was ist mit einer Routine, die eben

® Von der Benutzung von Blécken ohne Klammern wird ja in fast jedem Styleguide
abgeraten.

1.0.0210 /9033 © Integrata AG 5-13

Methoden

nur zwei Bestellungen auf einmal bearbeitet, zum Beispiel eine regulare
und eine priorisierte. Im Kontext dieser Methode sind die Namen ,priori-
ty“ und ,regular doch vollkommen ausreichend. Eine Alternative ware:

backend.storeOrder (priority) ;

Jetzt ist vollkommen klar, dass priority eine Bestellung sein muss.
Man nennt diese Form des Methodennamens auch Keyword-Form.
Noch wichtiger wird die Keyword-Form, wenn wir mehr als ein Argu-
ment haben und nicht logisch aus dem Namen hervorgeht, welches Ar-
gument was bedeutet.

assertEquals (expected, actual) ist ein klassisches Beispiel. Es
handelt sich dabei um eine Methode aus dem JUnit-Framework, die far
einen Testfall Gberprift, ob das erwartete Ergebnis dem tatsachlichen
entspricht. Die Reihenfolge der beiden Parameter wird aber in der Pra-
xis stédndig durcheinander gebracht. Hatte man die Methode asser-
tExpectedEqualsActual () genannt, ware die Reihenfolge voll-
kommen klar gewesen.

Regel 5-5: Der Name einer Methode muss zusammen mit seinen
Argumenten auf Client-Seite verstandlich sein. (Lesb,
Test)

Auch bei Methodennamen kénnen wir wieder die Holper-Regel anwen-
den. Finden wir nicht ohne allzu viel Mihe einen Namen, der unsere
Methode beschreibt, so ist das ein Anzeichen daflir, dass unsere Me-
thoden-Komposition noch nicht ganz zweckmaBig ist.

5-14

© Integrata AG 1.0.0210/9033

Methoden 5

5.3

5.3.1

Inhalt

Nachdem wir die &uBBere Form beleuchtet haben, legen wir als nachstes
unser Augenmerk auf den eigentlichen Inhalt unserer Methoden, also
was diese nun eigentlich tun sollen. Dafiir werden wir einige Regeln de-
finieren, die uns unserem Ziel, gut lesbaren Code zu erstellen, noch
naher bringen werden.

Eine Aufgabe

Ein Grundsatz der Objektorientierung ist die Trennung von Verantwort-
lichkeiten (Separation of Concerns) — ein Grundsatz der auch Eingang
in das Prinzip der Kohéasion und das Single-Repsonsibility-Principle ge-
funden hat.

Wir wollen dieses Prinzip auch auf Methodenebenen anwenden und
formulieren dafur die nachste Regel:

Regel 5-6: Eine Methode sollte eine Sache tun. Diese sollten sie
gut tun. Diese sollten sie ausschlieBlich tun.” (Lesb,
Test)

Schauen wir uns noch einmal unser Beispiel an.
Wie viele Dinge macht die folgende Funktion?

public void printPrimesUpTo (int maxNumber) {
for (int 1 = 1; i1 < maxNumber; i++)
printIfPrime (i) ;

}

Mégliche Antworten sind eins oder zwei. Wenn wir von zwei ausgehen,
ware das:

1. Durchlaufe alle Zahlen von 1 bis maxNumber
2. Gebe jede Zahl aus, wenn sie eine Primzahl ist

Geflhlt ware nattrlich die Lésung mit nur einer Aufgabe die bessere,
denn sonst wiirde ja unsere (optisch doch eigentlich gute) Methode ja
gegen die Regel versto3en.

Ware es nur eine Aufgabe, hiel3e die:
1. Gebe alle Primzahlen bis maxNumber aus.

Klingt das besser? Zumindest nicht schlechter. Die zweite Version be-
schreibt, was die Methode tut, die erste dagegen, wie sie es tut. Das
sind zwei unterschiedliche Abstraktionsebenen.

” Frei Uibersetzt von Robert C. Martin, das Prinzip dahinter ist natlrlich schon deutlich
alter.

1.0.0210 /9033 © Integrata AG 5-15

Methoden

5.3.2

5.3.3

Wir kénnen beide Aufzahlungen in einen ,Um zu“-Satz bzw. Absatz un-
terbringen:

Um alle Primzahlen bis maxNumber auszugeben, durchlaufe alle
Zahlen von 1 bis maxNumber und gib dabei jede Zahl aus, wenn sie
eine Primzahl ist.

In Englisch haben wir dabei noch einen interessanten Effekt. Ein ,Um
zu“-Satz wird dann zu einem TO-Satz/Absatz®:

To printPrimesUpTo maxNumber, count from 1 to maxNumber
and for each Number, printlfPrime.

Der Name der Methode wird zu einem Teil des Satzes, genauso wie die
einzelnen Anweisungen innerhalb der Methode.

Jetzt haben wir eine vollstdndige Beschreibung unserer Methode — oh-
ne, dass wir noch eine weitere Form von Dokumentation brauchen.

Die Vision
Das Visionsprinzip haben wir bereits kennengelernt. Es besagt, dass
sich ein Konzept in einem Satz ausdriicken lassen muss. Bisher haben

wir es ausschlieBlich fur Klassen genutzt, wir kbnnen es aber auch ge-
nauso flr unsere Methoden heranziehen.

Allerdings bringt es hier wenig Neues ein, schlieBlich wollen wir ja so-
wieso schon unsere Methode mit einem ,Satz“ beschreiben, namlich
dem Namen.

Weil die Vision ein echter Satz ist, kann sie uns aber helfen, unseren
Methodennamen zu finden. Wir formulieren also erst die Vision und pru-
fen dabei schon, ob wir zu viel in der Methode tun wollen. Dann entwi-
ckeln wir aus der Vision den Methodennamen.

Abstraktionsebenen

Wir haben weiter oben festgestellt, dass die zwei Arten printPrime-
sUpTo () zu beschreiben unterschiedlichen Abstraktionsebenen ent-
sprechen. Das ist das Prinzip jeder Methode. Sie stellt eine Anweisung
auf einer hdéheren Abstraktionsebene dar und bricht sie herunter auf
mehrere Anweisungen einer niedrigeren Ebene.

Dabei sind die oberen Ebenen in der Regel fachlich, die niedrigeren
Ebenen eher technisch (auf hoher Ebene haben wir beispielsweise eine
Methode findBooksByAuthor () die sicher auf niedrigerer Ebene ir-
gendwann in Aufrufe einer Listenklassen herunter gebrochen wird -oder
in Datenbankaufrufe etc...).

® Interessanterweise werden Methoden in der Sprache LOGO mit dem Schliisselwort
»10" definiert, was diese Art der Formulierung direkt in der Sprache motiviert.

5-16

© Integrata AG 1.0.0210/9033

Methoden 5

5.3.4

Ein Zeichen daflr, in welcher Abstraktionsebene wir uns befinden, sind
damit auch die Objekte, die wir benutzen, also auf héherer Ebene nur
fachliche Datenobjekte (Buch, Autor), auf niedrigerer Ebene die techni-
schen Entsprechungen (Objekt, Liste).

Definieren wir eine weitere Regel:

Regel 5-7: Jede Methode sollte nur auf einer Abstraktionsebene
agieren. (Lesb)

Ein Priufstein dafir ist die Anwendung des ,TO“Satzes. Klingt dieser
nicht schlissig, so sind wahrscheinlich mehr als eine Abstraktionsebe-
ne beteiligt.

Die Stepdown-Regel

Haben wir alle obigen Grundséatze befolgt, kbnnen wir jetzt unseren Co-
de fast wie einen FlieBtext lesen, indem wir alle Methoden durch ihre
TO-Séatze beschreiben, und dabei immer weiter in den Code hineinge-
hen.

To printPrimesUpTo maxNumber, count from 1 to maxNumber
and for each Number, printlfPrime.

To printlfPrime, we check if the number isPrime and if so, print it
on the console.

To check if a number isPrime, we check for all numbers be-
tween 2 and the number it isDividerOf number. If so, it is no
Prime (false). Else, it isPrime.

Das liest sich mittlerweile recht verstandlich. Probleme macht uns dabei
noch die Methode isDividerOf (), die uns Schwierigkeiten bei formu-
lieren macht. Diese Schwierigkeiten tauchen in der Regel dann auf,
wenn Methoden mehr als einen Parameter haben und eigentlich als
Operator fungieren (siehe dazu auch den nachsten Abschnitt). Lasst die
Programmiersprache eine Funktion als Infix-Operator zu, so lasst sich
diese natirlich eleganter formulieren.

Man kénnte nattrlich auch gut daflr argumentieren, die Methode is-
DividerOf () ganz wegzulassen, schlieBlich sollten der Ausdruck
number % 1 == 0 eigentlich verstandlich genug sein.

Die Eleganz der Stepdown-Regel besteht dahin, dass der Leser beim
durchlesen des Codes jederzeit entscheiden kann, aufzuhdren oder
noch tiefer hinein zu gehen, er aber immer einen sinnvollen Stand hat.

1.0.0210 /9033 © Integrata AG 5-17

Methoden

54

5.4.1

Argumente

Als nachstes wollen wir uns mit einem wichtigen Teil der Methoden be-
schaftigen, den Argumenten. Zunéachst eine hoffentlich klare Regel:

Regel 5-8: Methodenargumente sollten auf der gleichen Abstrakti-
onsebene liegen, wie die Funktion. (Lesb, Test)

Wir wollen Methoden im Folgenden anhand der Anzahl der Argumente
unterscheiden. Ein Problem mit Argumenten ist, dass eine Menge Kon-
zeptarbeit dahintersteckt. Je mehr Argumente, desto schwerer wird die
Methode zu verstehen.

Die verstandlichsten Methoden sind also Methoden ohne Argumente,
dicht gefolgt von Methoden mit einem Argument. Zwei Argumente ma-
chen uns das Leben schon deutlich schwerer, drei Argumente sind
kaum noch Uberschaubar und sollten vermieden werden. Und fir Me-
thoden mit mehr Argumenten bedarf es schon einer ausgezeichneten
Begrindung.

Auch was die Testbarkeit angeht, erh6hen mehr Argumente den Auf-
wand immens. Eine Funktion ohne Argumente und eine Funktion mit
einem Argument erfordern nur wenige Tests, um alle Félle abzudecken.
Bei Methoden mit zwei Argumenten mussten wir fir eine volle Testab-
deckung alle mdglichen Kombinationen der Werte abdecken. Bei drei
und mehr Argumenten lauft das schnell ins Uferlose.

Niladische Methoden

Niladische Methoden (Methoden ohne Argumente) sind aus Sicht der
Lesbarkeit ideal. Das Konzept der Methode steckt vollsténdig in ihrem
Namen, ohne dass man sich Gedanken Uber die Bedeutung der Argu-
mente machen muss.

Betrachten wir ein Beispiel:

printResultInto(writer) ;

Was stimmt mit dieser Methode nicht? Zunachst mischt sie Abstrakti-
onsebenen, den Writer ist wahrscheinlich eine technische Klasse, die
Methode aber eher fachlich. AuBerdem wird der Writer bei anderen Me-
thoden derselben Klasse wahrscheinlich auch bendtigt. Und meistens
exakt dasselbe Objekt sein.

Besser wére sicher:

printResult () ;

Wie kann man dieses Ergebnis aber erreichen? Natlrlich, indem man
die Argumente der Methode in Felder der besitzenden Klasse umwan-
delt bzw. eine Hullklasse schreibt, die das Argument als Feld aufnimmt.

5-18

© Integrata AG 1.0.0210/9033

Methoden 5

5.4.2

5.4.3

Natirlich lasst sich das nicht immer so einfach anwenden. Wir sollten
trotzdem das Ziel vor Augen haben, wann immer mdglich Niladische
Methoden zu verwenden.

Monadische Methoden

Monadische Methoden (also Methoden mit einem Argument) sollten die
haufigsten Methoden sein. Sie haben den Vorteil, dass sie in der Regel
ohne Miihe lesbar sind, das einzelne Methoden-Argument erfillt in un-
serem beschreibenden Satz die Aufgabe des Objektes (im grammatika-
lischen Sinne!).

printIfPrime (myNumber) druckt myNumber, wenn es eine Prim-
zahl ist. InputStream openFile("data.txt") 06ffnet die Datei
mit dem Namen data.txt und liefert eine InputStream auf diese
Datei zurick.

Grundsatzlich gibt es zwei klassische Anwendungsfalle fir Monaden:

o Abfragen liefern eine Information Uber das Argument zurlck:
List.contains (Object o), String.indexOf (“*Hallo”)

e Transformatoren wandeln das Argument in ein anderes um. In-
putStream openFile ("data.txt"),List.get (15)

Aus dem Namen der Methode sollte deutlich hervorgehen, um welchen
Typ es sich handelt.

Eine dritte Form fehlt uns allerdings noch. Zu dieser gehéren Beispiels-
weise die Setter-Methoden. Es handelt sich um Methoden ohne Rick-
gabewert, die lediglich den Zustand des Objektes / des Systems an-
dern. Diese Form nennen wir Event.

Regel 5-9: Eine monadische Methode sollte immer eine Abfrage,
ein Transformator oder ein Event sein. (Lesb, Vers)

Andere Formen erschweren die Lesbarkeit. Weiter oben haben wir be-
reits eine Madglichkeit gesehen, wie wir eine andere Form wie einen
Transformator erscheinen lassen kénnen (mittels Dopplung als Ruck-
gabewert).

Dyadische Methoden

Dyaden, also Methoden mit zwei Argumenten, sind schwieriger zu
handhaben als Monaden. Natlrlich sind sie oftmals véllig verstandlich,
bendtigen aber dennoch einen Moment des Innehaltens.

printResultField(fileWriter, "name") ist komplizierter als
printResult ("name"). Natdrlich nicht dramatisch, aber mit der Zeit
wird der Leser lernen, den fileWriter einfach zu ignorieren. Und um
R.C. Martin zu zitieren: ,Die Stellen, die wir ignorieren, sind die Stellen,
an denen sich die Bugs verstecken®.

1.0.0210 /9033 © Integrata AG 5-19

Methoden

5.4.4

5.4.5

Die Anzahl der Argumente bezieht sich hier allerdings (wie bei den an-
deren auch) nicht notwendigerweise auf die echte, gezahlte Anzahl,
sondern auf die logischen Argumente:

Point upperLeft = Point.FromCartesian (10, 20);

Point lowerRight = Point.FromPolar (10f, 20f);

In diesem Beispiel aus dem vorherigen Kapitel ist die erste Zeile eigent-
lich eine Monade! Die x und y Koordinate sind geordnete Element des-
selben Wertes (Wertepaares). Etwas schwieriger ist es in der zweiten
Zeile, da hier (wie wir ja schon besprochen haben), eine strikte Ord-
nung nicht vorliegt. Es empfiehlt sich deshalb, die zweite Methode als
Dyade zu betrachten.

Natdrlich sind Dyaden in der Praxis nicht zu vermeiden — und sie stellen
auch nicht die Wurzel allen Ubels dar®. Allerdings sollten sie mit Be-
dacht eingesetzt werden. Und man sollte immer prifen, ob es nicht eine
bessere Alternative gibt.

Triadische Methoden

Triaden'®, also Methoden mit drei Argumenten, sind duBerst gefahrlich.
Zum einen sind sie sehr schwer zu Uberschauen, zum anderen sehr
schwer zu testen.

Insbesondere die Reihenfolge der Argumente wird uns immer wieder
dazu bringen, beim Lesen (und beim Schreiben) anzuhalten, und dar-
Uber nachzudenken. Und der Versuch, einen sinnvollen Namen ist von
vorneherein fast immer zum Scheitern verurteilt.

Nattrlich werden wir gelegentlich Triaden verwenden missen, missen
dabei aber akzeptieren, dass diese fast immer Vorwissen des Lesers
voraussetzen — oder eben querlesen erfordern.

GroBere (Polyadische) Methoden

Im Gegensatz zu Dyaden sind Polyaden tats&chlich die Wurzel allen
Ubels. Sie fihren zu Code, der kaum noch erfasst werden kann (ohne
ihn Anweisung fir Anweisung auszuwerten), insbesondere wenn die
Anzahl der Argumente das Hrair-Limit Gbersteigt.

Eine der extremsten Beispiele aus den Java-Klassenbibliotheken ist
folgender Konstruktor:

GridBagConstraints (int gridx, int gridy, int gridwidth, int
gridheight, double weightx, double weighty, int anchor, int
fill, Insets insets, int ipadx, int ipady)

° Den die ist ja geman D.Knuth die ,voreilige Optimierung”

1% Kein Bezug zur chinesischen Mafia

5-20

© Integrata AG 1.0.0210/9033

Methoden 5

5.4.6

In der eigentlichen Anwendung sieht das dann so aus:

new GridBagConstraint(5, 10, 1, 1, 1.0, 2.0, CENTER, BOTH,
emptyInsets, 1, 1)

Selbst bei Kenntnis dieser Klasse ist dieses Konstruktor-Monster kaum
verstandlich. Ein wenig entscharfen lasst sich das ganze durch Kom-
mentare und Formatierung (aber wehe, wenn die IDE den Code um-
formatiert!):

new GridBagConstraint (
5, 10, // grid position
1, 1, // cell size
1.0, 2.0, // weight
CENTER, // anchor
BOTH, // fill
emptyInsets,

1, 1) padding

Die einzig sinnvolle Chance, dieses Monster zu bandigen, ist das Aus-
lagern der Argumente in ein Argument-Objekt, das einzelne Setzen der
Felder des leer erzeugten Objektes oder die Verwendung eines Pat-
terns.

Setter (bzw. Direktzugriffe auf die Attribute, der GridBagConstraint
ist in mehrerer Hinsicht ein Negativbeispiel) bldhen unseren Client-
Code deutlich auf, sind aber machbar.

Ein Argument-Objekt entféllt, da die Klasse nicht unter unserer Kontrol-
le ist.

Bleibt noch das Pattern. Eine Md&glichkeit wéare das schon erwéhnte
BUILDER-Pattern:

GBCBuilder.create (10, 2).weight (1.0, 2.0)
.anchor (CENTER) .insets (emptyInsets) .build()

Immer noch ein Monster, aber immerhin verstandlich (nattrlich haben
wir in dem Beispiel von der Méglichkeit Gebrauch gemacht, default-
Werte nicht noch einmal zu setzen.

Flags

Sehr schwer zu lesen sind Methoden, deren einziger Parameter eine
bool‘'sche Variable ist (mit Ausnahme von Settern natirlich). So eine
Methode lasst sich kaum so benennen, dass die Bedeutung auf Client-
Seite klar ist (in der Signatur mag es ja noch einigermafen verstandlich
sein, aber wir wollen ja gerade verhindern, dass der Leser unndtig hin
und her springen muss).

|figure.paint(true)

1.0.0210 /9033 © Integrata AG 5-21

Methoden

5.4.7

Was soll uns diese Methode suggerieren? In diesem konkreten Fall lau-
tete die Signatur dazu:

|public void paint (boolean isSelected)

Was zumindest schon besser verstandlich ist, aber eben nur, wenn der
Leser zwischen den Klassen hin und her wechselt. Besser wére es ge-
wesen, einfach zwei Methoden zu schreiben:

‘public void paintAsSelected()

|public void paintAsUnselected()

Die Unterscheidung, welche davon aufgerufen werden soll, ware jetzt in
den Client-Code ausgelagert worden (der damit drei Zeilen langer, aber
daflr verstandlicher geworden ware).

AuBerdem werden die beiden Methoden wahrscheinlich ein unter-
schiedliches Verhalten an den Tag legen, also wirde unsere Methode
wahrscheinlich sogar mehr als eine Sache machen.

Das gleiche Problem kann natlrlich auch bei Methoden mit mehr als ei-
nem Parameter auftauchen.

Regel 5-10: Flag-Methoden sollten vermieden werden, besonders
bei Monaden. (Lesb)

Ausgabe Parameter

Eine weitere Klasse von Methoden, die konzeptionell nur schwer zu er-
fassen sind, sind Methoden, die ihre Argumente verandern (sogenannte
Output-Argumente). Bei traditionellen Funktionen werden die Eingabe-
parameter nicht angefasst, sondern ein Ergebnis als Rickgabewert zu-
rickgeliefert. Weichen wir von diesem Grundsatz ab, so wird die Me-
thode schwerer zu erfassen.

Schauen wir uns folgendes Beispiel an:

DataBasket basket = ..
Bagket.addToList (orders) ;

Wo steckt hier das Problem? Die Frage ist, wer schreibt hier in welche
Datenstruktur. In dem obigen Beispiel schreibt der Datenkorb seine
vollstandigen Bestellungen in eine Liste hamens orders. Es kdnnte
aber auch genau umgekehrt sein, d.h. die Liste orders wird dem Wa-
renkorb hinzugeflgt.

5-22

© Integrata AG 1.0.0210/9033

Methoden 5

5.4.8

Man hatte das Ganze entscharfen kénnen, indem die Methode addTo-
List die modifizierte Liste noch einmal zuriickgeliefert hatte:

DataBasket basket = ..

orders = Basket.addToList (orders) ;

Die Zuweisung ist zwar codetechnisch véllig Gberflissig, verbessert die
Lesbarkeit ungemein. Kompliziert wird es allerdings, wenn wir mehr als
ein Output-Argument haben. Das motiviert uns zu einer weiteren Regel:

Regel 5-11: Methoden sollten héchstens ein Output-Argument be-
sitzen, dieses sollte als Riuckgabewert gedoppelt wer-
den. (Lesb)

Argument-Objekte
Betrachten wir zwei Konstruktoren:

public Rectangle (int left, int top, int right, int bottom) ;
public Rectangle (Point upperLeft, Point lowerRight) ;

Welche von beiden Varianten ist besser zu lesen? Die zweite hat zu-
mindest weniger Argumente, was ja laut den oberen Abséatzen die bes-
sere LOsung ist. Aber stimmt das wirklich? Betrachten wir beide Varian-
ten als Aufruf:

new Rectangle(0, 0, 10, 10)

new Rectangle (new Point (0, 0), new Point (10, 10))

Haben wir wirklich etwas gewonnen (auBer Schreibarbeit)? Natdrlich
haben wir das, denn jetzt passen die Abstraktionsebene der Methode
und die Abstraktionsebene der Argumente wieder zusammen. Ein
Rechteck besteht eben konzeptionell nicht aus vier Koordinaten, son-
dern aus zwei Punkten, selbst wenn es technisch einfach vier Koordina-
ten-Felder hat."

Werden die Punkte an einer anderen Stelle als direkt im Aufruf erstellt,
so ist der Aufruf auch wieder deutlich kompakter und lesbarer.

new Rectangle (origin, lowerRight)

Aus Lesbarkeitsgriinden ist es also sinnvoll, zusammengehdrige Argu-
mente in einem Transfer-Objekt zusammenzufassen.

Leider hat diese Technik einen gravierenden Nachteil. Es werden Un-
mengen an Wegwerf-Objekten erstellt, die das System deutlich aus-
bremsen kdnnen.

"' Aber das waren nattirlich wieder Implementierungsdetails, die der Client ja gar nicht
sehen durfte.

1.0.0210 /9033 © Integrata AG 5-23

Methoden

5.5

5.5.1

5.5.2

Stil

In diesem letzten Abschnitt wollen wir uns noch ein wenig naher mit gu-
tem Stil fir Methoden beschéftigen. Einige Punkte haben wir dazu
schon angesprochen oder impliziert, hier wollen wir das Ganze zu ei-
nem sauberen Abschluss bringen.

Seiteneffekte

Unter einem Seiten-Effekt verstehen wir die Veranderung eines Zu-
standes durch die Methode. Typische Seiteneffekte sind das Setzen
von Feldern oder das Ausgeben auf der Konsole.

Eine Seiteneffekt-freie Methode verandert dementsprechend den inne-
ren Zustand unseres Systems nicht. Das bedeutet, wenn wir nebenlau-
fige Zugriffe auBBen vor lassen, dass das wiederholte Aufrufen einer Me-
thode mit denselben Argumenten auch immer zum selben Ergebnis
flhrt.

Besonders gefahrlich sind Seiteneffekte, wenn aus dem Namen der
Methode nicht hervorgeht, dass ein Seiteneffekt eintritt.

Befehl oder Abfrage (Command Query Separation)

Jede Methode sollte entweder eine Abfrage oder ein Befehl sein, d.h.
sie sollte entweder etwas tun, oder etwas zurlckliefern, aber nicht bei-
des. Alles andere flhrt dazu, dass ein Entwickler mit der genutzten API
vertraut sein muss, um den aufrufenden Code zu verstehen. Betrachten
wir folgenden Aufruf.

[if (knownNames.add("Peter")) ...

Was sagt die Antwort aus? Hier kébnnte man noch (richtig) vermuten,
dass der Aufruf der add () -Methode true zurtckliefert, wenn das Hin-
zuftgen erfolgreich war, in diesem Fall also, wenn knownNames noch
keinen Eintrag namens ,,Peter” besessen hat.

Wie sieht es mit folgender Methode aus?

if (positions.set ("teamleader", "Peter"))

Bedeutet eine positive Antwort, dass der momentane Teamleader Peter
heiBt? Oder das der Teamleader erfolgreich auf Peter gesetzt wurde
(weil es tatsachlich eine Position namens ,teamleader” gibt)? Wir
kénnen zwar versuchen, die Lesbarkeit durch einen besseren Namen
zu verbessern (checkIfExistsAndSet), aber das hilft auch nicht viel.

Die einzig sinnvolle LOsung, die uns bleibt, ist den Befehl (setze den
Wert) von der Abfrage zu trennen:

if (positions.entryExists ("teamleader")) {

positions.set ("teamleader", "Peter"));

5-24

© Integrata AG 1.0.0210/9033

Methoden 5

5.5.3

5.5.4

Regel 5-12: Methoden sollten wenn moglich entweder Abfragen
oder Befehle sein. (Lesb)

Allerdings gibt es natlrlich gute Griinde, gegen diese Regel zu versto-
Ben, insbesondere in der nebenlaufigen Programmierung massen wir
uns abstitzen, dass Methoden sowohl Abfragen als auch Befehle sind.
Das sollte dann aber aus dem Namen zweifelsfrei hervorgehen.

Mehrere Exit-Punkte

Ein alter Programmiergrundsatz lautet, dass jede Routine (also auch
jede Methode) nur genau einen Eingang und einen Ausgang haben soll.
Wir werden diesen Grundsatz allerdings nicht anwenden. Daflrr gibt es
zwei Griinde:

e Unsere Methoden sollen schlieBlich kurz gehalten werden. Das
kinstliche Zusammenfassen von Exit-Punkten resultiert aber in der
Regel in einer zusétzlichen lokalen Variable, und damit in mehr Code

e Das Argument der Unibersichtlichkeit ist nicht wirklich schwerwie-
gend, wenn unsere Methoden nur wenige Zeilen lang sind, zumal
moderne IDEs in der Lage sind, uns Exit-Punkte unseres Codes ge-
sondert zu markieren.

Wir werden also sehr wohl mehr als einen Exit-Punkt verwenden, wenn
sich das anbietet (belegt durch einen verniinftigen ,To“Satz naturlich.

Rekursionen

Eine rekursive Funktion (nur fir Funktionen macht das tGberhaupt Sinn)
ist eine Funktion, die sich selber aufruft (entweder direkt, oder Uber eine
oder mehrere andere Funktionen hinweg. Das Ziel dabei ist, dass ein
Problem in Teile zerlegt wird, und diese Teile dann wiederum durch die
gleiche Funktion behandelt werden.

Auf diese Art und Weise sind relativ elegante Losungen moglich, die
insbesondere in der funktionalen Programmierung genutzt werden. Die
Formulierung einer rekursiven Funktion ist damit dicht an einer mathe-
matischen Funktion.

Eine rekursive Funktion besteht aus zwei Bestandteilen: den Abbruch-
bedingungen (auch Spezialfall genannt) und dem rekursiven Anteil
(auch allgemeiner Teil genannt).

Ein Beispiel:
Die Summe einer Liste von Zahlen wird folgendermal3en berechnet:
e Fur eine leere Liste ist sie 0

e Flir eine nicht-leere Liste ist sie das erste Element + die Summe
der Restliste

1.0.0210 /9033 © Integrata AG 5-25

Methoden

Im Code sieht das folgendermaBen aus (head () und tail() sind
dabei Methoden, die das erste Element, bzw. eine Restliste zurlicklie-
fern):

public int sum(List elements) {
if (elements.isEmpty()) return O;

return elements.head() + sum(elements.tail());

}

Diese L6sung ist kurz und elegant — und leider ziemlich ineffizient und
unnétig. Bevor wir uns aber darliber Gedanken machen, priifen wir, ob
die Methode gegen Regeln verstdBit.

Die Methode ist kurz, sie macht nur eine Sache und sie hat nur ein Ar-
gument (sie ist also eine Abfrage). Sie hat auch keine Nebeneffekte.
Wie sieht es mit der Stepdown-Regel aus?

To sum all elements, either return 0, if there is no element or add the
head element to the sum of the tail.

Das sieht zumindest nicht verkehrt aus. Das einzige, was man anmer-
ken kdnnte ware, dass wir natdrlich nicht bei jedem Aufruf eine Abstrak-
tionsebene tiefer gehen. Das ist allerdings nicht weiter dramatisch, zu-
mindest gehen wir die Ebenen nicht wieder hinauf.

Wo liegt jetzt der Nachteil? Zunachst erfordern Rekursionen immer ei-
nen Moment des Nachdenkens (wenn man nicht gerade Vollzeit-
Mathematiker ist), und genau das wollen wir ja eigentlich vermeiden.

Weiterhin gibt es ja genau fir das Problem (der Summe der Elemente
einer Liste) ja eine sehr einfache Md&glichkeit: das Durchiterieren der
Liste und Aufsummieren der Werte.

Drittens ist eine Rekursion ziemlich Ressourcen-hungrig, wenn der
Compiler daftir nicht spezielle Unterstltzung bietet.

FUr einfache Beispiele (wie sie leider oft in Informatik-Blichern stehen)
ist Rekursion also eher nicht geeignet — das gilt insbesondere flr die
beiden Standardbeispiele, Fibonacci-Zahlen und Fakultat!

Trotzdem hat Rekursion natirlich ihre Anwendungsgebiete: Fachcode,
der von Mathematikern gepflegt wird und die fachlichen Berechnungen
der Software implementiert, oder wenn die Anforderungen bereits re-
kursiv formuliert sind.

Es geht also nicht darum, Rekursionen absolut zu vermeiden, sondern
darum, sie nicht einfach der Eleganz wegen zu verwenden. Was wir
aber unbedingt vermeiden sollten, sind zyklische Rekursionen (A ruft B
auf und B wieder A). Diese sind schwer nachzuvollziehen und versto-
Ben auch mit ziemlicher Sicherheit gegen die Stepdown-Regel.

5-26

© Integrata AG 1.0.0210/9033

Methoden 5

5.6 Zusammenfassung

In diesem Kapitel haben wir eine Reihe von Regeln und Verfahren be-
sprochen, die im ersten Moment duBBerst extrem erscheinen. Insbeson-
dere das Reduzieren unserer Methoden auf eine Handvoll Zeilen erfor-
dert ein deutliches Umdenken.

Der Aufwand lohnt sich allerdings. Indem wir unsere Methoden auf die-
se Art und Weise zusammenbauen, lasst sich unser Code wie eine Ge-
schichte lesen.

Natdrlich sind unsere Methoden im ersten Wurf in der Regel nicht so
strukturiert und sauber wie in diesem Kapitel gefordert. Zunachst imp-
lementieren wir unsere Funktionalitat. Aber danach sollten wir uns eben
die Zeit nehmen, unseren Code lesbar zu machen.

1.0.0210 /9033 © Integrata AG 5-27

5 Methoden

5-28 © Integrata AG 1.0.0210 /9033

Kommentare und Dokumentation

6.1 Einleitung......ooo o 6-3
6.1.1 Lesbarer Codeccoouuiiiiiiiiiiiiieee e 6-3

6.2 Gute KOMMENTAre ..c.vvveeeeeeeeeeeeeeceeeee e 6-5
6.2.1 Rechtliche HINWEISE...........coiiiiiiiiiiiiiii e, 6-5

6.2.2 Klarstellungen ... 6-5

6.2.3 AbsichtserkI&rungen ... 6-6

6.2.4 Design Patternsccoeviiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeee 6-6

6.2.5 RegelverstiBe ... 6-6

6.2.6 UnterstreiChuNgenoveeiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee 6-7

6.2.7 Formale Kommentareccoooevviiiieiiiiiiiiecececee e, 6-7

6.3 Schlechte Kommentarec.uuvieiiieiiiiiiieecceeeeeeeeeeeee e 6-9
6.3.1 Unverstandliche Kommentare..........cccooeeeeeiiiiieeiiiiiieeeeeen, 6-9

6.3.2 ReduNdanzenoeiiiiiiiiie e 6-9

6.3.3 Forcierte Kommentareccoooevveeeeiiiiiiiieeeeiceeeeeeee e 6-10

6.3.4 CodehiStorien.......ccceeeieiiiiiieiicceeee e 6-10

6.3.5 Klammer-Kommentare..........cooovveeeiiiiiiiieeeeiiieeeeeeeee e 6-11

6.3.6 Auskommentierter Codeooouuuieiiiiieiieeeeieeeeeeeee e 6-11

6.3.7 InformationsUberflusS........ccoeuuieiiviieiiiieeee e, 6-12

B.3.8 TODOS. .. oot —————— 6-12
1.0.0210 /9033 © Integrata AG 6-1

Kommentare und Dokumentation

6.4
6.5

6.3.9 Nicht-6ffentliche formale Kommentare........ccccoeeeeveeenn... 6-12
Testfalle als Dokumentationc.veeveeeee s 6-13
ZUSAMMENTASSUNQ ...ttt 6-14

6-2

© Integrata AG 1.0.0210 /9033

Kommentare und Dokumentation 6

6.1

6.1.1

Kommentare und Dokumentation

Einleitung

In diesem Kapitel werden wir uns mit Kommentaren und Dokumentation
beschaftigen. Mit Dokumentation meinen wir dabei formale Kommenta-
re im Quellecode, aus denen spater eine API-Beschreibung generiert
werden kann (mit Javadoc oder Doxygen). Nutzerdokumentation o.A.
ist damit natdrlich nicht gemeint!

Eine Erkenntnis die das Kapitel hoffentlich zeigen wird, ist das insbe-
sondere Kommentare (nicht Dokumentation) h&ufig nicht nur unnétig,
sondern kontraproduktiv sind.

Warum wird hier so vehement gegen Kommentare argumentiert? Weil
Kommentare ein groBes Problem mit sich bringen: Sie werden in der
Regel nicht weitergepflegt. Das bedeutet, dass ein Kommentar zum
Zeitpunkt, an dem er geschrieben wurde sinnvoll gewesen sein mag,
aber wurde der kommentierte Code seitdem geéndert, ist nicht sicher-
gestellt, dass auch der Kommentar angepasst wurde.

Ein Beispiel:

/**

* Add a new Action to the manager. Returns true if the action
* ig already existant. If the action is already registered,

* it is NOT replaced.

* @param action the action to add

* @return True 1f an action with the same name has

* already been added, false otherwise.

*/

public void addAction (JaspiraAction action)

Ein weiteres Problem von Kommentaren ist ihre mangelnde Uberpriif-
barkeit. Alles, was nicht automatisiert geprift werden kann (i.d.R. im
Buildprozess), muss entweder manuell geprift werden, oder verworfen!

Lesbarer Code

Kommentare sind deshalb hoffentlich selten notwendig, weil uns ja un-
ser bisheriges Bemuhen, insbesondere die beiden letzten Kapitel an ei-
ne Stelle gebracht haben sollte, an denen unser Code so gut verstand-
lich ist, dass wir eigentlich keine Kommentare brauchen.

Haufig, wenn auch nicht immer, kann der Kommentar durch eine ent-
sprechende Methode oder Variable ersetzt werden. Vergleichen Sie
folgende Abfrage

1.0.0210 /9033 © Integrata AG 6-3

Kommentare und Dokumentation

// is order eligible for free shipping
if (order.getValue() > FREE SHIPPING LIMIT

|| isPremiumMember (order.getCustomer ()))

mit ihrer Variante ohne Kommentar:

if (isEligibleForFreeShipping (order))

Abgesehen davon, dass die zweite Variante deutlich kirzer ist, kann die
Erklarung dabei auch nie vom eigentlichen Code getrennt werden, wie
es hier passiert ist:

// is order eligible for free shipping
Customer customer = order.getCustomer () ;

customer.addToOrderHistory (order) ;

if (order.getValue() > FREE SHIPPING LIMIT

| | isPremiumMember (order.getCustomer ()))

Und beide Varianten haben natirlich den gleichen Aufwand. Bei der
kommentierten Version schreiben wir erst den Kommentar, um auszu-
driicken, was wir vorhaben (oder Uberlegen es uns zumindest), bei der
zweiten Version schreiben wir das, was wir vorhaben, einfach als Me-
thodenaufruf nieder. Und erst dann erstellen wir die neue Methode (was
mit einer modernen IDE wieder nur einige Tastendrlcke erfordert).

Wenn wir einen Kommentar (Ausnahmen gibt es natdrlich, s.u.) in un-
serem Code verwenden, sagen wir eigentlich damit aus: Wir sind nicht
in der Lage, uns alleine mit unserem Code auszudrlicken.

Gerade bei komplexerem Code gibt es eine Tendenz, diesen (mehr
oder weniger sinnvoll) zu kommentieren. Das ist aber der falsche An-
satz! Ist der Code zu komplex, sollte er vereinfacht werden. Kommenta-
re sind kein Freischein fir schlechten Code.

Regel 6-1: Bevor ein Kommentar gesetzt wird, um Code zu erkla-
ren, sollte immer erst versucht werden, den Code
selbst verstandlicher zu gestalten. (Lesb)

6-4

© Integrata AG 1.0.0210 /9033

Kommentare und Dokumentation 6

6.2

6.2.1

6.2.2

Gute Kommentare

Naturlich sind nicht alle Kommentare schlecht. Wir werden im Folgen-
den eine Reihe von Kommentartypen besprechen, die notwendig, sinn-
voll oder zumindest unvermeidbar sind.

Rechtliche Hinweise

Diese Art von Kommentar interessiert uns als Entwickler in der Regel
recht wenig. Sie ist formalisiert, sieht fiir ein Projekt immer gleich aus,
wird durch die IDE normalerweise ausgeblendet, und die gleiche IDE
legt sie beim Erstellen einer neuen Datei auch mit an.

Trotzdem sind sie nattrlich wichtig!

/*
* (c) 2009, 2010 by Integrata AG, all rights reserved
* Release under Apache License 1.0

*/

Das einzige, worauf wir hier achten sollten ist, dass ein derartiger
Kommentar eben nicht einen vollstdndigen Lizenztext beinhalten sollte,
sonder in der Regel nur den Namen und die Version der Lizenz aufzahlt
(wenn es sich um einen Standard-Lizenz handelt) oder auf ein externes
Dokument verweist.

Klarstellungen

Klarstellungen dienen dazu, einen Code, der inherent unleserlich oder
schwer verstandlich ist (was nicht immer zu vermeiden ist, gerade,
wenn externe Bibliotheken genutzt werden). Ein hdufiges Beispiel daftr
sind Reguléare Ausdrlicke:

Pattern dateTimePattern = Pattern.compile (
// 31 . 08 . 2004 16 : 28 +1
// 1 . 4 . 04 4 : 15
"\\d{1,2}.\\d{1,2}. ((\\a{4}) | O\\d{2}) \\d{1,2}:\\d{2} (+\\a)=")

1.0.0210 /9033 © Integrata AG 6-5

Kommentare und Dokumentation

6.2.3 Absichtserklarungen
Eine Absichtserklarung dient dazu, deutlich zu machen, was die Intenti-
on des Programmierers war, um ein bestimmtes Stlick Code genau so
zu schreiben.
@Override
public boolean equals(Object other) {
if (other == null) return false;
if (this == other) return true;
if (other.getClass() == this.getClass()) {
/] ...
}
// Value Objects can be equal to actual objects
else if (other.getClass() == PersonValue.class) {
return toValueObject () .equals (other) ;
}
}
6.2.4 Design Patterns
Wird in einem Stiick Code ein Design-Pattern umgesetzt und ist das
nicht sofort ersichtlich, sollte in einem Kommentar darauf hingewiesen
werden. Besser ist allerdings, die Namen der beteiligten Klassen ent-
sprechend zu wahlen.
6.2.5 RegelverstoBe
Aus Sicht des Autors die wichtigste Art von Kommentar. In Program-
men wird es immer wieder notwendig sein, gegen Konventionen, Regel
oder sogar Contracts zu verstoBBen. Derartige VerstéBe mussen unbe-
dingt kommentiert werden', sonst kénnte es passieren, dass ein ande-
rer Programmierer den vermeintlichen Fehler korrigiert.
Regel 6-2: RegelverstoBe miissen durch einen Kommentar mar-
kiert und begriindet werden. (Lesb, Vers)
' Und zwar mit einer Begrindung!
6-6 © Integrata AG 1.0.0210/ 9033

Kommentare und Dokumentation 6

6.2.6

6.2.7

Unterstreichungen

Unterstreichungen sind Hervorhebungen von Code, der sonst (berle-
sen wirde. Also ein eigentlich trivialer Schritt, der hier aber eine beson-
dere Bedeutung hat.

Formale Kommentare

Formale Kommentare sind das, was wir eingangs als Dokumentation
bezeichnet haben. Es sind Kommentare, aus denen spater eine API-
Dokumentation generiert wird.

Diese Kommentare fiir die &ffentliche? API (und nur fiir diese) kénnen
ausfahrlich und detailliert die Benutzung der Routinen beschreiben und
sind damit eine wertvolle Hilfe flr jeden Programmierer, der auf unsere
Module zugreifen will.

Regel 6-3: Formale Kommentare sollten dem Visions-Prinzip fol-
gen. (Lesb, Vers)

Das bedeutet in diesem Fall, dass der erste Satz der Klassen oder Me-
thoden-Beschreibung fir sich alleine versténdlich sein sollte. Der restli-
che Kommentar dient zur Klarstellung, fur Details und ggf. fir Anwen-
dungsbeispiele.

Der erste Satz ist der, der auch in Ubersichten in der generierten Do-
kumentation auftaucht (der erste Satz der Klassen in der Beschreibung
des Pakets, der erste Satz der Methoden in der Beschreibung der Klas-
se).

Regel 6-4: Formale Kommentare sollten im Quellcode lesbar sein.
(Lesb)

Die meiste Zeit Uber wird ein Entwickler nicht auf die generierte Doku-
mentation, sondern direkt in den Quelltext schauen. Deshalb ist es un-
gemein wichtig, dass die Dokumentation auch im Quelltext verstandlich
ist.

2 Die offentliche API setzt sich dabei aus public Elementen und protected Elementen
zusammen, letztere aber nur, wenn die Klasse zur Vererbung gedacht ist.

1.0.0210 /9033 © Integrata AG 6-7

Kommentare und Dokumentation

Leider verwenden viele Systeme HTML, um ihre formalen Kommentare
zu formatieren, mit dem Ergebnis, dass der Kommentar im schlimmsten
Fall im Sourcecode unverstéandlich ist:

/**

*

*

*

*

*/

Returns an XML-Representation of this MemberList.

Generated Code has the following format:

<members>

 &1t ;person>

 < firstname>Dieter< /firstnames>

 <lastname>Maier< /lastnames>

 <birthday>1973-15-21&1t; /birthday>

 < /person>

< /membersé> ;

public void toXML()

6-8

© Integrata AG 1.0.0210 /9033

Kommentare und Dokumentation 6

6.3

6.3.1

6.3.2

Schlechte Kommentare

Neben guten Kommentaren gibt es natlrlich eine ganze Reihe von
schlechten Kommentaren, also Kommentare, die nichts zur Lesbarkeit
beitragen oder diese sogar noch verschlechtern. Die haufigsten wollen
wir hier aufzahlen.

Unverstandliche Kommentare

Unverstandliche Kommentare sind Kommentare, die in der Hitze des
Gefechts unlesbar herausgekommen sind. Grinde dafir mdgen die
Uhrzeit oder Termindruck sein.

Fest steht aber, dass ein unverstandlicher Kommentar schlechter als
gar kein Kommentar ist.

Redundanzen

Redundante Kommentare sind Kommentare, die eigentlich nur wieder-
holen, was bereits im Code steht. Darunter fallen zum einen Aufrufe,
zum anderen aber auch formale Kommentare:

// Register implementations in the service registry
initServices (services) ;

// Initialize the persistence layer
initPersistence () ;

// Reads all models
initModels () ;

// Initializes advanced of the system
initServices (services?2) ;

// Register a shutdown hook that allows correct database
shutdown

registerShutdownHook () ;

// Initializes the remote services (if necessary) .
initRemoting() ;

/**
* Initializes the persistence layer.
*/

protected void initPersistence()

| /%%
* Shuts down the persistence layer.
*/

protected void shutdownPersistence ()

1.0.0210 /9033 © Integrata AG 6-9

Kommentare und Dokumentation

6.3.3

6.3.4

Forcierte Kommentare

Diese Kommentare gehen in eine ahnliche Richtung. Haufig findet man
in den internen Programmierrichtlinien (so diese denn existieren) die
Forderung, jede offentliche Methode mit einem Kommentar zu verse-
hen.

Der Effekt davon ist, dass die Programmierer Zeit damit verbringen, den
sinnvollen Namen, den sie ihrer Methode gegeben haben im Kommen-
tar zu doppeln oder mit einer alternativen Beschreibung, die exakt das
gleiche aussagt zu versehen (siehe initPersistence () und shut-
downPersistence () im obigen Beispiel)

Ein gutes Beispiel sind Getter und Setter. Diese mit Kommentaren zu
versehen, ist schlicht und ergreifend Code-Mull!

Codehistorien

In einigen (gerade alteren) Projekten findet sich im Kopf, seltener am
Ende einer Datei eine Beschreibung, wer was wann geandert hat, also
eine Historie der Datei.

/*

* Demo.java

* 18.03.03 sp Initial Version

* 15.04.03 sp added Lifecyclemethods
* 18.04.03 jf implemented Comparable
* 30.05.03 sp general Refactoring

*/

Das ist bisher nur die harmlose Fassung, die nur gré3ere Anderung_en
aufzahlt. Gelegentlich sieht man aber auch die Variante, dass jede An-
derung dort verzeichnet sein soll. Mit dem Ergebnis, dass diese Kom-
mentare Uber mehrere Bildschirmseiten gehen.

Welchen Nutzen haben diese Kommentare (auBer Platz zu verschwen-
den)? Unsere IDE blendet sie normalerweise sowieso aus.

Benétigen wir die Informationen Uber die Anderungen, so bekommen
wir diese auch ohne weiteres von unserer Sourcecode-Verwaltung
und/oder unserem Ticketsystem.

6-10

© Integrata AG 1.0.0210/9033

Kommentare und Dokumentation 6

6.3.5

6.3.6

Klammer-Kommentare

Eine weitere Praxis, die friher recht gelaufig war, ist das Markieren von
schlieBenden Klammern:

for (int i = 0; i < max; i++) {

try {

} // try
catch (IOException e) {

} // catch
} // for

Diese Technik hatte nur dann Sinn, wenn unsere Methoden deutlich
gréBer und verschachtelter waren, als wir erreichen wollen.

Auskommentierter Code

Auskommentierter Code hat die Tendenz, der langlebigste Teil unseres
Codes zu werden. Keiner traut sich daran, ihn zu léschen, keiner weif3
mehr, warum er auskommentiert wurde. Betrachten wir folgendes Bei-
spiel aus der JCommons-Library:

this.bytePos = writeBytes (pngIdBytes, 0);
//hdrPos = bytePos;
writeHeader () ;
writeResolution() ;
//dataPos = bytePos;
if (writeImageData())
writeEnd() ;
this.pngBytes = resizeByteArray (this.pngBytes, this.maxPos) ;

}

else {

this.pngBytes null;

}

return this.pngBytes;

Warum wurden diese Zeilen auskommentiert? Wurde vielleicht verges-
sen, sie wieder ein zu kommentieren?

Wenn schon Code auskommentiert wird, dann sollte auch dabei stehen,
warum. Aber besser ist es, ganz darauf zu verzichten (natlrlich spricht
tberhaupt nichts dagegen, fir einen Testlauf Code aus zu kommentie-
ren — aber dieser Code darf dann natlrlich niemals wieder eingecheckt
werden!)

1.0.0210 /9033 © Integrata AG 6-11

Kommentare und Dokumentation

6.3.7

6.3.8

6.3.9

Informationsiiberfluss

Information, die nichts mit dem Code zu tun hat, gehért auch nicht in
den Code. Von wem ein Algorithmus entwickelt wurde und wie er sich
im Laufe der Zeit gewandelt hat, ist flr denjenigen, der den Code lesen
soll, unerheblich.®

TODOs

Kommentare die man haufig in Code findet, sind TODO Kommentare.
Dabei handelt es sich um Markierungen, mit denen ein Programmierer
deutlich macht, dass an dieser Stelle noch etwas getan werden muss,
aber aus irgendeinem Grund noch nicht getan werden kann.

Der Vorteil von TODO-Kommentaren ist, dass moderne IDEs in der La-
ge sind, alle TODOs aus einem Projekt Ubersichtlich zu prasentieren.

Der gravierende Nachteil ist aber, dass dabei die Gefahr besteht, ein
,zweites Ticket-System® neben dem eigentlichen Projekt-System aufzu-
stellen. Notwendige Arbeitsschritte am Code sollten alle an einer Stelle
zusammengefasst sein.

Kann man die Sourcecode-Verwaltung so konfigurieren, dass das Ein-
checken eines neuen TODO-Kommentares automatisch ein Ticket an-
legt, kann man dieses Problem aber elegant umgehen.

Nicht-offentliche formale Kommentare

Code aus dem keine API-Dokumentation erzeugt wird (also nicht-
offentlicher Code) bendtigt auch keine formalen Kommentare. Natlrlich
kann und wird aus dieser Code dokumentiert werden, aber eben nicht
formal.

Wo liegt der Unterschied? Formale Kommentare drangen uns noch
deutlich mehr formal Zwange auf, die aber fir den Quellcode unerheb-
lich sind. D.h. wir verbrauchen Zeit und Platz far Formalismen, die dazu
dienen eine Dokumentation generieren zu kénnen, die niemals ge-
braucht wird.

Regel 6-5: Nur die offentliche API sollte formal beschrieben wer-
den. (Lesb)

% Allenfalls eine URL mit weiterfiinrenden Informationen ist hinnehmbar

6-12

© Integrata AG 1.0.0210/9033

Kommentare und Dokumentation 6

6.4 Testfalle als Dokumentation

Eine sinnvolle Form der Dokumentation sind Testfélle (siehe dazu auch
das Kapitel Uber Tests). Um die Benutzung einer APl zur verstehen,
bietet es sich an, ein groBes Augenmerk auf die Testfalle zu werfen,
denn diese missen zwangslaufig angepasst werden, wenn der Code
verandert wird. Bei Kommentaren kann das ja versdumt werden.

Testfélle sind damit in der Regel aktueller als Kommentare. Es ist eine
gute Praxis, Testfalle auch mit diesem Hintergrund zu schreiben. Eine
Reihe guter Testfélle erspart damit auch Beispiele und zusétzliche Er-
klarungen in den Kommentaren.

Noch besser ware es, wenn die Testfélle selbst Teil der Dokumentation
waren, damit hatten wir ein wichtiges Problem geldst: die Testbarkeit
unserer Dokumentation.*

* Ein interessantes Projekt unter Java, das dieses Ziel verfolgt sind die Java-
Eunnotations (http://www.eucodos.de/eunnotations/doctract)

1.0.0210 /9033 © Integrata AG 6-13

Kommentare und Dokumentation

6.5

Zusammenfassung

Wir haben uns in diesem Kapitel mit Grundsétzen fir gute Kommentare
auseinander gesetzt. Die wichtigsten Punkte dabei waren:

¢ Kommentare sind keine Rechtfertigung fiir schlechten Code

e Ein Kommentar, der nur geschrieben wird, weil das die Konvention
verlangt, ist unnétig — hier sollte die Konvention gedndert werden

e Bei Kommentare gilt ganz klar: weniger ist mehr.

6-14

© Integrata AG 1.0.0210/9033

Code-Formatierung

7.1
7.2

7.3

7.4

7.5
7.6

Binleitung ..o 7-3
Warum FOormatierung..........eeeeeeeeeeiiiii e 7-3
7.2.1 Automatisierte Formatierung.........ccccvveeveiiiiiiiiiiiiiiiiiieeeeen. 7-3
7.2.2 Sourcecode als Kommunikationcccccceeeiiiiiiiiiiieennnnn. 7-5
Die ZeitungsSmetapher ... 7-6
7.3.1 SChlagzeileeeeeeieeieiee e 7-6
7.3.2 Untertitelooeeeiiiiiiiiiiiiiiieeeeeeee e 7-6
7.3.3 Der Einstieg/Leadccoouiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 7-6
7.3.4 ADSEIZE....ooeiiiiiiiiiiieeeeeeee e 7-6
7.3.5 Reihenfolgen........ccoooviiiiiiiiiiiiiiiiiiiiiiiieeeeeee 7-9
7.3.6 Die RUDIIKcooviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 7-10
Weitere Formatierungsregelneeeeeeeieiiieiiiiiiieiiiieivveeeieiennnes 7-10
7.4.1 Breite und HONeoooviiiiiiiiiiiiiiieeeeeeeeeee 7-10
A =] 4 U Te1 (8 oo =] o PP 7-11
7.4.3 AUSNANMEN....cciiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee et 7-11
Team RUIES! ... saeeenne 7-12
ZUSAMMENTASSUNG ...ttt 7-13

1.0.0210 /9033 © Integrata AG 7-1

Code-Formatierung

7-2

© Integrata AG

1.0.0210 /9033

Code-Formatierung 7

7.1

7.2

7.2.1

Code-Formatierung

Einleitung

In diesem (recht kurzen) Kapitel werden wir den Uberblick iber formale
Code-Richtlinien abschlieBen. Wir werden auf einige Grundsatze ein-
gehen, wie auf die Frage, warum Formatierung heutzutage Uberhaupt
noch ein Thema ist, und einige gute Ansatze flir einen sauberen Code
betrachteten.

Wir werden uns in diesem Kapitel weniger damit beschaftigen, wo
Klammern und wo Leerzeichen hinsollen oder nicht, sondern uns mehr
auf das grof3e Bild konzentrieren.

Warum Formatierung

Warum der Code formatiert werden sollte, dirfte hoffentlich klar sein.
Die Frage ist, warum muissen wir uns im Zeitalter automatische Code-
Formatierung damit auseinandersetzen?

Nun, zum Einen decken Formatieren nicht alles ab, was wir hier be-
sprechen, zum Anderen, muss ja irgendjemand auch den Formatter
konfigurieren.

Automatisierte Formatierung

Gerade mit automatischer Formatierung ist es umso wichtiger, dass alle
Entwickler die gleichen Formatierungen verwenden. Nicht nur, wie im-
mer als erstes genannt wird, damit der Code aus einem Guss wirkt
(was trotzdem wichtig ist), sondern vor allem auch wegen der Zusam-
menarbeit mit der Sourcecode-Verwaltung.

Die meisten Sourcecode-Verwaltungen arbeiten zeilenorientiert, d.h. bei
einem eincheck-Vorgang wird unterschieden zwischen Zeilen, in denen
sich etwas geandert hat und Zeilen, die gleich geblieben sind.

Betrachten wir folgendes Beispiel:

Entwickler A verwendet die Einstellung, dass die o6ffnenden, ge-
schweiften Klammern in der Zeile der Anweisung stehen sollen (der
sogenannte K&R-Stil'), Entwickler B die Einstellung, dass sie immer
in einer eigenen Zeile stehen missen.

! Nach Brian Wilson Kernighan und Dennis Ritchie: Ritchie ist der Schopfer von C, mit
Kernighan zusammen hat er auBerdem ein fundamentales Buch zur C-
Programmierung geschrieben, in dem eben dieser Klammer-Stil empfohlen wird.

1.0.0210 /9033 © Integrata AG 7-3

Code-Formatierung

B checkt nun den folgenden, zuletzt von A verdnderten Code aus,
flugt die markierte Zeile ein und benennt die Methode um:

public class ServiceRegistry {
private Set<Services> registeredServices;

void registerAndInitializeService (Service service) {
if (registeredServices.contains (service)) {
throw new IllegalStateException) ;
registeredServices.add (service) ;
service.initialize() ;

void doSomething()
if (checkSomething()) {
doSomethingElse () ;

}
/]

}

Beim Abspeichern tritt nun die automatische Formatierung in Aktion.
Checkt er die gednderte Klasse dann wieder ein, so erkennt die
Sourcecode-Verwaltung alle markierten Zeilen als Anderungen:

public class ServiceRegistry

{

private Set<Services> registeredServices;

void registerService (Service service)

{

if (registeredServices.contains (service))

{
}

registeredServices.add (service) ;

throw new IllegalStateException) ;

service.initialize () ;

void doSomething ()

{

if (checkSomething())

{

| doSomethingElse () ;

}

Will nun Entwickler A dberpriifen, was sich am Code getan hat, so
bekommt er von der Sourcecode-Verwaltung die Information, dass
sich unter anderem die Methode doSomething () geédndert hat, die
aber tatsédchlich von niemandem angertihrt wurde.

7-4

© Integrata AG 1.0.0210 /9033

Code-Formatierung 7

Schlimmstenfalls gehen die wichtigen Anderungen im Rauschen der
geanderten Formatierungen vollstandig unter und werden Ubersehen.

7.2.2 Sourcecode als Kommunikation

Unser Quellcode ist eine Art zu kommunizieren. Mit anderen Program-
mierern und mit uns selbst. Dementsprechend ist unsere Formatierung
die duBere Form unserer Kommunikation.

Was wird wohl eher gelesen und ernstgenommen? Einige hastig hinge-
schmierte Punkte auf einer Serviette oder die gleichen Punkte sauber
gedruckt auf einem Blatt Papier?

Wenn wir unseren Quellcode als Medium betrachten, kbnnen wir dar-
aus einige Ansatze fur die Formatierung herausholen.

Die Formatierung, Anordnung unsere Methoden und selbst die Platzie-
rung der Leerzeilen ist eine Information! Auf diese Informationen sollte
sich ein Leser verlassen kénnen, ohne sich in jeder Klasse auf einen
neuen Stil einstellen zu missen.

1.0.0210 /9033 © Integrata AG 7-5

Code-Formatierung

7.3

7.3.1

7.3.2

7.3.3

7.3.4

Die Zeitungsmetapher

Eine gute Klasse wollen wir im Folgenden mit einem Zeitungsartikel
vergleichen. Dieser beginnt mit einer Schlagzeile, gefolgt von einem
Untertitel und einer Zusammenfassung. Dann folgt der eigentliche Text
vom Allgemeinen zum Speziellen. Auf diese Art und Weise wollen wir
unseren Code auch aufbauen.

Schlagzeile

Die Schlagzeile, also der Klassenname liefert uns einen pragnanten
Uberblick Uber das allgemeine Thema der Klasse. Sie muss aussage-
kraftig genug sein, dass ein Blick ausreicht, um zu erkennen, ob der In-
halt fir den Leser relevant ist, oder nicht.

Insbesondere muss die Schlagzeile sich soweit von anderen Schlagzei-
len abheben, dass der Leser diese auf einen Blick unterscheiden kann.

Einen Unterschied zur Schlagzeile in der Zeitung gibt es allerdings.
Schlagzeilen sind haufig reiBerisch oder provozierend gewahlt, um ein
erstes Interesse zu wecken. Das wollen wir hier natirlich so nicht um-
setzen.

Untertitel

Der Untertitel eines Artikels prazisiert den Inhalt ndher — aber immer
noch in einem Satz. Er wird dazu genutzt, Informationen unterzubrin-
gen, die den Titel Gberfrachten wirden.

Die Entsprechung des Untertitels in unserem Code ist natlrlich die Vi-
sion. Sie ist der zweite Platz, auf den unser Blick fallt, wenn wir anhand
des Klassennamens entschieden haben, dass die Klasse naher be-
trachtet werden soll.

Der Einstieg / Lead

Als Einstieg oder Lead bezeichnet man in einem Zeitungsartikel den fett
gedruckten ersten Teil, der einen Uberblick Gber den Inhalt gibt. Die
wichtigsten Stichpunkte werden hier zusammengefasst.

In unserem Code ist der Lead der formale Kommentar unserer Klasse.
Er sollte beschreiben, was wir von der Klasse zu erwarten haben und
wie wir damit umgehen sollen. Wichtige Punkte im Code selbst werden
hier bereits hervorgehoben.

Abséatze

Ein Absatz stellt eine Reihe von logisch zusammenhangenden Satzen
dar. In unserem Code: eine Methode! Absatze sind von einander op-
tisch getrennt — mit einer halben oder einer ganzen Leerzeile.

7-6

© Integrata AG 1.0.0210/9033

Code-Formatierung 7

Diese Praxis sollten wir unbedingt fir unseren Code Ubernehmen:

Regel 7-1: Methoden sollten von einander durch eine Leerzeile ge-
trennt werden. (Lesb)

Zeigen wir das an einem Beispiel:

private void initServices(List<Services> services) {
for (Service next : services)

registerAndInitService (service) ;

private void registerAndInitService (Service service) ({
if (service instanceof LifecycleSupport)
((LifecycleSupport) next).initialize();

serviceRegistry.register (o) ;

private void shutdownServices (List<Services> services) ({
for (Service next : services)

shutdownService (service) ;

private void shutdownService (Service service) ({
if (service instanceof LifecycleSupport)

((LifecycleSupport) service) .shutdown () ;

protected void initPersistence() ({
PersistenceContextProvider provider = getPersistenceContextProvider ()
if (provider != null)

provider.initialize() ;

protected void shutdownPersistence() {
PersistenceContextProvider provider = getPersistenceContextProvider ()
if (provider != null)

provider.shutdown () ;

private void initRemoting() {
try {
doInitRemoting() ;
} catch (Exception e) ({

throw new EngineException("Initialization", "Error initializing
services.", e);
private void doInitRemoting() {

| loadConnectionInfo () ;
if (connectionInfo.isEnabled())

initRemoteServer () ;

private void initRemoteConnectorServer ()

remoteConnectorServer = new RemoteConnectorServer() ;

1.0.0210 /9033 © Integrata AG 7-7

Code-Formatierung

remoteConnectorServer.setServiceRegistry (getServiceRegistry()) ;
remoteConnectorServer.setConnectionInfo (connectionInfo) ;

remoteConnectorServer.bindToRegistry () ;

}

Und jetzt ohne Leerzeilen und mit hochgezogener schlieBender Klam-
mer:

private void initServices(List<Services> services) {
for (Service next : services)
registerAndInitService (service); }
private void registerAndInitService (Service service) ({
if (service instanceof LifecycleSupport)
((LifecycleSupport) next).initialize();
serviceRegistry.register(o); }
private void shutdownServices (List<Services> services) ({
for (Service next : services)
shutdownService (service) ; }
private void shutdownService (Service service) ({
if (service instanceof LifecycleSupport)
((LifecycleSupport) service).shutdown(); }
protected void initPersistence() ({

PersistenceContextProvider provider = getPersistenceContextProvider ()

if (provider != null)
provider.initialize(); }
protected void shutdownPersistence() {

PersistenceContextProvider provider = getPersistenceContextProvider ()
if (provider != null)
provider.shutdown(); }
private void initRemoting()
try {
doInitRemoting() ;
} catch (Exception e) {

throw new EngineException("Initialization", "Error initializing
services.", e);

1}
private void doInitRemoting() {
loadConnectionInfo() ;
if (connectionInfo.isEnabled())
initRemoteServer(); }
private void initRemoteConnectorServer ()
remoteConnectorServer = new RemoteConnectorServer() ;
remoteConnectorServer.setServiceRegistry (getServiceRegistry()) ;

remoteConnectorServer.setConnectionInfo (connectionInfo) ;

remoteConnectorServer.bindToRegistry(); }

Der Effekt sollte deutlich sein. Versuchen Sie trotzdem einmal, ihre Au-
gen unfokussiert Uber beide Versionen gleiten zu lassen, um den Effekt
noch zu verstarken.

Die umgekehrte Aussage gilt genauso: Was zusammen gehort, sollte
auch mdglichst nicht voneinander getrennt werden, sei es durch Leer-
zeilen oder Kommentare. Relevant ist das insbesondere fur Felder ei-
ner Klasse. Was wir im vorherigen Kapitel zu unnétigen Kommentaren
gesagt haben, bekommt hier noch eine andere Begriindung.

7-8

© Integrata AG 1.0.0210 /9033

Code-Formatierung 7

7.3.5

Die Kommentare zwischen den Feld-Definitionen reiBen diese optisch
auseinander. Das Ergebnis ist, dass sie nicht mehr als ein ,Absatz*
aufgefasst werden, sondern als eigenstéandige Konzepte — was selten
gewdinscht sein durfte.

Reihenfolgen
Auch bei der Reihenfolge orientieren wir uns an der Zeitungsmetapher:

Der allgemeine Teil sollte oben stehen, dann der speziellere Teil da-
nach folgen. Auf Methoden bezogen bedeutet das:

Regel 7-2: Abstraktere Methoden stehen vor spezielleren Metho-
den. (Lesb)

Die Abstraktesten Methoden sind dabei natirlich die offentlichen Me-
thoden.

Regel 7-3: Abhangige Methoden sollten dicht zusammen stehen,
dabei der Aufrufer (der abstraktere) tiiber dem Aufgeru-
fenen. (Lesb)

Schwierig wird das, wenn mehrere abstraktere Methoden sich spezielle
Methoden teilen. Dann sollte die speziellere Methode unter beiden abs-
trakteren Methoden stehen.

Regel 7-4: Konzeptionell zusammengehorige Methoden sollten
dicht beieinander stehen. (Lesb)

Besitzt unsere Klasse die Methode add(), insert () und add-
First (), so sollten diese drei Methoden auch dicht beieinander defi-
niert werden. Ein Sonderfall sind dabei die die Getter/Setter-Methoden,
die alle zusammengehdren und als Cluster an das Ende der Klasse ge-
schrieben werden sollten

Eine letzte Regel I&sst sich nicht auf die Zeitungsmetapher zurtckflh-
ren, sondern eher auf ein Theaterstick:

Regel 7-5: Felder sollten vor Methoden definiert werde, Konstan-
ten vor Feldern. (Lesb)

FOgen wir all diese Regeln zusammen, so haben wir ein Raster fir den
Aufbau unserer Klasse:

e Konstanten

o Felder

e Die zu Clustern zusammengefassten Schnittstellen-Methoden

¢ Die nicht 6ffentlichen Methoden in der Reihenfolge ihres Gebrauchs
o Getter/Setter

1.0.0210 /9033 © Integrata AG 7-9

Code-Formatierung

7.3.6 Die Rubrik

7.4

7.4.1

Um unsere Metapher noch ein wenig weiter zu treiben: Nachrichtenarti-
kel sind in der Regel nach Rubriken sortiert. Diese Aufgabe Uberneh-
men bei uns die Pakete (oder Namensraume, oder Komponenten).

Wichtig dabei ist, dass natirlich auch die Rubrik einen verninftigen
Namen bekommt.

Weitere Formatierungsregeln

Nachdem wir oben die wichtigsten Regeln bereits definiert haben, wen-
den wir uns im Folgenden noch einigen weiteren Gesichtspunkten zu.

Breite und Hohe

Es gibt viele Meinungen und Thesen zur richtigen Lange einer Klasse
und zur maximalen Breite ihrer Zeilen.

Statt uns in den Kampf einzumischen, bleiben wir lieber bei einigen
Grundséatzen:

Da unsere Methoden kurz und unsere Klasse konzeptionell kurz sind,
werden unsere Klassen i.d.R. nicht in eine GréBenordnung kommen,
bei der wir anfangen missen, uns Gedanken zu machen. Wer trotzdem
Zahlen mdéchte: das extremste Erlebnis des Autors war eine Klasse mit
12.000 Zeilen Code — extrem schlechter Code noch dazu: Dass das zu
lang ist, sollte jedem klar sein.

In der Praxis hat sich ein Wert von 100-200 Zeilen als sinnvolle gréBere
herausgestellt, wobei einige Klassen sicher noch ein ganzes Stlck gro-
Ber werden. 500 Zeilen sollten aber nur in Ausnahmefallen Gberschrit-
ten werden.

Was die Breite angeht: der alte Grundsatz mit der Bildschirmbreite hat
auch heutzutage noch seine Berechtigung. Damit ist aber der alte Wert
gemeint, also 80 Zeichen.

Ein Vorteil dieser GréBenordnung ist, dass man den Code noch ver-
nanftig ausdrucken kann, wenn es denn notwendig wird. Viel nltzlicher
ist aber die Tatsache, dass man damit zwei Dateien auf einem gréBe-
ren Monitor bequem nebeneinander darstellen kann. Das erleichtert
zum einen die Arbeit mit der Sourcecode-Verwaltung (Vergleiche zwi-
schen Versionen), zum anderen aber auch das Nachverfolgen von Aus-
fOhrungspfaden, die Gber mehr als eine Klasse gehen.

Die 80 Zeichen sind dabei keine harte Regel, sondern eine Richt-
schnurr, die durchaus auch Uberschritten werden kann.

7-10

© Integrata AG 1.0.0210/9033

Code-Formatierung 7

7.4.2

7.4.3

Einrickungen

Das Einriickungen Code deutlich lesbarer machen, sollte keine Uberra-
schung mehr sein. Interessanterweise kann man viel Zeit damit verbrin-
gen, sich darlber zu streiten, wie grol3 diese sein sollten und ob Leer-
zeichen oder Tabulatoren verwendet werden sollten.

Eigentlich sind diese beiden Fragen ziemlich muBig, wichtig ist nur,
dass man einer Konvention folgt.

Ausnahmen

Jede Regel sollte Ausnahmen zulassen. Die Gefahr bei Ausnahmen ist
aber, dass Code-Formatter, sollten sie denn eingesetzt werden, diese
in der Regel nicht kennen und prompt wieder zurlickformatieren.

Eine Ausnahme, die sich aus Sicht des Autors bewahrt hat und auch
von den meisten Formattern unterstitzt wird ist folgende:

Ist die Handlung einer if/else Anweisung ein Exit-Punkt der Methode
oder des Blockes, so kann diese in die gleiche Zeile geschrieben wer-
den:

if (a > maxSize) return;

if (left == right) return O0;

else return -1;

if (number % j == 0) break;

1.0.0210 /9033 © Integrata AG 7-11

Code-Formatierung

7.5

Team Rules!

Wer ein wenig im Internet herumstébert, wird ziemlich bald auf harte
Fronten und schwere Grabenkriege zwischen Verfechtern unterschied-
licher Ansichten tUber Formatierungen stofB3en.

Ganze Meetings sind schon an der Frage zerbrochen, ob nach der 6ff-
nenden Klammer einer Funktion ein Leerzeichen stehen soll, oder nicht.

Noch dramatischer sind die unterschiedlichen Ansichten Uber die Posi-
tion der 6ffnenden geschweiften Klammern.?

Anstatt hier zu sehr ins Detail zu gehen und einen Style-Guide zu ent-
werfen, wollen wir direkt den einzig wahren Formatierungsstil definie-
ren:

Regel 7-5: Der einzig wahre Formatierungsstil ist der, den das
Team festgelegt hat. (Lesb, Vers, Wart)

Das bedeutet: Existieren keine Richtlinien, so ist es die Aufgabe des
Teams, diese festzulegen und in Regeln fir die IDE zu gieBen. Das
kann schon innerhalb von einer Viertelstunde passiert sein (also das
Einigen — nicht das in die IDE einbringen).

? Stil-Name wie 1TBS fiir ,The One True Brace Style” (der einzig wahre Klammer Stil)
deuten schon darauf hin, dass die Diskussion teilweise quasi-religiése Formen an-
genommen hat — wobei die Bezeichnung 1TBS eher mit einem Augenzwinkern und
als Kritik an der Diskussion an sich zu sehen ist.

Der geneigte Leser mag unter http://en.wikipedia.org/wiki/Indent_style einen Uberblick
bekommen

7-12

© Integrata AG 1.0.0210/9033

Code-Formatierung 7

7.6 Zusammenfassung

In diesem Kapitel haben wir Grundsétze fur die Formatierung von Sour-
cecode festgelegt. Wir haben eine Klasse mit einem Zeitungsartikel
verglichen und daraus die wichtigsten Merkmal einer guten Struktur
heraus gearbeitet.

Zum Schluss haben wir uns mit der Frage nach der Wichtigkeit einiger
gangiger Regeln beschéftigt.

Noch einmal:

Regel 7-6: Wichtig ist nicht, welche Formatierungsregeln im Ein-
zelnen verwendet werden, sondern dass diese Regeln
existieren und von allen genutzt werden. (Lesb, Vers,
Wart)

1.0.0210 /9033 © Integrata AG 7-13

Code-Formatierung

7-14

© Integrata AG

1.0.0210 /9033

Metriken

8.1

8.2

8.3

8.4
8.5

EINIEIUNG ... 8-3
8.1.1 Code ENtropycuueiieeiiiiieeeee e 8-3
8.1.2 Die ZeltaChSe.........ccovviiviiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee 8-3
BasisS Metriken ... 8-4
8.2.1 Cyclomatic Complexity (CC).....coeeeriiiiiiiiiiiiiee e, 8-4
8.2.2 Lines of Code (LOC)......coomiriiiiiiiieeeeeeeeee e, 8-5
8.2.3 Non Commenting Source Statements (NCSS) 8-6
Objektorientierte Metrikenooovviiiiiiiiiiiece e, 8-7
8.3.1 Weighted Methods per Class (WMC).........c..ccoevvvvveeiinnnnnnn. 8-7
8.3.2 Depth of Inheritance Tree (DIT)coovvviiiiiiiieiiieeeee, 8-7
8.3.3 Number of Children (NOC)coooriiriiiiiiiii e, 8-7
8.3.4 Coupling between Object Classes (CBO)..........cccevvvrnnnnnn. 8-7
8.3.5 Response for a Class (RFC)........cccooviiiviiiiiiieeiieeeeeeen, 8-8
8.3.6 Lack of Cohesion in Methods (LCOM)...........cccevvvveerinnnnnnn. 8-8
8.3.7 BeWertUNg.....ccuuiiiiiiiie e 8-9
Statische Analyse Tools (Bug Finder)cooooviiiiiiiiiieiiee, 8-10
Laufzeit MetriKenoooouiuiiiii e 8-11
8.5.1 Testabdeckungccooviiiiiiiiiiiiiiiiiiiiiiiiiiiiee 8-11
8.5.2 BUIlddAUET.........oeeiiieieeeeeee e 8-11

1.0.0210 /9033 © Integrata AG 8-1

Metriken

8.6

Zusammenfassung

© Integrata AG 1.0.0210 /9033

Metriken 8

8.1

8.1.1

8.1.2

Metriken

Einleitung

In diesem Kapitel beschaftigen wir uns mit einigen Metriken, um die
Qualitat unsere Software zu messen. Metriken sind gleichzeitig ein
Fluch und ein Segen.

Korrekt angewendet kdnnen uns Metriken fruhzeitig vor auftretenden
Problemen warnen und uns die Moglichkeit geben, zu reagieren, bevor
der Code zu weit degeneriert.

Uninterpretiertes Auswerten der Metriken fuhrt dagegen zum ,Coding
against Metrics“-Phanomen, bei dem nicht mehr das Ziel des saubers-
ten Codes, sondern der saubersten Metriken an oberster Stelle steht.

Code Entropy

Es ist ein Fakt, dass Code mit der Zeit degeneriert. So klar die ur-
spriingliche Architektur und das Design auch sein mégen, kleinere An-
derungen an Anforderungen und nachtragliche Korrekturen flihren da-
zu, dass der Code aus Sicht der intrinsischen Qualitatsmerkmale immer
schlechter wird.

Dieses Entfernen von der Ideallinie bezeichnen wir als Code Entropy.

Die Zeitachse

Metriken stehen nie fur sich alleine. Tatsachlich bekommen Sie erst
dann eine wirkliche Aussagekraft, wenn man sie Uber einen Zeitraum
betrachtet. Das bedeutet, die Ergebnisse mussen in ein Diagramm ein-
getragen werden, und zwar idealerweise in regelmafRigen Abstanden
(jede Nacht) und automatisiert.

Ergibt sich in so einem Diagramm eine Kurve, die immer weiter steigt,
so kdonnen wir daran erkennen, dass unsere Qualitat langsam degene-
riert - dann wird es Zeit, durch gezielte, Qualitatsférdernde Malknhahmen
gegen das Problem vorzugehen, z.B. durch eine Refactoring-Runde.

1.0.0210 /9033 © Integrata AG 8-3

8 Metriken
8.2 Basis Metriken
Zunachst wenden wir uns einigen Metriken zu, die sich nicht gezielt auf
Objektorientierte Programme beziehen, sondern auch in der prozedura-
len Programmierung Sinn machen (kbnnen).
8.2.1 Cyclomatic Complexity (CC)
Die Cyclomatic Complexity (zyklomatische Zahl nach McCabe) be-
schreibt, wie komplex eine Routine ist. Grob gesagt zahlt sie, wie viele
unabhangige Pfade es durch die Routine gibt.
Man bestimmt die CC fir eine Methode in der Praxis, indem man von 1
ausgeht und dann fir jeden Entscheidungspunkt die Zahl um eins er-
hoht.
Entscheidungspunkte sind dabei Verzweigungen (if), Schleifen (for und
while) und Pfade in Entscheidungstabellen (switch). In einer switch An-
weisung erhoht also jeder case-Pfad den CC um eins, was dazu fuhrt,
dass Methoden, die dieses Konstrukt verwenden, in der Regel recht
hohe CCs besitzen.
Beispiel:
public void countcCC() {
if (1 c1())
£10);
else
£2();
if (c2())
£3();
else
£4();
}
Diese Methode besitzt einen CC von 3 (1 + jeweils 1 fur die beiden if-
Abfragen).
Diese Zahlweise gilt allerdings nur fir Methoden mit genau einem Ein-
gangs- und einem Ausgangspunkt. Existiert mehr als ein Ausgangs-
punkt, so wird folgende Formel angewandt:
CC=m—-s+2
8-4 © Integrata AG 1.0.0210 /9033

Metriken 8

8.2.2

Wobei 1 die Anzahl der Entscheidungspunkte und s die Anzahl der
Ausgangspunkte ist.

public int countCC2 (int x, int y) {

if (x == y) return 0;
int z = 0;
while (x > y) {
Z++;
X -=y;
}
if (x == 0) throw new IllegalStateException() ;

return z;

L}

Der Code hat drei Entscheidungs- und zwei Exit-Punkte, dementspre-
chend ist der CC dieser Methode 3-2 + 2 = 3.

Der Erweiterte CC (CC’) geht noch einen Schritt weiter in dem er auch
das Vorhandensein der Short-Circuit-Operatoren || und && als Ent-
scheidungspunkte wertet.

Der CC ist eine relative nutzliche Metrik. Zunachst gibt er uns eine Aus-
sage daruber, wie viele Testfalle mindestens noétig sind, um die Metho-
de abdecken zu konnen. Weiterhin gibt er uns einen guten Uberblick
uber den Zustand unseres Codes an sich, allerdings nur, wenn man ihn
auch sinnvoll verwendet.

Eine sinnvolle Anwendung, die Praxis-relevante Ergebnisse liefert, ist
den gemittelten CC Uber die 10 langsten Methoden im Code zu liefern —
bzw. einfach die 10 héchsten CCs zu mitteln.

Gangige Konventionen sind, dass der CC in der Regel unter 10, in
Ausnahmefallen auch bis 20 gehen darf.

Halten wir uns an den in dieser Unterlage propagierten Code-Stil, wird
der CC allerdings deutlich niedriger, in hdochstens 7 Codezeilen wird es
ziemlich schwierig einen CC Uber 5 unterzubringen.

Trotzdem sollte der CC naturlich im Auge behalten werden. Sinnvolle
Malnahmen, die man ergreifen kann, wenn der CC zu hoch wird, sind
naturlich das Zerlegen der Methode in Einzelmethoden.

Lines of Code (LOC)

Eine gefahrliche Metrik ist Lines of Code. Grundsatzlich bedeutet es, al-
le Zeilen zu zahlen und aufzuaddieren. Das Ergebnis ist ein Wert fur ei-
ne Klasse, eine Paket oder ein komplettes Projekt. Je nach tatsachli-
cher Zahlweise werden Leerzeilen dabei entweder voll, teilweise oder
gar nicht gezanhlt.

Die Aussagekraft von LOC ist leider sehr gering, da insbesondere auch
Kommentare mitgezahlt werden. Es dient eigentlich nur dazu, im Auge

1.0.0210 /9033 © Integrata AG 8-5

Metriken

zu behalten, wie schnell oder wie stark der Code wachst — und dient als
interner Meilenstein (,wir haben die 100.000 Zeilen geknackt!)

Nutzlich kann LOC auch sein, sehr grob Projekte mit einander zu ver-
gleichen (ein LOC 10.000 ist sicher deutlich einfacher als ein LOC
100.000), wobei die Werte sich schon um Grdélkenordnungen unter-
scheiden mussen, damit der Vergleich etwas bringt.

Der einzige nennenswerte Vorteil, den LOC bringt, ist, dass er extrem
einfach zu bestimmen und zu verstehen ist.

Der Nachteil und die grol3e Gefahr bestehen dabei darin, dass das Ma-
nagement ggf. auf die ldee kommen konnte, diese Metrik zur Bewer-
tung von Leistungen zu nutzen.

8.2.3 Non Commenting Source Statements (NCSS)
Eine etwas bessere Alternative zu LOC sind die Non Commenting
Source Statements, eine Metrik die nur die tatsachlichen Anweisungen
zahlt, also keine Leerzeilen oder Kommentare. Dabei wird der Zahler
fur jedes Statement einfach um eins erhoht. Unter Java waren das bei-
spielsweise folgende Code-Elemente:
Beispiel Kommentar
Paket Deklaration package java.lang;
Import declaration import java.awt.*;
. -public class Foo {
Class declaration -public class Foo extends Bla {
Interface declaration public interface Able {
. . -int a;
Field declaration inta b, c -5 d-6;
-public void cry() ;
Method declaration -public void gib() throws Dea-
dException {
Constructor declaration | public Foo() {
Constructor invocation |~ £83s 0
- super () ;
-i = 0; expression, if, else,
-if (ok) while, do, for,
Statement -if (exit) | switch, break, con-
-if (3 == 4); tinue, return, throw,
-if (4 == 4) { ; } synchronized,
-} else { catch, finally
Label fine - normal, case, de-
fault
NCSS liefert als Metrik schon relative brauchbare Ergebnisse. Hat eine
Methode einen doppelt so hohen NCSS wie eine andere, so ist sie in
der Regel auch gefluhlt doppelt so komplex.
In der Praxis verwenden wir den NCSS genau wie schon den CC ge-
wichtet, dass heil3t bspw. den Durchschnitt der 10 Klassen mit den
hochsten NCSS-Werten.
8-6 © Integrata AG 1.0.0210 /9033

Metriken 8

8.3

8.3.1

8.3.2

8.3.3

8.34

Objektorientierte Metriken

Objektorientierte Metriken sind, wie der Name schon vermuten lasst,
Metriken Uber Objektorientierte Konzepte, Vererbung, Felder etc. Sie
bieten uns in der Regel eine relativ gute Einschatzung uber die intrinsi-
sche Qualitat unseres Codes.

Weighted Methods per Class (WMC)

Die gewichteten Methoden pro Klasse sind eine Aufsummierung der
Komplexitaten aller Methoden einer Klasse. Als Komplexitat nehmen
wir der Einfachheit halber die Zyklomatische Zahl, obwohl hier auch an-
dere KenngroRen denkbar waren.

WMC bietet uns Ruckschlisse Uber die Wartbarkeit einer Klasse, denn
sowohl mit vielen kleinen Methoden als auch mit wenigen gro3en Me-
thoden steigt der WMC spurbar an.

Sinnvolle Betrachtungen fir die Zeitachse sind die Durchschnittswerte
uber alle Klassen.

Depth of Inheritance Tree (DIT)

Die Tiefe des Vererbungsbaumes gibt an, aus wie viele Vorfahren eine
Klasse hat. In Java ist das immer mindestens 1 (java.lang.Object), unter
C++ kann es auch 0 sein.

Der DIT liefert eine Aussage uUber die Komplexitat einer Klasse und
damit auch Uber deren Wiederverwendbarkeit. Je mehr Oberklassen
eine Klasse hat, desto mehr Methoden erbt sie. Damit wird sie zugleich
auch spezieller weniger Wiederverwendbar.

Gute Werte liegen zwischen 1 und 3.

Number of Children (NOC)

Die Anzahl der Kinder eines Objektes ist die Anzahl der direkten und
indirekten Unterklassen dieser Klasse.

Diese Metrik ist ein direktes Mal} flr die Wichtigkeit der Klasse.

Coupling between Object Classes (CBO)

Der CBO-Wert einer Klasse gibt an, mit wie vielen anderen Klassen
diese Klasse gekoppelt ist. Kopplung heif3t in diesem Fall, die Klasse
greift auf Methoden oder Instanzvariablen der anderen Klasse zu.

Der CBO wirkt sich direkt auf den Wiederverwendbarkeitswert einer
Klasse aus. Je hoher er liegt, desto mehr zusatzliche Abhangigkeiten
bringt diese Klasse mit ein.

1.0.0210 /9033 © Integrata AG 8-7

Metriken

8.3.5

8.3.6

Response for a Class (RFC)

RFC gibt an, wie viele Methoden von einer Klasse aus erreicht werden
konnen. Er setzt sich zusammen aus der Anzahl der Methoden der
Klasse, plus aller Methoden, die diese Methoden aufrufen usw., also im
Endeffekt alle transitiven Methodenaufrufe, die von dieser Klasse aus-
gehen konnen.

Diese Metrik macht eine direkte Aussage uUber die Komplexitat der
Klasse.

Lack of Cohesion in Methods (LCOM)

Eine sehr nutzliche Metrik ist LCOM. Sie uberpruft die Kohasion der
Methoden einer Klasse anhand der gemeinsamen Nutzung von Fel-
dern. Dazu wird von jeder Methode jedes Feld bestimmt, auf das die
Methode zugreift. Danach werden Paare uUber alle vorhandenen Metho-
den gebildet.

Die Anzahl der Methodenpaare, die keine Gemeinsamkeit haben wird
von der Anzahl der Paare, die eine haben, abgezogen, wobei negative
Werte als 0 gezahlt werden.

Betrachten wir dazu ein Beispiel:

public class LCOM
private int a;
private int b;
private int c;

public void calcl() {
c =a + 1;

}

public void calc2() {
c =b + 5;

}

public void cale3 () {
a = b5;

}

public int getA() ({
return a;

}

public int getB() {
return b;

}

public int getcC() ({
return c;

}

8-8

© Integrata AG 1.0.0210 /9033

Metriken 8

8.3.7

Um den LCOM zu berechnen, erstellen wir jetzt eine Matrix mit den Me-
thoden in Zeilen und Spalten:

calc2 calc3 getA getB getC

calc1 + + + - +

Jedes + gibt dabei Methoden an, die gemeinsame Felder nutzen, jedes
— disjunkte Methoden. Der LCOM dieser Methode liegt also bei 8 — 7 =
1.

Wird der LCOM zu hoch, sollte man dariber nachdenken, die Klasse
aufzusplitten.

Bewertung

Objektorientierte Metriken sind ein gutes Mittel, um einen Uberblick
uber die Qualitat des Codes zu bekommen.

Grundsatzlich interessieren uns bei diesen Metriken eher die Tenden-
zen, also wie sich der Code im Laufe der Zeit entwickelt hat. Es kann
aber auch sinnvoll sein, einige (eher grol3zligig bemessene) Grenzen
zu definieren, die eine Klasse als ungenugend deklarieren konnen.

Diese Grenzen sollten ggf. von Projekt zu Projekt variiert werden kon-
nen.

Ein Vorschlag fur derartige Grenzen ist es, sich nicht auf eine Metrik
abzustiutzen, sondern eine Reihe von Grenzwerten zu definieren und
das Uberschreiten von zwei (oder mehr) dieser Grenzen als Verstol3 zu
werten.

Ein Beispiel:’

(Eine weitere Metrik wird hier verwendet: Number of Methods (NOM))
e WMC > 100

e CBO>5

RFC > 100

NOM > 40

RFC > 5 x NOM

! Vgl. Linda Rosenberg, Ruth Stapko and Al Gallo, Applying object-oriented metrics,
November 1999, http://www.software.org/metrics99/rosenberg.ppt

1.0.0210 /9033

© Integrata AG 8-9

Metriken

8.4

Wir kdnnten die Anzahl der VerstéRe gegen den obigen Regelsatz auch
wieder als Metrik betrachten (Violations of Metrics Limits — VML). Damit
wissen wir in einem Refactoring-Zyklus genau, welche Klassen wir als
erstes angehen sollten.

Statische Analyse Tools (Bug Finder)

Eine weitere Metrik, die wir in unseren Projekten einsetzen sollten, ist
die Anzahl von Regelverstdlien (Number of Rule Violations — NRV). Um
sie zu bestimmen, gibt es eine Reihe von statischen Code-Analyse
Tools, die den Code gegen eine Anzahl von Regeln prufen - angefan-
gen von Formatierungen und Dokumentation, Uber gefahrliche Kon-
strukte (if (b = a)) bis hin zu unzweckmafiger Verwendung von Biblio-
theken.

Beispiele fur Tools sind FindBugs, PMD, Checkstyle und Cppcheck.

8-10

© Integrata AG 1.0.0210 /9033

Metriken 8

8.5

8.5.1

8.5.2

Laufzeit Metriken

Die bisher vorgestellten Metriken sind alle durch statische Analyse be-
stimmbar, d.h. das Programm muss nicht laufen, sondern lediglich der
Sourcecode wird zur Erstellung herangezogen.

Im Folgenden wollen wir einige Metriken betrachten, die erst zur Lauf-
zeit bestimmt werden konnen.

Testabdeckung

Die Testabdeckung gibt an, die wie viel Code durch unsere Tests tat-
sachlich durchlaufen wurde, also wie gut unser Code getestet wurde.
Die Ergebnisse werden von Paket auf Klassen bis zur Methoden Ebe-
nen aufgeschlusselt.

Man unterscheidet hier zwischen Pfad- und Zeilenabdeckung.

Testabdeckungs-Metriken liefern uns ein Gefuhl dafur, wie gut und um-
fangreich unser Code getestet wird. Wahrend eine hohe Testabde-
ckung noch kein Garant fur Fehlerfreiheit sein kann, ist eine niedrige
Abdeckung ein Zeichen fur Fehleranfalligkeit.

Eine sinnvolle GroRenordnung ist 80%.

Builddauer

Eine weitere Metrik, die frihzeitig auf Probleme aufmerksam machen
kann, ist die Builddauer. Naturgemaf wird diese im Laufe der Zeit im-
mer weiter steigen, da regelmafig Klassen und Tests dazu kommen.

Auch die Berechnung anderer Metriken kostet naturlich Zeit, die im bes-
ten Fall proportional, haufig aber Uberproportional zur GréRe des Pro-
jektes ist.

Um diese Problem in den Griff zu bekommen, wird der Build-Prozess
geteilt, in einen Basis-Buildprozess, den die Entwickler und der automa-
tische Build nutzen, und einen erweiterten Build, der alle Tests und Met-
riken vollstandig abarbeitet, aber dafir nur nachts lauft.

1.0.0210 /9033 © Integrata AG 8-11

Metriken

8.6

Zusammenfassung

Wir haben in diesem Kapitel eine sinnvolle Metriken kennengelernt, mit
der wir eine Einschatzung uber die Qualitat unseres Codes bekommen
konnen.

Der Nachteil dieser Metriken ist, dass sie den Buildprozess verlangsa-
men, deshalb sollten sie auch nur mit Bedacht eingesetzt werden.
Grundsatzlich gilt, dass Metriken nicht nur der bunten Grafiken wegen
eingesetzt werden durfen, sondern immer auch verstanden und ausge-
wertet werden mussen.

Regel 8-1: Eingesetzte Metriken miissen verstanden sein und re-
gelmaBig ausgewertet werden.

8-12

© Integrata AG 1.0.0210 /9033

Nebenlaufigkeit

9.1

9.2

9.3

9.4

9.5
9.6

Binleitung ..o 9-3
9.1.1 Warum brauchen wir Nebenlaufigkeit?cccccceeviinnnneee. 9-3
9.1.2 Mythen und Missverstandnisse..........cccccveireeeeiieiiieiciinneee 9-4
9.1.3 Wahrheiteneeeeeeeiii 9-5
9.1.4 Die Herausforderung..........ccccceuuummmmmmnmmmmiiiiiiiiiiiinnnnnns 9-5
Nebenlaufige Prinzipien.........cvvviiiiiiiiiiiieeeeeeeeeeeeee 9-7
9.2.1 Nebenlaufig oder NiCht ... 9-7
9.2.2 Atomare Zugriffe ... 9-7
9.2.3 Das Single-Responsiblity-Principleccccccveeeieiiicinnnee. 9-8
9.2.4 Begrenzte Schreibzugriffe.......cccooiiiiiiiiii e 9-8
9.2.5 DatenN-KOPIENuuuiiiiiiiiiiiiiiiiiii e 9-8
9.2.6 Unabh@ngige Threadscccccuuumumimmiiiiiiiiiiiiiiiiiieiiinaes 9-9
Begriffe ..o 9-10
ADIAUIMOAEIIE ... 9-11
9.4.1 ProducCer-CONSUMEN........cccuuuiieiiieeeeeeeiiiieeeee e e e e e e 9-11
9.4.2 Reader-WIEruuuuiiiiiiiiiiiiiiiiieiiiiiieeeeenenees 9-11
9.4.3 Dining PhiloSOPhers........ ... 9-12
] o] o)1 4 1=] 0= o PRI 9-13
12 £ 9-13

1.0.0210 /9033 © Integrata AG 9-1

9 Nebenlaufigkeit
9.6.1 Monte CarlOccevvviiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeee e 9-13

9.6.2 Unerwartete Situationen sind potentielle Threading-Probleme
... 9-13

9.6.3 Threading und nicht-Threading Tests trennen................. 9-13

9.6.4 Variable ThreadpoolS.........cccoeiiiiiiiiiiiiieieee e 9-13

9.7 ZusammenfasSUNQGueeeuiiiaaiiiiiiiiiieie e 9-14

9-2

© Integrata AG 1.0.0210 /9033

Nebenlaufigkeit 9

9.1

9.1.1

Nebenlaufigkeit

Einleitung

Dieses Kapitel beschéftigt sich mit den Grundzigen der nebenlaufigen
Programmierung. Dabei ist unser Ziel nicht die Programmierung in einer
bestimmten Sprache, sondern die grundsatzlichen Konzepte, die ne-
benlaufige Programmierung ausmachen.

Warum brauchen wir Nebenlaufigkeit?

Nebenlaufigkeit bedeutet, dass mehrere Routine quasi-gleichzeitig, wei-
testgehend voneinander getrennt, ablaufen. Welche Vorteile hat das fur
uns?

e Verbesserung von Struktur und Design

Hangen die einzelnen Aufgaben nicht wirklich zusammen, so kénnen
sie vollstandig voneinander getrennt werden. Jede Aufgabe verhalt
sich damit, als wirde sie vollstandig fur sich alleine ausgefihrt wer-
den.

Ein Spezialfall dieser Begriindung sind Server-Anwendungen, die ei-
ne Anzahl an Nutzern gleichzeitig bedienen, ohne dass sich die ein-
zelnen Nutzer in die Quere kommen.

Nutzen von Wartezeiten

Ein Programm, das in irgendeiner Form |/O betreibt, verbringt einen
GroBteil seiner Laufzeit in einem wartenden Zustand. In einer Single-
Thread-Applikation ist diese Zeit verloren. In einer Nebenlaufigen
Anwendung kann stattdessen wahrend der Wartezeit ein anderer
Thread weiterarbeiten. Das kann einen immensen Performancege-
winn bedeuten.

Ausnutzung der Hardware

Bis vor wenigen Jahren bedeutete Weiterentwicklung der Hardware
hauptsachlich eine vertikale Skalierung, dass hei3t die Transistoren
wurden immer kleiner, ihre Dichte immer héher, und damit Prozesso-
ren immer schneller.’

Seit einigen Jahren ist allerdings eine Richtungsanderung zu erken-
nen. Statt immer mehr Transistoren in einem Prozessor unterzubrin-

' Moore’s Law, der Versuch, die Weiterentwicklung der Leistungsfahigkeit von Pro-

zessoren vorauszusagen, besagt, dass sich die Anzahl der Transistoren alle zwei
Jahre ungefahr verdoppelt. Seit seiner Formulierung (1965!) hat sich die Vorhersa-
ge bewahrheitet.

1.0.0210 /9033 © Integrata AG 9-3

Nebenlaufigkeit

gen, bestehen die Prozessoren aus einzelnen Kernen (vier Kerne
sind far neue Standard-PCs schon nicht ungewdhnlich), die in der
Lage sind, Code echt nebenlaufig auszufihren.

Das hat einen fundamentalen Einfluss auf unsere Programme. Sind
diese namlich nicht auf Nebenlaufigkeit ausgelegt, so nutzen sie
auch nur einen einzigen Prozessorkern!

Nutzerfeedback

Wenn ein Nutzer in einer Oberflache eine Aktion initiiert, dann erwar-
tet er auch zeitnah eine Reaktion. Dauert die Aktion aber langer, so
sollte der Nutzer zumindest darliber informiert werden, dass das Sys-
tem beschaftigt ist (durch die Sanduhr als Mauszeiger oder einen
Fortschrittsbalken). Diese Benachrichtigung wir in einem separaten
Thread stattfinden.

9.1.2 Mythen und Missverstandnisse

Es existieren einige Mythen und Missverstandnisse zur Nebenlaufigkeit,
die immer wieder auftauchen:

o Nebenlédufigkeit verbessert grundsétzlich die Performance

Natdrlich kann Nebenldufigkeit die Performance verbessern, damit
beschaftigen sich ja auch 2 von 4 Begrindungen in der Einleitung.
Aber zum Einen gibt es ja noch die anderen beiden Begrindungen,
zum Anderen muss das Problem auch aufteilbar sein. Selbst dann
bedeutet Nebenlaufigkeit immer auch zusatzlichen Verwaltungsauf-
wand, so dass im schlimmsten Fall eine Verlangsamung eintritt.

Das Design dndert sich nicht durch die Nebenlaufigkeit

Tatsachlich ist das Design oftmals sehr unterschiedlich im Vergleich
zu einer Single-Threaded Applikation — aber nicht notwendigerweise
komplizierter.

Durch den Einsatz eines Frameworks erspart man sich das Ausei-
nandersetzen mit Nebenldufigen Prinzipien

Leider ein Mythos, der sich hartnackig halt. Was uns das Framework
abnimmt, ist das Arbeiten in der Schlammzone, das Erstellen von
Threads etc. Trotzdem sind wir daflir verantwortlich, dass unsere
Klassen auch miteinander zurechtkommen.

9-4

© Integrata AG 1.0.0210/9033

Nebenlaufigkeit 9

9.1.3

9.14

Wahrheiten
Im Gegensatz dazu folgen nun ein paar Wahrheiten:
o Nebenlaufigkeit bedeutet immer zusétzlichen Aufwand

Sowohl in der Leistung, durch zusétzliche Verwaltung, als auch in
der Programmierung

o Korrekte Nebenlaufigkeit ist komplex
Und zwar auch, wenn es das eigentliche Problem nicht ist.
o Nebenldufige Bugs sind nicht oder nur kaum reproduzierbar

Mit dem Ergebnis, dass sie haufig als Kuriositaten (,Sonnenflecken®)
abgetan und ignoriert werden.

o Nebenldufigkeit erfordert hdufig eine fundamentale Anderung der
Design Strategie.

Die Herausforderung
Betrachten wir folgendes, kleines Programm:

public class Raiser {

private int lastValue;

public int getNextValue() {

return ++lastValue;

}

Wir erzeugen eine Instanz dieser Klasse mit dem Anfangswert 0 und
lassen sie zeitgleich von zwei Threads jeweils einmal benutzen. Zum
Schluss haben wir drei Mégliche Ergebnisse:

e Thread 1 bekommt den Wert 1, Thread 2 den Wert 2, lastValue hat
den Wert 2

e Thread 1 bekommt den Wert 2, Thread 2 den Wert 1, lastValue hat
den Wert 2

e Thread 1 bekommt den Wert 1, Thread 2 den Wert 1, lastValue hat
den Wert 1

Die beiden ersten Ergebnisse sind natlrlich die, die wir erwartet haben,
aber das dritte Ergebnis ist ungewodhnlich — bzw. sogar gefahrlich, wenn
in unserem Programm jeder Thread eine eindeutige ID haben muss!

1.0.0210 /9033 © Integrata AG 9-5

Nebenlaufigkeit

Wo liegt hier das Problem? Naturlich im Ausdruck ++lastValue. Aus-
geschrieben (und mit einer temporaren Variable besser lesbar ge-
macht) steht dort:

public int getNextValue() ({
int temp = lastValue;
lastValue = temp + 1;

return lastValue;

}

Was kann hier nun schiefgehen? Betrachten wir die beiden Threads mit
einander verschrankt. Beide besitzen eine voneinander unabhangige
Variable temp:

lastValue: 0

int temp 1 = lastValue; -> temp 1: 0;
Threadwechsel

int temp 2 = lastValue; -> temp 2: 0;
lastValue = temp 2 + 1 -> lastValue: 0 + 1 =1
return lastValue -> Rickgabe: 1 (fir Thread 2)
Threadwechsel

lastValue = temp 1 + 1 -> lastValue: 0 + 1 =1
return lastValue -> RlUckgabe: 1 (fUr Thread 1)

Das Problem ist, dass der Threadwechsel zwischen dem Auslesen und
dem Zurlckschreiben von lastValue passieren kann.

Dieses Problem nennen wir Read-Write-Problem. Ein Wert wird ausge-
lesen und abhangig von dem gelesenen Wert wird ein anderer (oder
derselbe) gesetzt. Es kann nur dadurch gelést werden, dass verhindert
wird, dass wahrend des Read-Write Vorganges ein anderer Thread den
selben Code auf der selben Instanz ausfiihrt — mit anderen Worten, der
Read-Write-Zugriff muss atomar erfolgen.

9-6

© Integrata AG 1.0.0210/9033

Nebenlaufigkeit 9

9.2

9.2.1

9.2.2

9.2.2.1

9.2.2.2

Nebenlaufige Prinzipien

Wir beginnen mit einigen Prinzipien, die fir nebenlaufige Programmie-
rung gelten:

Nebenlaufig oder nicht

Wenn wir eine Klasse schreiben, sollten wir uns von vorne herein Ge-
danken dartber machen, wie sie sich in einem nebenlaufigen Szenario
verhélt. Diese Gedanken missen dokumentiert werden!

Einige Grundsatze:

Unveranderliche Objekte sind Thread-Sicher. Ein Objekt ist dann un-
veranderlich, wenn es keine Mdglichkeit mehr gibt, nach seiner Erstel-
lung seinen Zustand zu verandern (und idealerweise sind alle Attribute
als final deklariert, wenn die Sprache ein derartiges Konstrukt kennt).

Ist unsere Klasse veranderbar, so missen wir uns entscheiden: Wie
wahrscheinlich ist es, dass eine Instanz dieses Objektes zwischen
Threads ausgetauscht wird? Ist das eine realistische Situation, so mus-
sen wir daflir sorgen, dass das Objekt Thread-sicher wird. Kommt die
Situation nicht in Frage, so kénnen wir die Klasse Thread-unsicher las-
sen, missen das aber deutlich dokumentieren.

Regel 9-1: In jeder Klasse muss beschrieben sein, ob diese
Thread-sicher ist oder nicht. Unveranderliche Objekte
sind immer Thread-sicher. (Lesb, Vers)

Atomare Zugriffe

Um unseren Code Thread-sicher zu machen, missen wir also bestimm-
te Bereiche nur atomar ausfihrbar machen lassen. Wie wir das be-
werkstelligen, ist von Sprache zu Sprache &uBerst unterschiedlich,
deshalb verweisen wir auf die jeweilige Dokumentation der Sprache. In
Java (und damit in den Beispielen in diesem Kapitel) wird ein Block
durch das Schlisselwort synchronized atomar zusammengefasst.

Es gibt zwei Situationen, in denen wir synchronisieren miissen:

Read-Write-Zugriffe

Das Beispiel hatten wir ja bereits weiter oben. Ist ein Schreibzugriff von
einem vorherigen Lesezugriff abhangig, so sind beide Zugriff atomar
zusammenzufassen.

Dependent-Writes

Wird mehr als ein Feld geschrieben und stehen beide Felder unterein-
ander in Abhangigkeit (zum Beispiel durch eine Invariante), so missen
alle gemeinsam, also atomar, gesetzt werden.

1.0.0210 /9033 © Integrata AG 9-7

Nebenlaufigkeit

9.2.3

9.24

9.2.5

Als Beispiel betrachten wir eine triviale Listenimplementierung. Die Da-
ten werden in einem Array fester GroBe gehalten, ein int-Wert size
gibt an, wie weit das Array tatsachlich gefillt ist. size und das Array
stehen in einer Beziehung zueinander, das heif3t, sie missen beide
gleichzeitig gesetzt werden.

Ein haufig ignorierter Sonderfall sind 64bit Werte (long, double). Je
nach Prozessor und Betriebssystem kann es durchaus sein, dass das
Setzen eines 64bit Wertes tatsachlich als zwei Operationen (low und
high) ausgefihrt wird.

Regel 9-2: Read-Write-Zugriffe und Dependent-Writes miissen ato-
mar ausgefuhrt werden.

Regel 9-3: Felder die einmal geschiitzt werden, miissen immer ge-
schutzt werden.

Das heif3t, auch die Lesezugriffe missen geschitzt werden!

Das Single-Responsiblity-Principle

Dieses Prinzip haben wir ja schon ausfihrlich behandelt. Es besagt,
dass es nur einen Grund geben darf, um eine Klasse oder Methode zu
andern.

Nebenlaufigkeit ist eindeutig einer dieser Griinde. Das bedeutet fir uns:

Regel 9-4: Code, der sich mit Nebenlaufigkeit beschaftigt, sollte
von anderem Code getrennt gehalten werden. (Lesb,
Vers)

Insbesondere ist unser Nebenlaufigkeitscode ja technischer Code, und
den wollen wir ja sowieso von unserem fachlichen Code trennen.

Begrenzte Schreibzugriffe

Regel 9-5: Miissen wir den Zugriff auf ein oder mehr Felder schut-
zen, so sollte der Zugriff auf diese Felder an so wenig
Stellen wie mdglich erfolgen.

Je haufiger wir auf die Felder zugreifen, desto gréBer ist die Chance,
dass wir die Synchronisation vergessen.

Daten-Kopien

Oftmals ist der einfachste Weg, mit geteilten Daten umzugehen, sie gar
nicht erst zu teilen. Anstatt ein gemeinsames Objekt zu verteilen, be-
kommt jeder Thread seine eigene Kopie, die dann ggf. zum Ende der
Threads wieder vereint werden mussen.

Das ist auch das Konzept funktionaler Programmierung. Datenstruktu-
ren werden nicht verandert. Wird einer Liste ein Element hinzugefugt,
wird stattdessen eine neue Liste mit den Elementen der alten plus dem
neuen Element erzeugt.

9-8

© Integrata AG 1.0.0210/9033

Nebenlaufigkeit 9

9.2.6 Unabhangige Threads

Threads sollten so unabhangig wie méglich sein. Eine Mdglichkeit das
zu erreichen, ist den Objekten, die mehrfach genutzt werden, tGberhaupt
keinen Zustand zu geben. Stattdessen werden alle Informationen als
Parameter Ubergeben (was natlrlich eine genaue Umkehr unserer De-
finition von guten Methoden ist).

Damit sind alle Variablen nur lokal, und somit auch nur im aktuellen
Thread Uberhaupt nutzbar.

Diese Form ist fir Server-Anwendungen (z.B. Webserver) sehr gut ge-
eignet.

1.0.0210 /9033 © Integrata AG 9-9

Nebenlaufigkeit

9.3

Begriffe

Far den weiteren Ablauf sollten wir einige Begriffe definieren:

Gebundene Ressourcen sind Ressourcen, die nur in begrenzter
Anzahl vorhanden sind und zwischen einzelnen Threads geteilt wer-
den (z.B. Datenbankverbindungen)

Gegenseitiger Ausschluss (Mutual Exclusion): Nur ein Thread
kann gemeinsame Daten oder Ressourcen gleichzeitig ansprechen.

Verhungern (Thread starvation) bedeutet, dass ein Thread fir lan-
ge Zeit an der Ausflhrung gehindert wird, beispielsweise weil hoch-
priorisierte Threads immer Vorrang bekommen.

Ein Deadlock entsteht, wenn zwei oder mehr Threads sich gegen-
seitig blockieren, weil beispielsweise beide zwei Ressourcen benoti-
gen und jeder schon einen reserviert hat.

Ein Livelock ist eine Form des Deadlock, in der nicht das Betriebs-
system den wartenden Thread vollstandig auf Eis legt, sondern der
Thread auf Applikationsebene immer wieder Uberprift, ob die Res-
source verfugbar ist. Ein Livelock kann also aufgeldst werden.

Eine Race Condition ist eine Situation, deren Ausgang davon ab-
hangt, welcher Thread in welcher Reihenfolge handelt — also prinzi-
piell vom Zufall. Das Eingangsbeispiel ist eine solche Race-
Condition.

9-10

© Integrata AG 1.0.0210/9033

Nebenlaufigkeit 9

9.4

9.4.1

9.4.2

Ablaufmodelle

Mit diesen Begriffen bewaffnet, kbnnen wir uns jetzt den drei typischen
Szenarien zuwenden, mit denen wir es in der Nebenlaufigkeit zu tun
bekommen.

Producer-Consumer

Zwei Arten von Threads arbeiten in diesem Modell mit einander. Die ei-
ne legt Objekte in eine gemeinsame Datenstruktur (eine Warteschlan-
ge, eine gebundene Ressource gem. der obigen Definition), die andere
nimmt sie dort heraus, um sie weiterzuverarbeiten.

Versucht der Producer, ein Objekt abzulegen, wahrend die Warte-
schlange voll ist, so blockiert er so lange, bis wieder Platz darin ist.

Versucht umgekehrt der Consumer ein Objekt aus einer leeren Schlan-
ge zu lesen, so blockiert er ebenfalls so lange, bis wieder ein Objekt
vorhanden ist.

Dieses Prinzip ist eine auBerst machtige Mdglichkeit, um Objekte zu
entkoppeln (sowohl bezogen auf Abhdngigkeiten als auch zeitlich).

Reader-Writer

In diesem Szenario haben wir eine gemeinsame Ressource (z.B. eine
Hashtable), die hauptsachlich lesend genutzt wird. Nur gelegentlich
werden Daten in diese Struktur herein geschrieben.

Bei der klassischen Synchronisation wirden aber dennoch auch alle
Lesevorgange sich gegenseitig ausbremsen.

Die klassische Ldsung fur dieses Problem ist, ein Read-Write-Lock zu
verwenden, also einen zweiteiligen Synchronisations-Mechanismus. Es
kénnen beliebig viele Lesezugriffe gleichzeitig erfolgen. Ein Schreib-
zugriff muss allerdings warten, bis der letzte Lesezugriff abgeschlossen
ist und Iasst, wahrend er lauft, auch keine neuen Lesezugriffe zu.

Eine zweite Moglichkeit ist der Copy-On-Modify-Mechanismus. Die Da-
tenstruktur ist prinzipiell unveranderlich, das heil3t, dass Lesezugriffe
tiberhaupt nicht synchronisiert werden mussen. Schreibzugriffe blockie-
ren sich natirlich weiterhin gegenseitig. Ein Schreibzugriff erfolgt dabei
auf einer Kopie der Daten und erst nach dessen Abschluss wird die alte
Datenstruktur durch die Kopie ersetzt.

1.0.0210 /9033 © Integrata AG 9-11

Nebenlaufigkeit

9.4.3

Dining Philosophers

Die Dining Philosophers sind eine klassisches Beispiel fir einen Dead-
lock. Eine Reihe von Philosophen sitzt an einem runden Tisch, zwi-
schen sich jeweils eine Gabel. Damit ein Philosoph essen kann, bené-
tigt er zwei Gabeln. Er greift also die erste, dann die zweite. Ist die
zweite aber bereits in Benutzung, so wartet er solange, bis diese wieder
frei ist.

Ein Grundsatz zur Verwendung multipler Ressourcen sagt aus, dass al-
le Module die Ressourcen in der gleichen Reihenfolge reservieren sol-
len, um einen Deadlock zu vermeiden. Das ist hier aber nicht so ein-
fach. Die einfachste Lésung ware, ein Philosoph nimmt immer zuerst
die linke Gabel, was genau zu der Situation fihren kdnnte, dass alle ei-
ne Gabel in der Hand halten und auf die andere warten. Ein Deadlock!

Man kdnnte auch definieren, dass jeder zweite Philosoph zunachst die
rechte statt der linken Gabel versucht. Das wirde aber die Philoso-
phenklasse weiter verkomplizieren.

Eine weitere Moglichkeit ist das Monte-Carlo-Prinzip: Jeder Philosoph
wahlt zufallig eine Gabel aus und wartet einen zufélligen Zeitabschnitt
auf die zweite Gabel. Bekommt er sie nicht, so legt er die erste wieder
zurlick und wartet danach wieder einen zufalligen Zeitabschnitt, bevor
er es erneut versucht.

9-12

© Integrata AG 1.0.0210/9033

Nebenlaufigkeit 9

9.5

9.6

9.6.1

9.6.2

9.6.3

9.6.4

Bibliotheken

Nebenlaufiger Code ist kompliziert und die dahinterstehenden Konzepte
sind es auch. Deshalb sollte man so oft wie méglich gut getestete Bib-
liotheken verwenden, die die Nebenlaufigkeiten kapseln.

Tests

Nebenlaufigen Code zu testen ist schwierig. Im schlimmsten Fall kann
es vorkommen, dass der Code auf dem Testsystem immer funktioniert,
aber auf dem Produktivsystem wegen minimaler Unterschiede einen
Fehler provoziert — eine Race Condition.

Eine perfekte Lésung gibt es flr dieses Problem leider nicht. Die fol-
genden Punkte helfen uns aber zumindest auf den Weg:

Monte Carlo

Je haufiger ein Test lauft, desto gréBer ist die Chance auf einen Fehler,
den wir schlieBlich provozieren wollen. Nutzt der Produktivcode 5
Threads, sollte der Test-Code 10000 Durchlaufe mit 50 Threads ver-
wenden.

Unerwartete Situationen sind potentielle Threading-Probleme

Tauchen Situationen auf, die ,eigentlich gar nicht auftauchen kénnen®,
so sind diese haufig auf Race-Conditions zurlckzuflihren. Ignorieren
Sie diese keinesfalls!

Threading und nicht-Threading Tests trennen

Testen Sie also zuerst die innere Funktionalitiat, also den Code in einer
Single-Thread Umgebung. Erst wenn diese Tests erfolgreich sind, tes-
ten Sie auch die Thread-Bestandteile.

Variable Threadpools

Die Menge der gleichzeitig genutzten Threads sollte mdglichst nicht
hart kodiert, sondern veranderbar sein.

1.0.0210 /9033 © Integrata AG 9-13

9 Nebenlaufigkeit

9.7 Zusammenfassung
Threads sind kompliziert. Und dieses Kapitel ist keinesfalls ein Ersatz
fir eine umfassende Beschaftigung mit dem Thema. Aber es ist ein ers-
ter Ansatz, der uns auf die eigentliche Arbeit mit Threads zumindest
vorbereitet.

9-14 © Integrata AG 1.0.0210 /9033

Optimierung

LI 20 B = =1 (0 T RN 10-3
10.1.1 Was ist Performance?.........cccoeeeeeeeieiiiiiiieeeeee e 10-3
10.1.2 Geflhlte Performance.........cccooevevveeiiiiiiiiiie e 10-4
10.1.3 Wann sollte optimiert werden?...........ccccviiieeeieeeieiciene. 10-4

10.2 Das OptimierungSAreieCKccuueeeeiiiiciiiiiieiee e 10-5

10.3 OptimieruNgSPrOZESS.ccccuueeiiieiiiee e e ettt e e e e e e e e e e e 10-9

10.4 ZuSammeENTaSSUNQuuurruuruuiiiiiiiiiiiiiiiiiiiineiieeeee e 10-12

1.0.0210 /9033 © Integrata AG 10-1

10 Optimierung

10-2 © Integrata AG 1.0.0210 /9033

Optimierung 10

10

10.1

10.1.1

Optimierung

Einleitung

In diesem Kapitel wollen wir einen kurzen Uberblick iiber die Grundsét-
ze des Optimierens gewinnen. Wir beschaftigen uns zunachst mit dem
Begriff der Performance um anschlieBend einen allgemeinen Prozess
fir die Optimierung zu definieren.

Was ist Performance?

Die Performance eines Softwaresystems oder einer Softwarekompo-
nente wird von Connie U. Smith und Loyd G. Williams' wie folgt defi-
niert.

~Performance is an Indicator of how well a software system or compo-
nent meets its requirements for timeliness.“

Als MessgroBen fur diese ,Rechtzeitigkeit” werden oft die Antwortzeit
bzw. der Durchsatz eines Softwaresystems benutzt. Die Antwortzeit ist
die Zeit, die aus Sicht des Benutzers der Software vergeht, bis eine be-
stimmte Anfrage oder Aufgabe bearbeitet wurde. Der Durchsatz gibt an,
wie viele Aufgaben (Transaktionen, Datensatze, Daten etc.) von der
Software in einem bestimmten Zeitraum verarbeitet werden kénnen.

Eng verbunden mit der Antwortzeit bzw. dem Durchsatz eines Soft-
waresystems ist seine Skalierbarkeit, d.h. wie verhalten sich diese zeit-
lichen Werte, wenn die Last, die das System zu bewaéltigen hat, an-
steigt. Prinzipiell ist kein Softwaresystem beliebig skalierbar. Ab einem
bestimmten Punkt wird eine minimale Erhéhung der Last eine exponen-
tielle Auswirkung auf Antwortzeit und Durchsatz haben. Entscheidend
dabei ist, ob dieser Punkt bereits durch Lasten erreicht wird, die laut
Anforderungen noch im Bereich der zu erwartenden Lasten fir das rea-
le System liegen oder auBBerhalb. Im ersten Fall hat das System seine
Performanceanforderungen nicht erfullt und damit ein Performance-
problem.

Performanceprobleme resultieren meist daraus, dass eine oder mehre-
re bendtigte Ressourcen, wie z.B. Prozessoren, Speicher, Netzwerk-
bandbreite usw., nicht bzw. nicht in ausreichender Anzahl oder Menge
zur Verfligung stehen. Eine Mdéglichkeit diesen Performanceproblemen
zu begegnen ist es, der Anwendung zuséatzliche oder bessere Ressour-
cen zur Verflgung zu stellen. Die andere Mdglichkeit besteht darin, die

! Connie U. Smith, Loyd G. Williams — Performance Solutions — A practical Guide to
Creating Responsive, Scalable Software

1.0.0210 /9033 © Integrata AG 10-3

10

Optimierung

10.1.2

10.1.3

Nutzung der vorhandenen Ressourcen zu optimieren, um die Perfor-
mance eines Softwaresystems zu verbessern. Dieses Vorgehen be-
zeichnet man als Performancetuning.

Geflihlte Performance

Neben der Uber Antwortzeiten bzw. den Durchsatz messbaren Perfor-
mance eines Softwaresystems gibt es im Bereich der Software, die
durch Benutzer bedient wird, noch den Begriff der gefihlten Performan-
ce. Diese subjektive Wahrnehmung des Benutzers kann dazu flhren,
dass eine Anwendung, welche eine héhere Antwortzeit als eine ver-
gleichbare andere Anwendung hat, trotzdem als die performantere Va-
riante wahrgenommen wird.

Damit ein Benutzer diese subjektive Empfindung einer performanten
Anwendung bekommt, ist es notwendig, die Oberflachen entsprechend
reaktiv zu gestalten. Dazu gehdren die Darstellung des Arbeitsfort-
schritts durch Fortschrittsbalken oder &hnliches bzw. die Prasentation
von Teilergebnissen, aber auch die Moglichkeit noch nicht beendete
Operationen jederzeit abbrechen zu kdnnen. Operationen mit langer
Laufzeit werden am besten in den Hintergrund verlegt, damit der Be-
nutzer in dieser Zeit bereits andere Aufgaben wahrnehmen kann. Dem
Benutzer muss ein Gefluhl der Kontrolle Uber die Anwendung vermittelt
werden.

Wann sollte optimiert werden?

Die gréBte Gefahr bei der Optimierung geht von einem vorschnellen
Handeln aus. Viel Zeit geht in der Regel darauf verloren, dass Entwick-
ler vermeintliche Flaschenhalse optimieren, die in der Praxis tGberhaupt
keine Auswirkungen auf die Performance haben.

Optimiert wird dann, wenn es konkrete Forderungen dazu gibt. Entwe-
der als Teil des Pflichtenheftes oder als Fehlerticket.

Bevor man als Entwickler also selbst den Quellcode ,optimiert”, muss
man sicherstellen, dass Uberhaupt ein Performanceproblem existiert
und dass die gewahlte Codeoptimierung auch passend fiir das Problem
ist. Die Optimierung ist natdrlich entsprechend zu dokumentieren und
zu testen, d.h. werden die Performancekriterien auch nach der Optimie-
rung erflllt oder haben sich neue Problemfelder ergeben.

Prinzipiell sollte man deshalb bei Codeoptimierungen vorsichtig sein
und die Regeln von Michael A. Jackson berlcksichtigen:

o First Rule of Program Optimization — Don’t do it.

e Second Rule of Program Optimization (for experts only!) —
Don’t do it yet.

10-4

© Integrata AG 1.0.0210/9033

Optimierung 10

10.2 Das Optimierungsdreieck

Jede Anwendung stitzt sich im Grundprinzip auf die drei KenngréBen
I/O-, CPU- und Speicherauslastung. Diese bilden die Achsen eines
Dreiecks, dessen Flache den Ressourcenverbrauch der Anwendung
reprasentiert.

/0

CPU Speicher

Abb. 10-1: Optimierungsdreieck

Der durchschnittliche Maximalwert der drei Auslastungen sollte dabei
80% nicht Ubersteigen. So bleibt noch Spielraum flir eventuell auftre-
tende Spitzen. Die Flache des Optimierungsdreiecks bleibt bei fast allen
Optimierungen — sieht man einmal von Trivialoptimierungen ab — nahe-
zu konstant. Das bedeutet, dass fast alle Optimierungen sogenannte
Trade-Off Optimierungen sind. Die Verbesserung von einem Wert flhrt
zu einer entsprechenden Verschlechterung bei einem oder beiden der
anderen Werte.

Im folgenden Beispiel befindet sich die durchschnittliche I/O-Auslastung
einer Anwendung im kritischen Bereich (> 80%).

1.0.0210 /9033 © Integrata AG 10-5

10 Optimierung

e

4 100%

CPU Speicher

Abb. 10-2: Kritische 1/0 Auslastung

Um die I/O Auslastung zu senken missen entweder die Anzahl der 1/0
Aufrufe oder die zu Ubertragenden Daten reduziert werden. Eine ge-
brauchliche Methode fir die Reduzierung von I/O Aufrufen ist das Ca-
ching. Dabei werden Daten fir den mehrmaligen Gebrauch zwischen-
gespeichert, anstatt sie immer wieder neu tber I/O Aufrufe abzufragen.
Caching reduziert die I/O-Auslastung hat allerdings einen héheren
Speicherbedarf, da die Daten im Regelfall im Speicher gehalten wer-
den. Das Dreieck verschiebt sich also wie folgt.

/0
A

=+ 100%

CPU Speicher
Abb. 10-3: Caching
Um die zu Ubertragenden Daten zu reduzieren, wird oft eine Kompres-

sion der Daten durchgefuhrt. Die Kompressionsalgorithmen bedingen
allerdings eine héhere CPU-Auslastung.

10-6 © Integrata AG 1.0.0210 /9033

Optimierung 10

/0
A

=+ 100%

CPU Speicher

Abb. 10-4: Kompression

Befinden sich alle drei Auslastungen nahe am bzw. bereits im kritischen
Bereich, wird eine normale Optimierung nicht mehr helfen. In diesem
Fall missen der Anwendung zusatzliche Ressourcen zur Verfligung
gestellt werden und die Achsen somit wieder ,verlangert* werden.

/0 7o

A A

4 100% 4 100%
1 50.;1,' +50%

CPU Speicher Speicher

Abb. 10-5: Entlastung durch Ressourcenerhdéhung

Eine Erweiterung des Optimierungsdreiecks stellt die Optimierungspy-
ramide dar. Dabei wird als vierte GréBe die Wartbarkeit einer Anwen-
dung betrachtet. Durch die Pyramide wird der Einfluss von Optimierun-
gen auf die Lesbarkeit des Quellcodes und damit auf die Kosten flir die
zukinftige Pflege und Erweiterung der Anwendung visualisiert. Gerade
Trivialoptimierungen, die im normalen Optimierungsdreieck die Flache
verkleinern, zeichnen sich oft durch sehr untbersichtlichen und schwer
zu verstehenden Quellcode aus, der im Endeffekt zu erhdhten Pflege-
aufwand und damit verbundenen Kosten flhrt.

1.0.0210 /9033 © Integrata AG 10-7

10 Optimierung

CPU Wartbarkeit

Abb. 10-6: Optimierungspyramide (links vor, rechts nach einer Trivialoptimierung)

10-8 © Integrata AG 1.0.0210 /9033

Optimierung 10

10.3 Optimierungsprozess

Der hier vorgestellte Optimierungsprozess ist ein Vorschlag fur eine
sinnvolle Vorgehensweise bei Performanceproblemen in Anwendun-

gen.
Verdacht Indiz
. , Verdacht bestatigt
;:mﬁz?m wird I Indizien fiir Verdacht sich nicht
werden gesammeit Optimierung nicht
notwendig
Test These Verdacht bestatigt sich
Testfall fiir die These These (ber Ursache
wird erstellt wird aufgestellt

]

gewahlten Bottlenecks

v

.

4 | Testen der Optimierung
mit definiertem Testfall

\ S

J

E 1
w1
\ s _ S
' Optimierung NS Problem ist noch vorhanden,
‘ - ~ 2 |E neue These wird aufgestellt
o = Identifikation der Top 2E
. Testfall » Bottlenecks (3-5) [€) 8,8
- wos P _ + » 5 : s
\ ' B % 1 g
| Auswahl des = g
einfachsten Bottlenecks 8 E) .
Y L J S S keine Indizien
\ v . g :8 vorhanden Optimierung
Optimieren des S & abgeschlossen
Z)
N
]
1

Test nicht erfolgreich

Verifikation

Ist das Problem verschwunden?
Keine Indizien mehr fiir Problem?

. J T
l Test erfolgreich

Abb. 10-7: Optimierungsprozess

Wie aus dem Schaubild ersichtlich ist, besteht der Prozess aus sechs
Hauptschritten.

1) Verdacht — Als erstes muss ein konkreter Verdacht fir ein Perfor-
manceproblem bestehen. Ein normalerweise recht sicherer Indikator
fir Performanceprobleme sind Beschwerden oder Fehlermeldungen
der Nutzer. Aber auch das Monitoring von Anwendungen kann Indi-
zien fur ein Performanceproblem liefern. Im Gegensatz zu den Beo-
bachtungen der Nutzer kénnen das Monitoring einer Anwendung
Probleme teilweise bereits identifiziert werden, bevor sie akut in Er-
scheinung treten. Dadurch kann eine Problembehebung erfolgen,
ohne dass der Nutzer davon etwas mitbekommt. Die aus dem Moni-
toring gewonnenen Statistiken kénnen dabei in den folgenden
Schritten gut zur Problemeingrenzung und ldentifizierung benutzt
werden.

1.0.0210 /9033 © Integrata AG 10-9

10

Optimierung

2)

Indiz — Nachdem der Verdacht eines Performanceproblems besteht
sollte man als erstes prifen, ob der Verdacht auch berechtigt ist.
Dazu gehdren einfache Prifungen in denen die beschriebene Situa-
tion nachgestellt wird und die geflihlte Laufzeit ermittelt wird. In die-
ser Phase kommen noch keine ausgefeilten Tools wie z.B. Profiler
etc. zum Einsatz sondern es wird aus ,Nutzersicht® durch einen
Entwickler etc. geprift, ob sich ein Performanceproblem bestatigen
lasst. Dazu kénnen auch einfache Uberwachungstools flr die Spei-
cherauslastung etc. benutzt werden. Finden sich spontan keine
Hinweise auf ein Problem, ist ein Langzeitmonitoring der Anwen-
dung sinnvoll. Dazu kénnen z.B. eventuell vorhandene JMX-Beans
oder auch die normale Systemiberwachung benutzt werden.

These — Stellt man in Schritt 2 fest, dass ,irgendetwas nicht stimmt®
befindet man sich relativ schnell bei Schritt 3. Hier wird eine These
aufgestellt, welcher Art das Problem (I/O-, CPU- oder Speicheraus-
lastung) ist und der ungefahre Entstehungsort bestimmt. Hierzu
werden weitere Tools der Systemiberwachung eingesetzt.

Test — Aus der aufgestellten These wird nun ein mdglichst automa-
tisierter Test fir das in der These formulierte Problem erzeugt, der
die jeweiligen Kenndaten (Laufzeit, 10- und Speicherauslastung)
gegenltber einem Grenzwert vergleicht. Gerade dieser Schritt ist
besonders wichtig und wird leider oft Ubergangen. Durch das
Schreiben eines Tests wird man gezwungen, das Performanceprob-
lem zu operationalisieren und Aussagen wie ,Die Anwendung ist zu
langsam® in konkrete Grenzwerte fir klar festgelegte Bereiche um-
zuwandeln. AuBerdem manifestieren die Tests das grundlegende
Performanceproblem und bilden so die Grundlage fiir die eigentliche
Optimierung in Schritt 5.

Ein weiterer wichtiger Punkt ist die Wahl der Testumgebung. Anders
als bei normalen Unit-Tests, welche die Funktionsweise einer An-
wendung testen, missen Performancetests auf einem System aus-
geflhrt werden, das dem operativen System der Anwendung ent-
spricht oder zumindest méglichst nahe kommt. Dazu z&hlen neben
moglichste identischer Hardware- und Softwareausstattung auch ei-
ne dem operativen System entsprechende Last.

Optimierung — In diesem Schritt erfolgt die eigentliche Optimierung
der Anwendung. Grundlage daflir sind die in Schritt 4 erstellten
Testfélle. Die Anwendung soll so optimiert werden, dass die Tests
erflllt werden — nicht weniger aber auch nicht mehr. Die Optimie-
rung ist ein eigener Unterprozess mit vier Schritten

a) Als erstes werden ca. 3 — 5 der HotSpots und Bottlenecks der
Anwendung bestimmt. Dazu werden Tools wie z.B. Profiler ein-
gesetzt. Es geht hier darum die gréBten Hotspots und Bottle-
necks zu finden und nicht alle.

b) Aus den gefunden Hotspots wird der aus Sicht des Entwicklers
am leichtesten und schnellsten zu optimierende ausgewahlt.

10-10

© Integrata AG 1.0.0210/9033

Optimierung 10

c)Jetzt erfolgt die Optimierung des ausgewéhlten Hotspots. Wobei
immer nur ein Hotspot bearbeitet wird und nicht mehrere gleich-
zeitig.

d) Nachdem der Hotspot optimiert wurde, wird der in Schritt 4 defi-
nierte Test durchgeflihrt. Ist der Test erfolgreich ist die Optimie-
rung abgeschlossen und wird beendet, auch wenn in der in a)
gefundenen Liste noch weitere Hotspots stehen.

Schlagt der Test fehl, fangt man wieder neu bei a) an. Das be-
deutet, dass die Liste der Hotspots und Bottlenecks wieder neu
bestimmt wird. Da durch die bisherige Optimierung alte Hotspots
weggefallen und neue Hotspots hinzugekommen sein kénnten,
darf die zuvor erstellte Liste nicht mehr benutzt werden. Wieder-
holt sich diese Schleife sehr oft, d.h. man erflllt den Test nicht,
obwohl man schon eine Menge von Optimierungen durchgeflihrt
hat, liegt die Vermutung nahe, dass die These Uber die Ursache
des Problems falsch ist. Der Optimierungsprozess geht in die-
sem Fall wieder zurlick zu Schritt 3 und es wird eine neue These
aufgestellt.

6) Verifikation — Wurde der Schritt der Optimierung erfolgreich abge-
schlossen und der Test erflllt bedeutet das nicht automatisch, dass
das Performanceproblem gelést ist. Eventuell war die in Schritt 3
aufgestellte These falsch. Zur endgdltigen Verifikation wird jetzt
nochmals Schritt 2 ausgefiihrt. Die Anwendung wird auch durch den
Nutzer getestet. Stellt sich in der Verifikation heraus, dass das Per-
formanceproblem nicht geldst wurde, muss eine neue These formu-
liert werden und der Prozess startet wieder bei 3). Dabei flieBen na-
tarlich die bisher gewonnen Informationen in die Problemfindung mit
ein.

1.0.0210 /9033 © Integrata AG 10-11

10 Optimierung

10.4 Zusammenfassung

Optimierung ist ein weites Feld. Wir haben uns hier bewusst nicht auf
konkrete Optimierungstechniken bezogen sondern uns stattdessen mit
dem allgemeinen Optimierungsprozess beschéftigt.

Die einzige Regel flr dieses Kapitel steht daher am Schluss:

Regel 10-1: Bevor optimiert wird muss es ein quantifizierbares
Ziel und einen dazu passenden, identifizierten Eng-
pass geben.

10-12 © Integrata AG 1.0.0210 /9033

Meisterschaft

1.0.0210 /9033

© Integrata AG

11

Meisterschaft

© Integrata AG

1.0.0210 /9033

Meisterschaft 11

11 Meisterschaft

Wir haben in den letzten Kapiteln viele Themen besprochen und viele
Regeln aufgestellt. Folgt man den aufgestellten Regeln, so erreicht man
mit ein wenig Ubung eine gute Basis fir hochwertigen Code.

Dass das regelmaBige Zurlckkehren zu den Regeln eine gewisse
Selbstdisziplin erfordert, muss wohl nicht erwahnt werden.

Aber es lohnt sich!
Uns bleibt zum Schluss noch eine einzige Regel, die Meisterregel':
Regel 11-1: (Meisterregel) Der Meister darf die Form zerbrechen.

' Frei nach Friedrich Schillers ,Die Glocke*

1.0.0210 /9033 © Integrata AG 11-3

11

Meisterschaft

© Integrata AG

1.0.0210 /9033

Anhang — Regeln

12.1 Kapitel 1 —Was ist Qualitatoooiiiiiiiii s 12-3
12.2 Kapitel 2 — Objektorientierte Programmierung..........ccccccceeeeennneee. 12-3
12.3 Kapitel 3 — Professionelle Klassen und Objektecccccceeeeeennees 12-4
12.4 Kapitel 4 — NaMENuuuiiiiiiiiiiiiiiiiiiiiii e 12-5
12.5 Kapitel 5 — MethOdeN.........uuiiiiiiiiiiiiiiiiiiiiiiie e 12-7
12.6 Kapitel 6 — Kommentare und Dokumentationcccuveeeunnnes 12-8
12.7 Kapitel 7 — Code-Formatierungen..........cccueeeeveeeeeiiiiiiiiiieeee e 12-8
12.8 Kapitel 8 — MetriKen..........uvuiiiiiiiiiiiiiiiiiiiiiiiiiie s 12-9
12.9 Kapitel 9 — NebenlaufigKeit..........uuuueiieiiiiiiiiiiiiiiiiiiiiaes 12-9
12.10 Kapitel 10 — OptiMIi€ruNgueeeeeeeeeeeeeiiiiieeee e 12-9
12.11 Kapitel 11 — Meisterschaftuvvvuiiiiiiiiiiiiiiiie 12-9

1.0.0210 /9033 © Integrata AG 12-1

12 Anhang - Regeln

12-2 © Integrata AG 1.0.0210 /9033

Anhang — Regeln 12

12 Anhang - Regeln

12.1 Kapitel 1 — Was ist Qualitat

Regel 1-1:

eine maximale, externe Qualitat ist nicht erreichbar, Schwer-
punkte mussen anhand klarer Anforderungen gestellt wer-
den.

Regel 1-2:

Verbesserungen der Benutzerfreundlichkeit sollten wohl
Uberlegt sind und nur bei begriindeten Fallen (Nutzerforde-
rung!) Uber ein Ubliches Maf3 hinaus gehen.

Regel 1-3:

Eine Betonung eines externen Merkmal muss durch Nicht-
funktionale Anforderungen (NFAs) begriindet sein.

Regel 1-4:

Wartungsfreundlichkeit, Wiederverwendbarkeit, Lesbarkeit
und Testbarkeit sollten, solange der Aufwand vertretbar ist,
so hoch wie moglich sein.

Regel 1-5:

Flexibilitdt und Effizienz sollten in der Entwicklung eine ge-
ringe Prioritat haben.

12.2 Kapitel 2 — Objektorientierte Programmierung

Regel 2-1:

(1. Holper-Regel) Klingt eine Sprechweise fiir ein objektori-
entiertes Konzept holprig, so ist das Konzept nicht korrekt
angewendet. (Vers)

Regel 2-2:

Die Signatur und das Verhalten von Schnittstellen-Methoden
sollte nachtraglich nur noch in Ausnahmefallen geéndert
werden (Wart, Wied).

Regel 2-3:

Neue Methoden sollten der Schnittstelle nur dann hinzuge-
flgt werden, wenn es dafir einen konkreten Anwendungsfall
gibt (Wart).

Regel 2-4:

Felder sollten standardmaBig private, Hilfsmethoden stan-
dardmaBig package-visible sein. (Wart, Test)

Regel 2-5:

Felder sollten immer gekapselt werden, der Zugriff darauf
darf nur Uber Getter und Setter mdglich sein. (Wart, Wied)

1.0.0210 /9033

© Integrata AG 12-3

12

Anhang - Regeln

Regel 2-6: Jede Klasse sollte mit einem entsprechenden Interface ge-
kapselt sein. Client-Code sollte ausschlieBlich Uber das Inter-
face auf die Klasse zugreifen. (Wart, Wied, Test)

Regel 2-7: Klassen sollten eine starke Kohasion besitzen (Wied, Lesb,
Vers)

12.3 Kapitel 3 — Professionelle Klassen und Objekte

Regel 3-1:

Vererbung sollte nur dazu benutzt werden, tatsachliche Spe-
zialisierungen zu beschreiben. (Vers)

Regel 3-2:

(LSP) Unterklassen missen an die Stelle ihrer Oberklassen
treten kdnnen. (Test, Vers)

Regel 3-3:

(2. Holper-Regel) Lasst sich fur die Anwendung einer ob-
jektorientierten Technik kein vernlnftiger (nicht-holpriger)
Name finden, so ist die Technik nicht korrekt angewendet.
(Vers)

| Regel 3-4:

Mehrfachvererbung ist zu vermeiden. (Lesb, Vers)

Regel 3-5:

Eine Klasse sollte immer nur entweder von einer Oberklasse
ableiten oder eine Hierarchieschnittstelle implementieren.
(Vers)

Regel 3-6:

Der Name des Konstruktes (Klasse, Schnittstelle), der im
Code am haufigsten verwendet wird, sollte der ,schdnste”
sein. (Lesb)

Regel 3-7:

Querschnittliche Fahigkeiten werden Uber Fahigkeitsschnitt-
stellen realisiert. (Wied, Vers, Test)

Regel 3-8:

Fachliche Vererbungen sollten als Parallele Hierarchien ab-
gebildet werden. (Wied, Test)

Regel 3-9:

Clients sollten nicht gezwungen sein, sich auf Schnittstellen
abzustUtzen, die sie nicht benutzen. (Test, Vers, Wied)

Regel 3-10: Das Interface-Segregation-Principle sollte mit Hilfe des

Adapter-Patterns umgesetzt werden. (Lesb, Vers, Wied)

| Regel 3-11: Klassen sollten klein sein. (Lesb, Vers, Test)

12-4

© Integrata AG 1.0.0210/9033

Anhang — Regeln 12

| Regel 3-12:

Klassen sollten noch kleiner sein. (Lesb, Vers, Test)

Regel 3-13:

(Visions-Prinzip) Jedes Konzept (Pakete, Klassen, Metho-
den) muss sich verstandlich in einem Hauptsatz (der Vision)
beschreiben lassen. (Vers, Wied)

Regel 3-14:

(SRP) Fir jede Klasse sollte es nur einen einzigen Grund
geben, sie zu andern. (Vers, Wied)

Regel 3-15:

(OCP) Klassen sollten offen fir Erweiterungen, aber gesperrt
fir Veranderungen sein. (Wied, Wart)

Regel 3-16:

Potentielle Oberklassen sollten verhindern, dass ihre Kind-
Klassen jemals das Liskovsche Substitutionsprinzip (siehe
Regel 3-2) verletzen kénnen. (Wied, Wart)

Regel 3-17:

(DIP) Hochlevlige Module sollten nicht von niedrig-levligen
Modulen abhéngen. Beide sollten nur von Abstraktionen ab-
hangen (Wied, Wart, Test).

Regel 3-18:

(DIP) Abstraktionen sollten nicht von Details abhangen. De-
tails sollten von Abstraktionen abhangen. (Wied, Wart, Test)

12.4 Kapitel 4 — Namen

Regel 4-1: Variablen sollten Namen haben, die ihre Bedeutung wieder-
spiegeln. (Lesb)

Regel 4-2: Klassen und Abstraktionen tragen die Namen von (ggf. zu-
sammengesetzten) Substantiven. (Vers)

Regel 4-3: Abstrakie Klassen als Implementierungshilfen sollten mit
dem Préafix ,Abstract” versehen werden. (Lesb, Vers)

Regel 4-4: Fahigkeits-Interfaces und Mixins tragen Adjektive als Namen.
(Vers)

Regel 4-5: Methoden sollten Verben oder aus Verben abgeleitete Be-
zeichnungen als Namen tragen. (Lesb, Vers)

Regel 4-6: Zugriftsmethoden sollten mit get, set oder is anfangen.
Andere Methoden sollten diese Préafixe nicht benutzen.
(Lesb)

1.0.0210 /9033

© Integrata AG 12-5

12

Anhang - Regeln

Regel 4-7:

Unklare Konstruktoren sollten durch Factory-Methoden ,be-
nannt“ werden. Der Konstruktor selbst sollte dann nicht mehr
sichtbar sein. (Lesb, Vers)

Regel 4-8:

Eine Handvoll definierter Standardnamen erleichtert die
Ubersichtlichkeit, wenn sie allen Entwicklern bekannt sind.
(Lesb)

Regel 4-9:

Variablen, die das Ergebnis einer Methode aufnehmen, soll-
ten den Namen dieser Methode tragen. Gibt es Verwechs-
lungsgefahr, so sind dem Namen die Argumente des Aufrufs
beizuflgen. (Lesb)

Regel 4-10:

Die Unterschiede zwischen zwei gewahlten Namen muissen
so gewahlt werden, dass der Leser sie inhaltlich versteht.
(Lesb, Vers)

Regel 4-11:

Fachliche Konzepte sollten in Doméanen-Sprache, technische
Details in der Ldsungssprache formuliert werden. (Lesb,
Vers)

Regel 4-12:

Gleiche Konzepte sollten durch das gleiche Wort beschrie-
ben werden, unterschiedliche Konzepte durch unterschiedli-
che Wérter. (Lesb, Vers)

Regel 4-13:

Verwandte Konzepte sollten auch mit verwandten Begriffen
beschrieben werden. (Lesb, Vers)

Regel 4-14:

Namen sollten sich optisch so weit unterscheiden, dass man
sie auf einen Blick auseinanderhalten kann. (Lesb)

Regel 4-15:

Namen sollten aussprechbar sein. AbklUrzungen sollten nur
in Ausnahmefallen verwendet werden, und auch dann nur
sprechbare. (Lesb)

Regel 4-16:

Encodings fur Typen und Kontexte sollten nicht benutzt wer-
den. (Lesb)

12-6

© Integrata AG 1.0.0210/9033

Anhang — Regeln 12

12.5 Kapitel 5 — Methoden

\ Regel 5-1: Methoden sollten klein sein. (Lesb, Test)
\ Regel 5-2: Methoden sollten noch kleiner sein. (Lesb, Test)
Regel 5-3: Methoden sollten dem Hrair-Limit gentgen (nicht mehr als 7
Zeilen) (Lesb, Test)
| Regel 5-4: Blocke sollten einzeilig sein. (Lesb, Test)
Regel 5-5: Der Name einer Methode muss zusammen mit seinen Argu-
menten auf Client-Seite verstandlich sein. (Lesb, Test)
Regel 5-6: Eine Methode sollte eine Sache tun. Diese sollten sie gut
tun. Diese sollten sie ausschlieBlich tun. (Lesb, Test)
Regel 5-7: Jede Methode sollte nur auf einer Abstraktionsebene agie-
ren. (Lesb)
Regel 5-8: Methodenargumente sollten auf der gleichen Abstraktions-
ebene liegen, wie die Funktion. (Lesb, Test)
Regel 5-9: Eine monadische Methode sollte immer eine Abfrage, ein
Transformator oder ein Event sein. (Lesb, Vers)
Regel 5-10: Flag-Methoden sollten vermieden werden, besonders bei
Monaden. (Lesb)
Regel 5-11: Methoden sollten héchstens ein Output-Argument besitzen,
dieses sollte als Rlckgabewert gedoppelt werden. (Lesb)
Regel 5-12: Methoden sollten wenn mdglich entweder Abfragen oder Be-
fehle sein. (Lesb)

1.0.0210 /9033

© Integrata AG 12-7

12

Anhang - Regeln

12.6 Kapitel 6 — Kommentare und Dokumentation

Regel 6-1: Bevor ein Kommentar gesetzt wird, um Code zu erklaren,
sollte immer erst versucht werden, den Code selbst ver-
stéandlicher zu gestalten. (Lesb)

Regel 6-2: RegelverstéBe missen durch einen Kommentar markiert und
begrindet werden. (Lesb, Vers)

Regel 6-3: Formale Kommentare sollten dem Visions-Prinzip folgen.
(Lesb, Vers)

Regel 6-4: Formale Kommentare sollten im Quellcode lesbar sein.
(Lesb)

Regel 6-5: Nur die &ffentliche API sollte formal beschrieben werden.

(Lesb)

12.7 Kapitel 7 — Code-Formatierungen

Regel 7-1: Methoden sollten von einander durch eine Leerzeile getrennt
werden. (Lesb)

Regel 7-2: Abstraktere Methoden stehen vor spezielleren Methoden.
(Lesb)

Regel 7-3: Abhangige Methoden sollten dicht zusammen stehen, dabei
der Aufrufer (der abstraktere) Uber dem Aufgerufenen.
(Lesb)

Regel 7-4: Konzeptionell zusammengehdrige Methoden sollten dicht
beieinander stehen. (Lesb)

Regel 7-5: Felder sollten vor Methoden definiert werde, Konstanten vor
Feldern. (Lesb)

Regel 7-6: Der einzig wahre Formatierungsstil ist der, den das Team
festgelegt hat. (Lesb, Vers, Wart)

Regel 7-7: Wichtig ist nicht, welche Formatierungsregeln im Einzelnen

verwendet werden, sondern dass diese Regeln existieren
und von allen genutzt werden. (Lesb, Vers, Wart)

12-8

© Integrata AG 1.0.0210/9033

Anhang — Regeln 12

12.8 Kapitel 8 — Metriken

Regel 8-1:

Eingesetzte Metriken mussen verstanden sein und regel-
mafig ausgewertet werden.

12.9 Kapitel 9 — Nebenlaufigkeit

Regel 9-1:

In jeder Klasse muss beschrieben sein, ob diese Thread-
sicher ist oder nicht. Unveranderliche Objekte sind immer
Thread-sicher. (Lesb, Vers)

Regel 9-2:

Read-Write-Zugriffe und Dependent-Writes missen atomar
ausgefuhrt werden.

Regel 9-3:

Felder die einmal geschitzt werden, missen immer ge-
schitzt werden.

Regel 9-4:

Code, der sich mit Nebenlaufigkeit beschaftigt, sollte von an-
derem Code getrennt gehalten werden. (Lesb, Vers)

Regel 9-5:

Miassen wir den Zugriff auf ein oder mehr Felder schitzen,
so sollte der Zugriff auf diese Felder an so wenig Stellen wie
moglich erfolgen.

12.10 Kapitel 10 — Optimierung

Regel 10-1: Bevor optimiert wird muss es ein quantifizierbares Ziel und

einen dazu passenden, identifizierten Engpass geben.

12.11 Kapitel 11 — Meisterschaft

\ Regel 11-1: (Meisterregel) Der Meister darf die Form zerbrechen.

1.0.0210 /9033

© Integrata AG 12-9

12 Anhang - Regeln

12-10 © Integrata AG 1.0.0210 /9033

Literaturempfehlungen

1.0.0210 /9033 © Integrata AG 13-1

13 Literaturempfehlungen

13-2 © Integrata AG 1.0.0210 /9033

Literaturempfehlungen 13

13 Literaturempfehlungen

Martin Fowler: Refactoring: Wie Sie das Design vorhandener Software
verbessern, Minchen: Addison-Wesley, 2000

Erich Gamma, Richard Helm, Ralph Johnson und John Vlissides: De-
sign Patterns: Elements of Reusable Object-Oriented Software, Read-
ing: Addison-Wesley, 1995

Andrew Hunt und David Thomas: The Pragmatic Programmer. Boston:
Addision-Wesley, 2000

Robert C. Martin: Agile Software Development: Principles, Patterns,
Practices, Boston: Pearson Education, Inc, 2003

Robert C. Martin: Clean Code: A Handbook of Agile Software Crafts-
manship, Boston: Pearson Education, Inc, 2008

Steve McConnell: Code Complete, Second Edition, Redmond: Microsoft
Press, 2004

Diomidis Spinellis: Code Quality: The Open Source Perspective, Bos-
ton: Pearson Education, Inc, 2006

1.0.0210 /9033 © Integrata AG 13-3

13 Literaturempfehlungen

13-4 © Integrata AG 1.0.0210 /9033

Gesamtindex

A

Abfrage 5-19

Absatze 7-6
Absichtserklarungen 6-6
Abstrakte Klassen 4-5
Abstraktion 2-7
Abstraktionsebene 5-16
Abstraktions-Methode 5-4
Adapter Pattern 3-18
Aggregation 2-8

A
Anderungsgrund 3-23

A

Anpassungsfahigkeit 1-4
Antwortzeit 10-3
Argument-Objekte 5-23
Assoziation 2-10

atomar 9-6

Atomar 9-7

Attribut 2-9
Auftraggeber-Sicht 1-6
Ausgabe Parameter 5-22
auskommentieren 6-11
Aussprechbare Namen 4-15

Basisklasse 2-12
Bedeutungsvolle Namen 4-4
Benutzerfreundlichkeit 1-3
betriebswirtschaftliche Sicht 1-6
Bindung 2-24

Black-Box-Tests 2-18
BlockgréBe 5-11

Boilerplate-Code 2-21
Builddauer 8-11
Builder-Pattern 4-7, 5-21
Buildprozess 6-3, 8-11

C

CamelCase 4-14

CBO Siehe Coupling between Object
Classes

Code Entropy 8-3

Code Smells 1-10

Codehistorien 6-10
Codeoptimierung 10-4

Coding against Metrics 8-3
cohesion Siehe Kohésion
Command Query Separation 5-24
Comparable 3-11, 3-25

Contract 2-17

coupling Siehe Kopplung
Coupling between Object Classes 8-7
Cyclomatic Complexity 8-4

D

Daten-Kopien 9-8

Datenkopplung 2-23

Deadlock 9-10

Dependency Injection Pattern 2-23
Dependency-Inversion-Principle 3-26
Dependent-Writes 9-7

Depth of Inheritance Tree 8-7

Design Patterns 6-6
Diamant-Problem 3-6

Dining Philosophers 9-12

DIP Siehe Dependency-Inversion-Principle
DIT Siehe Depth of Inheritance Tree
Dokumentation 6-3
Domaéanen-Sprache 4-12

1.0.0210 /9033

© Integrata AG IDX-1

IDX

Gesamtindex

Doxygen 6-3
Dyadische Methoden 5-19

E

Effizienz 1-3

encapsulation Siehe Kapselung
encoding 4-16

enge Kopplung 2-21

Event 5-19

Exit-Punkt 5-13, 5-25, 8-5
Expertensysteme 2-5

F

Factory-Methode 4-7
Factory-Pattern 2-22

Flags 5-21

Flaschenhals 10-4
Flexibilitat 1-5

Forcierte Kommentare 6-10
Formale Kommentare 6-7
Formatierung 3-20, 7-3
Formatter 7-3, 7-11

freie Kopplung 2-23

finf Prinzipien 3-3
Funktion 5-3

Funktionale Programmierung 2-3

G

Gebundene Ressource 9-10
Geflhlte Performance 10-4
Genauigkeit 1-4

Getter 2-18
GroBschreibung 4-14

H

Hacker-Sicht 1-4
Hilfsmethode 5-4
Holper-Regel 2-6, 3-5, 5-14
Hook-Methode 5-8
HotSpot-Compiler 5-13
Hrair-Limit 5-5, 5-20

Inhaltskopplung 2-21

innere Kapselung 2-17

Integritat 1-4

Interface 3-7, 4-6

Interfaces 2-8
Interface-Segragation-Principle 3-22
Interface-Segregation-Principle 3-15
Invariante 2-18

Inversion of Control 2-23

ISP Siehe Interface-Segregation-Principle
Iterator 4-9

J

Javadoc 6-3

K

K

die drei 2-16
Kapselung 2-16, 5-4
Kardinalitat 2-9
Keyword-Form 5-14
Klammer-Kommentare 6-11
Klarstellungen 6-5
Klassen 2-7
KlassengrdBe 3-20
Klassenhierarchien 3-3
Kleinschreibung 4-14
Kohasion 2-24, 3-20, 3-23
Kommentar 6-3
Kommunikation 7-5
Komponente 2-11
Komposition 2-8
Konstruktor 4-7, 5-20
Kontext 4-8
Konzept 4-12
Kopplung 2-21, 3-27
Korrektheit 1-3
Kreis-Ellipse-Problem 3-4
kinstliche Intelligenz 2-5

IDX-2

© Integrata AG 1.0.0210/9033

Gesamtindex

IDX

L

Lack of Cohesion in Methods 8-8

LCOM Siehe Lack of Cohesion in Methods
Lead 7-6

Leetspeak 4-17

Lesbarer Code 6-3

Lesbarkeit 1-5

Lifecycle-Methode 5-7

Lines of Code 3-20, 8-5

Liskovsches Substitutionsprinzip 3-5, 5-11
Livelock 9-10

Logische Programmierung 2-4

lose Kopplung 2-22

Lésung-Sprache 4-12

LSP Siehe Liskovsches
Substitutionsprinzip

Mehrfachvererbungen 3-6
Meisterregel 11-3, 12-9
Meisterschaft 11-3
Merkmale
extrinsisch 1-9
intrinsisch 1-9
Methode 5-3
Methodenargumente 5-18
Metrik 8-3
Missverstandliche Namen 4-10
Mix-In 3-11, 4-6
Monade 5-19
Monadische Methoden 5-19
Monte Carlo 9-13
Moore’s Law 9-3
Muttersprache 4-3
Mutual Exclusion 9-10

N

Nachrichten 2-15

Name 4-3

Nebenlaufigkeit 9-3
Nicht-Funktionalen Anforderungen 1-4
Niladische Methoden 5-18

NOC Siehe Number of Children

Non commenting source statements 3-20
Non Commenting Source Statements 8-6
NRV Siehe Number of Rule Violations
Number of Children 8-7

Number of Rule Violations 8-10
Nutzer-Sicht 1-3

o)

Oberklasse 2-12

Objektorientierte Analyse 2-3
Objektorientierte Programmierung 2-5
Objektorientiertes Design 2-3
Objektorientierung 2-3

Observer 4-12

OCP Siehe Open-Closed-Principle
OOA Siehe Objektorientierte Analyse
OOD Siehe Objektorientiertes Design
Open-Closed-Principle 3-24, 5-7
Operation 5-3

Operationen 2-8

Optimierung 10-3
Optimierungsdreieck 10-5
Optimierungsprozess 10-9
Optimierungspyramide 10-7
Optische Verwechslung 4-14

P

Package 2-14

Parallele Schnittstellen-Hierarchien 3-14
Performance 9-4, 10-3

Persistenz 2-15

Polyade 5-20

Polyadische Methoden 5-20
Polymorphie 2-12, 2-13, 3-4, 4-5, 5-3
Portierbarkeit 1-5

Prefix 4-9

Private 2-14

Producer-Consumer 9-11

Produkt-Qualitat Siehe Softwarequalitat,
extern

Professioneller Code 1-3
Programmierer-Sicht 1-5

1.0.0210 /9033

© Integrata AG IDX-3

IDX

Gesamtindex

Programmierrichtlinien 4-14
Projektrichtlinien 4-4

Protected 2-14

Prototypen 2-7

Prozedur 5-3

Prozedurale Programmierung 2-3
Public 2-14

Q

Qualitat 1-3

R

Race Condition 9-10
Reader-Writer 9-11
Read-Write-Problem 9-6
Read-Write-Zugriffe 9-7
Rechtliche Hinweise 6-5
Rechtzeitigkeit 10-3
Redundanzen 6-9
Refactoring 8-3, 8-10
RegelverstéBe 6-6
Rekursion 5-25
Response for a Class 8-8
RFC Siehe Response for a Class
Robustheit 1-4

Routine 5-3

Rubrik 7-10
Rickgabewert 4-8

S

Schlagzeile 7-6
Schlammzone 3-27
Schleifenzahler 4-8
Schnittstelle 3-8

Fahigkeits- 3-10

Hierarchie - 3-8

Querschnitt 3-10
Schnittstellen

Client- 3-15

Hierarchie- 4-5
Schnittstellenkopplung 2-22
Schnittstellen-Methode 5-4
Schreibfehler 4-11

Seiteneffekt 5-3, 5-24
Separation of Concerns 5-15
Setter 2-18
Short-Circuit-Operator 8-5
Sichtbarkeiten 2-14, 2-16
Signatur 5-4
Single-Repsonsibility-Principle 5-15
Single-Responsibility-Principle 3-23, 4-5
Single-Responsiblity-Principle 9-8
Skalierbarkeit 10-3
Slang 4-17
Softwarequalitat

extern 1-4

intern 1-5
SOLID 3-28
Sonnenflecken 9-5

Sourcecode-Qualitdt Siehe
Softwarequalitat, intern

Sourcecode-Verwaltung 7-3, 7-10
Spezialisierung Siehe Vererbung

SRP Siehe Single-Responsibility-Principle
Starre 1-10

Statische Analyse Tools 8-10
Stepdown-Regel 5-17, 5-26
Strategy-Pattern 3-25

Style-Guide 4-19

Suffix 4-9

T

Template-Methode 5-10
Template-Pattern 5-8
Testabdeckung 8-11
Testbarkeit 1-5

Testfélle 6-13
Textrauschen 4-11
Thread starvation 9-10
TODO 5-7,6-12

TO-Satz 5-16

Trade-Off Optimierung 10-5
Trait 3-13

Transformator 5-19
Triade 5-20

Triadische Methoden 5-20

IDX-4

© Integrata AG 1.0.0210/9033

Gesamtindex IDX
U virtuelle Felder 2-20
UML Siehe 2.3.1 Unified Modeli Vision 516
Language oo Visions-Prinzip 3-22
UML-Sicht VML Siehe Violations of Metrics Limits

Implementierung 2-6

Konzeptionell 2-6

Spezifikation 2-6
Unbeweglichkeit 1-10
Undurchsichtigkeit 1-11
Ungarische Notation 4-16
Unified Modeling Language 2-6
Unndtige Komplexitat 1-11
Unnétige Wiederholungen 1-11
Unterstreichungen 6-7
Untertitel 7-6
Unveréanderliche Objekte 9-7

\'

Verantwortlichkeit 3-20
Vererbung 2-12, 3-4, 5-7
Verhalten 2-5

Verstandlichkeit 1-5

Vertrag 2-17

Violations of Metrics Limits 8-10

w

Wartezeiten 9-3
Wartungsfreundlichkeit 1-5
Weighted Methods per Class 8-7
White-Box-Tests 2-18
Wiederverwendbarkeit 1-5

WMC Siehe 8.3.1 Weighted Methods per
Class

Wortpaar 4-13
Wortspiel 4-17

Z

Zahflussigkeit 1-11
Zeitungsartikel 7-6
Zeitungsmetapher 7-6, 7-9
Zerbrechlichkeit 1-10
Zugriffsmethode 2-18
Zustand 2-5
Zuverlassigkeit 1-4

1.0.0210 /9033

© Integrata AG IDX-5

IDX Gesamtindex

IDX-6 © Integrata AG 1.0.0210 /9033

