

Clean Code -
Professionelle Codeerstellung und Wartung

1.0.0210 / 9033 © Integrata AG IHV-1

Gesamtinhaltsverzeichnis

0 Über diese Unterlage .. 0-3

0.1 Diese Unterlage und der Kurs .. 0-3

0.2 Gliederung.. 0-3

0.3 Alternativen .. 0-3

0.4 Regeln .. 0-4

0.5 Technik... 0-4

1 Was ist Qualität?... 1-3

1.1 Einleitung.. 1-3

1.2 Professioneller Code .. 1-3

1.2.1 Die Nutzer-Sicht... 1-3

1.2.2 Die „Hacker“-Sicht.. 1-4

1.2.3 Die Programmierer-Sicht ... 1-5

1.2.4 Die betriebswirtschaftliche Sicht .. 1-6

1.2.5 Die Auftraggeber-Sicht... 1-6

1.2.6 Zusammenhänge zwischen Merkmalen............................. 1-6

1.3 Extrinsische und Intrinsische Merkmale ... 1-9

1.4 „Code Smells“ – Anzeichen für schlechten Code 1-10

1.4.1 Starre ... 1-10

1.4.2 Zerbrechlichkeit ... 1-10

1.4.3 Unbeweglichkeit... 1-10

1.4.4 Zähflüssigkeit ... 1-11

1.4.5 Unnötige Komplexität... 1-11

1.4.6 Unnötige Wiederholungen ... 1-11

1.4.7 Undurchsichtigkeit ... 1-11

1.5 Was ist professioneller Code?.. 1-12

2 Objektorientierte Programmierung.. 2-3

2.1 Einleitung.. 2-3

2.2 Arten der Programmierung ... 2-3

2.2.1 Prozedurale Programmierung.. 2-3

2.2.2 Funktionale Programmierung... 2-3

2.2.3 Logische Programmierung... 2-4

2.2.4 Objektorientierte Programmierung..................................... 2-5

IHV Gesamtinhaltsverzeichnis

IHV-2 © Integrata AG 1.0.0210 / 9033

2.2.5 Mischformen .. 2-5

2.3 Grundsätze objektorientierter Programmierung.............................. 2-6

2.3.1 Unified Modeling Language (UML) 2-6

2.3.2 Die Holper-Regel ... 2-6

2.3.3 Abstraktion... 2-7

2.3.4 Klassen .. 2-7

2.3.5 Komposition und Aggregation.. 2-8

2.3.6 Assoziation .. 2-10

2.3.7 Komponenten .. 2-11

2.3.8 Vererbung .. 2-12

2.3.9 Polymorphie... 2-13

2.3.10 Sichtbarkeiten .. 2-14

2.3.11 Persistenz .. 2-15

2.3.12 Nachrichten.. 2-15

2.4 Die drei „K“ der Objektorientierung... 2-16

2.4.1 Kapselung (encapsulation) .. 2-16

2.4.2 Kopplung (coupling) ... 2-21

2.4.3 Kohäsion (cohesion) .. 2-24

2.5 Zusammenfassung... 2-26

3 Professionelle Klassen und Objekte ... 3-3

3.1 Einleitung.. 3-3

3.2 Klassenhierarchien ... 3-3

3.2.1 Das Liskovsche Substitutionsprinzip (LSP)........................ 3-5

3.2.2 Die Holper-Regel ... 3-5

3.2.3 Mehrfachvererbungen.. 3-6

3.3 Schnittstellen .. 3-8

3.3.1 Hierarchieschnittstellen.. 3-8

3.3.2 Fähigkeitsschnittstellen.. 3-10

3.3.3 Mix-Ins ... 3-11

3.3.4 Parallele Schnittstellen-Hierarchien 3-14

3.3.5 Client-Schnittstellen ... 3-15

3.3.6 Das Schnittstellen-Abgrenzungs-Prinzip
(Interface-Segregation-Principle ISP) 3-15

3.4 Klassengrößen ... 3-20

3.4.1 Das Visions-Prinzip.. 3-22

3.4.2 Das Einzelne-Verantwortlichkeits-Prinzip
(Single-Responsibility-Principle – SRP) 3-23

3.5 Änderungen ermöglichen ... 3-24

Gesamtinhaltsverzeichnis IHV

1.0.0210 / 9033 © Integrata AG IHV-3

3.5.1 Das Offen-Gesperrt-Prinzip
(Open-Closed-Principle – OCP)....................................... 3-24

3.5.2 Das Prinzip der umgekehrten Abhängigkeiten
(Dependency-Inversion-Principle – DIP).......................... 3-26

3.6 Zusammenfassung ... 3-28

4 Namen.. 4-3

4.1 Einleitung.. 4-3

4.2 Welche Sprache? ... 4-3

4.3 Bedeutungsvolle Namen .. 4-4

4.3.1 Klassen .. 4-5

4.3.2 Abstrakte Klassen.. 4-5

4.3.3 Interfaces ... 4-6

4.3.4 Methoden... 4-6

4.3.5 Konstruktoren .. 4-7

4.3.6 Namen und Kontexte ... 4-8

4.3.7 Besondere Namen... 4-8

4.3.8 Missverständliche Namen.. 4-10

4.3.9 Textrauschen ... 4-11

4.3.10 Domänen-Sprache vs. Lösung-Sprache 4-12

4.3.11 Ein Konzept, ein Wort .. 4-12

4.3.12 Verwandte Konzepte.. 4-13

4.4 Namen und ihre Form... 4-14

4.4.1 Groß- und Kleinschreibung .. 4-14

4.4.2 Optische Verwechslungen ... 4-14

4.4.3 Aussprechbare Namen .. 4-15

4.4.4 Typ- und Kontextbezeichner (encodings) 4-16

4.4.5 Wortspiele und „Slang“ .. 4-17

4.5 Vorgehen.. 4-18

4.5.1 Ändern von Namen.. 4-18

4.5.2 Der Style-Guide ... 4-19

4.6 Zusammenfassung ... 4-20

5 Methoden ... 5-3

5.1 Einleitung.. 5-3

5.1.1 Was ist eine Methode? .. 5-3

5.2 Form... 5-4

5.2.1 Länge... 5-4

5.2.2 Blockgrößen... 5-11

5.2.3 Namen ... 5-13

5.3 Inhalt... 5-15

IHV Gesamtinhaltsverzeichnis

IHV-4 © Integrata AG 1.0.0210 / 9033

5.3.1 Eine Aufgabe ... 5-15

5.3.2 Die Vision... 5-16

5.3.3 Abstraktionsebenen ... 5-16

5.3.4 Die Stepdown-Regel .. 5-17

5.4 Argumente.. 5-18

5.4.1 Niladische Methoden ... 5-18

5.4.2 Monadische Methoden... 5-19

5.4.3 Dyadische Methoden ... 5-19

5.4.4 Triadische Methoden ... 5-20

5.4.5 Größere (Polyadische) Methoden.................................... 5-20

5.4.6 Flags .. 5-21

5.4.7 Ausgabe Parameter ... 5-22

5.4.8 Argument-Objekte.. 5-23

5.5 Stil .. 5-24

5.5.1 Seiteneffekte.. 5-24

5.5.2 Befehl oder Abfrage (Command Query Separation) 5-24

5.5.3 Mehrere Exit-Punkte .. 5-25

5.5.4 Rekursionen... 5-25

5.6 Zusammenfassung... 5-27

6 Kommentare und Dokumentation.. 6-3

6.1 Einleitung.. 6-3

6.1.1 Lesbarer Code ... 6-3

6.2 Gute Kommentare .. 6-5

6.2.1 Rechtliche Hinweise... 6-5

6.2.2 Klarstellungen .. 6-5

6.2.3 Absichtserklärungen .. 6-6

6.2.4 Design Patterns ... 6-6

6.2.5 Regelverstöße ... 6-6

6.2.6 Unterstreichungen ... 6-7

6.2.7 Formale Kommentare .. 6-7

6.3 Schlechte Kommentare .. 6-9

6.3.1 Unverständliche Kommentare.. 6-9

6.3.2 Redundanzen .. 6-9

6.3.3 Forcierte Kommentare ... 6-10

6.3.4 Codehistorien... 6-10

6.3.5 Klammer-Kommentare... 6-11

6.3.6 Auskommentierter Code .. 6-11

6.3.7 Informationsüberfluss... 6-12

6.3.8 TODOs... 6-12

Gesamtinhaltsverzeichnis IHV

1.0.0210 / 9033 © Integrata AG IHV-5

6.3.9 Nicht-öffentliche formale Kommentare............................. 6-12

6.4 Testfälle als Dokumentation ... 6-13

6.5 Zusammenfassung ... 6-14

7 Code-Formatierung... 7-3

7.1 Einleitung.. 7-3

7.2 Warum Formatierung.. 7-3

7.2.1 Automatisierte Formatierung.. 7-3

7.2.2 Sourcecode als Kommunikation .. 7-5

7.3 Die Zeitungsmetapher .. 7-6

7.3.1 Schlagzeile .. 7-6

7.3.2 Untertitel .. 7-6

7.3.3 Der Einstieg / Lead .. 7-6

7.3.4 Absätze.. 7-6

7.3.5 Reihenfolgen.. 7-9

7.3.6 Die Rubrik .. 7-10

7.4 Weitere Formatierungsregeln ... 7-10

7.4.1 Breite und Höhe... 7-10

7.4.2 Einrückungen... 7-11

7.4.3 Ausnahmen.. 7-11

7.5 Team Rules! ... 7-12

7.6 Zusammenfassung ... 7-13

8 Metriken ... 8-3

8.1 Einleitung.. 8-3

8.1.1 Code Entropy... 8-3

8.1.2 Die Zeitachse... 8-3

8.2 Basis Metriken.. 8-4

8.2.1 Cyclomatic Complexity (CC) .. 8-4

8.2.2 Lines of Code (LOC).. 8-5

8.2.3 Non Commenting Source Statements (NCSS) 8-6

8.3 Objektorientierte Metriken .. 8-7

8.3.1 Weighted Methods per Class (WMC)................................. 8-7

8.3.2 Depth of Inheritance Tree (DIT) ... 8-7

8.3.3 Number of Children (NOC) .. 8-7

8.3.4 Coupling between Object Classes (CBO) 8-7

8.3.5 Response for a Class (RFC).. 8-8

8.3.6 Lack of Cohesion in Methods (LCOM)............................... 8-8

8.3.7 Bewertung.. 8-9

8.4 Statische Analyse Tools (Bug Finder) .. 8-10

IHV Gesamtinhaltsverzeichnis

IHV-6 © Integrata AG 1.0.0210 / 9033

8.5 Laufzeit Metriken .. 8-11

8.5.1 Testabdeckung .. 8-11

8.5.2 Builddauer.. 8-11

8.6 Zusammenfassung... 8-12

9 Nebenläufigkeit ... 9-3

9.1 Einleitung.. 9-3

9.1.1 Warum brauchen wir Nebenläufigkeit? 9-3

9.1.2 Mythen und Missverständnisse.. 9-4

9.1.3 Wahrheiten .. 9-5

9.1.4 Die Herausforderung.. 9-5

9.2 Nebenläufige Prinzipien.. 9-7

9.2.1 Nebenläufig oder nicht ... 9-7

9.2.2 Atomare Zugriffe .. 9-7

9.2.3 Das Single-Responsiblity-Principle 9-8

9.2.4 Begrenzte Schreibzugriffe.. 9-8

9.2.5 Daten-Kopien... 9-8

9.2.6 Unabhängige Threads ... 9-9

9.3 Begriffe ... 9-10

9.4 Ablaufmodelle... 9-11

9.4.1 Producer-Consumer .. 9-11

9.4.2 Reader-Writer .. 9-11

9.4.3 Dining Philosophers... 9-12

9.5 Bibliotheken.. 9-13

9.6 Tests... 9-13

9.6.1 Monte Carlo ... 9-13

9.6.2 Unerwartete Situationen sind potentielle
Threading-Probleme .. 9-13

9.6.3 Threading und nicht-Threading Tests trennen 9-13

9.6.4 Variable Threadpools... 9-13

9.7 Zusammenfassung... 9-14

10 Optimierung... 10-3

10.1 Einleitung.. 10-3

10.1.1 Was ist Performance?.. 10-3

10.1.2 Gefühlte Performance.. 10-4

10.1.3 Wann sollte optimiert werden?... 10-4

10.2 Das Optimierungsdreieck ... 10-5

10.3 Optimierungsprozess.. 10-9

10.4 Zusammenfassung... 10-12

Gesamtinhaltsverzeichnis IHV

1.0.0210 / 9033 © Integrata AG IHV-7

11 Meisterschaft... 11-3

12 Anhang – Regeln... 12-3

12.1 Kapitel 1 – Was ist Qualität .. 12-3

12.2 Kapitel 2 – Objektorientierte Programmierung.............................. 12-3

12.3 Kapitel 3 – Professionelle Klassen und Objekte 12-4

12.4 Kapitel 4 – Namen.. 12-5

12.5 Kapitel 5 – Methoden.. 12-7

12.6 Kapitel 6 – Kommentare und Dokumentation 12-8

12.7 Kapitel 7 – Code-Formatierungen... 12-8

12.8 Kapitel 8 – Metriken.. 12-9

12.9 Kapitel 9 – Nebenläufigkeit ... 12-9

12.10 Kapitel 10 – Optimierung .. 12-9

12.11 Kapitel 11 – Meisterschaft .. 12-9

13 Literaturempfehlungen ... 13-3

Gesamtindex.. IDX-1

IHV Gesamtinhaltsverzeichnis

IHV-8 © Integrata AG 1.0.0210 / 9033

1.0.0210 / 9033 © Integrata AG 0-1

Über diese Unterlage

0.1 Diese Unterlage und der Kurs .. 0-3

0.2 Gliederung.. 0-3

0.3 Alternativen .. 0-3

0.4 Regeln .. 0-4

0.5 Technik... 0-4

0 Über diese Unterlage

0-2 © Integrata AG 1.0.0210 / 9033

Über diese Unterlage 0

1.0.0210 / 9033 © Integrata AG 0-3

0 Über diese Unterlage

0.1 Diese Unterlage und der Kurs

Diese Unterlage ist als Nachschlagewerk zum Thema Objektorientierte
Programmierung gedacht. Sie ist allerdings nicht unbedingt als direkter
Leitfaden zur Verfolgung des Kurses ausgelegt, sondern eher zu des-
sen Nacharbeitung. Insbesondere sind die Schwerpunkte des Kurses
von den Interessen der Teilnehmer abhängig, was diese Unterlage
nicht widerspiegeln kann.

0.2 Gliederung

Diese Unterlage teilt sich grob in fünf Teile.

Zunächst werden wir uns in der Einleitung mit den Grundsätzen von
Qualität beschäftigen und unser Ziele formulieren.

Im zweiten Teil wiederholen wir objektorientierte Grundsätze, die wir mit
Prinzipien des guten OO-Designs erweitern wollen.

Der dritte Teil steht ganz im Zeichen des lesbaren Codes. Wir werden
hier Grundsätze definieren, wie wir unseren Quellcode selbst besser
lesbar gestalten können, anhand von Kriterien wie Namensvergabe,
Kommentaren, Funktionskomposition etc. Der Inhalt dieses Teils ist
teilweise rein formal, strahlt aber teilweise auch sehr deutlich in das
Design herein.

Im vierten Teil wenden wir uns einigen ausgesuchten, speziellen The-
men wie Optimierung und Nebenläufigkeit zu.

Der fünfte Teil schließlich stellt den Anhang dar. Hier finden sich Indizes
und Verweise.

0.3 Alternativen

Unterlage und Kurs versuchen, wo immer es sinnvoll erscheint, mögli-
che Alternativen aufzuzeigen. Grundsätzlich verfolgt diese Unterlage al-
lerdings eine konkrete Meinung über sinnvolle und unsinnige Vorge-
hensweise und spricht konkrete Empfehlungen für die Praxis aus. Diese
spiegeln zwangsläufig die Meinung des Autors wieder, begründen sich
aber auf umfangreiche, konkrete und praktische Erfahrungen. Wo im-
mer Zeit und Umfang es rechtfertigen, wird diese Begründung auch in
der Unterlage geliefert.

0 Über diese Unterlage

0-4 © Integrata AG 1.0.0210 / 9033

0.4 Regeln

Über diese Unterlage verstreut findet sich eine Reihe von fundamenta-
len Regeln. Diese sind im Anhang noch einmal zusammengefasst.

0.5 Technik

Die Programmbeispiele in dieser Unterlage sind größtenteils in Java
verfasst, die Konzepte gelten aber grundsätzlich für alle objektorientier-
ten Programmiersprachen.

1.0.0210 / 9033 © Integrata AG 1-1

Was ist Qualität?

1.1 Einleitung.. 1-3

1.2 Professioneller Code .. 1-3

1.2.1 Die Nutzer-Sicht... 1-3

1.2.2 Die „Hacker“-Sicht.. 1-4

1.2.3 Die Programmierer-Sicht ... 1-5

1.2.4 Die betriebswirtschaftliche Sicht .. 1-6

1.2.5 Die Auftraggeber-Sicht... 1-6

1.2.6 Zusammenhänge zwischen Merkmalen............................. 1-6

1.3 Extrinsische und Intrinsische Merkmale ... 1-9

1.4 „Code Smells“ – Anzeichen für schlechten Code 1-10

1.4.1 Starre ... 1-10

1.4.2 Zerbrechlichkeit ... 1-10

1.4.3 Unbeweglichkeit... 1-10

1.4.4 Zähflüssigkeit ... 1-11

1.4.5 Unnötige Komplexität... 1-11

1.4.6 Unnötige Wiederholungen ... 1-11

1.4.7 Undurchsichtigkeit ... 1-11

1.5 Was ist professioneller Code?.. 1-12

1 Was ist Qualität?

1-2 © Integrata AG 1.0.0210 / 9033

Was ist Qualität? 1

1.0.0210 / 9033 © Integrata AG 1-3

1 Was ist Qualität?

1.1 Einleitung

Im folgenden Kapitel wollen wir einige Grundlagen definieren. Zunächst
beschäftigen wir uns mit dem Ziel, das wir erreichen wollen und definie-
ren dazu einige Begriffe aus unterschiedlicher Sicht. Weiterhin beschäf-
tigen wir uns mit dem Softwareentwicklungsprozess und der Einord-
nung des eigentlichen Programmierens darin.

1.2 Professioneller Code

Unser anspruchsvolles Ziel lautet, professionellen Code zu erstellen.
Um es erreichen zu können, müssen wir zunächst natürlich erst einmal
definieren, was professioneller Code überhaupt ist. Die Meinungen hie-
rüber gehen wie zu erwarten deutlich auseinander.

Um bei Definition einen Schritt weiter zu kommen, wollen wir zunächst
den Begriff „Professionell“ durch eine adäquate Alternative ersetzen:
„qualitativ hochwertig“. Wir wollen also eine möglichst hohe Qualität er-
reichen. Der Begriff Qualität scheint zumindest im ersten Ansatz besser
zu definieren zu sein.

Allerdings gibt es natürlich auch bei dem Begriff Qualität unterschiedli-
che Sichtweisen. Wir wollen im Folgenden die wichtigsten davon näher
betrachten und uns diejenigen heraussuchen, die uns am geeignetsten
erscheinen, um unser Ziel zu formulieren.

1.2.1 Die Nutzer-Sicht

Für einen Nutzer ist natürlich in erster Linien die Funktionsfähigkeit des
Programmes selbst entscheidend. Weiterhin ist relevant, wie benutzer-
freundlich oder effizient das Programm ist. Steve McConnell hat die für
den Nutzer wichtigen Kriterien in seinem Buch „Code Complete“ als
„Externe Softwarequalitäts-Merkmale“ definiert:

Korrektheit: Der Grad der Fehlerfreiheit eines System (bezogen auf
Spezifikation, Entwurf und Implementierung). Wie korrekt erfüllt das
Programm seine Aufgabe?

Benutzerfreundlichkeit: Wie leicht fällt es dem Benutzer, das Sys-
tem zu erlernen und zu benutzen?

Effizienz: Wie gut werden vorhandene Ressourcen genutzt? Wel-
chen Speicher/Leistungsbedarf besitzt das Programm? Wie schnell
ist es?

1 Was ist Qualität?

1-4 © Integrata AG 1.0.0210 / 9033

Zuverlässigkeit: Wie groß ist die Wahrscheinlichkeit, dass das Pro-
gramm unter normalen, definierten Bedingungen ausfällt? Wie hoch
ist die damit verbundene Ausfallzeit?

Integrität: Wie sicher und stabil sind die Daten? Sind die Daten im-
mer konsistent (Transaktionalität, Nebenläufigkeit)? Existieren Maß-
nahmen, um einen unauthorisierten Zugriff auf die Daten zu verhin-
dern?

Anpassungsfähigkeit: Wie flexibel kann das Programm ohne Ände-
rung an die Umgebung oder andere Programme angepasst werden
(= Konfigurierbarkeit)

Genauigkeit: Wie genau sind die Ergebnisse (nicht: sind die Ergeb-
nisse richtig)? Die Auflösung der Ergebnisse.

Robustheit: Wie geht das Programm mit externen Fehlersituationen
um (Netzwerkausfall, Fehleingaben)? Wie häufig führen diese zu ei-
nem Ausfall des Programms?

Natürlich gibt es bei diesen Merkmalen einige, die sich nur im Detail un-
terscheiden.

Wir werden externe Softwarequalität im Weiteren auch als Produkt-
Qualität bezeichnen. Wo hier in der Entwicklung die Schwerpunkte lie-
gen, wird durch die Anforderungen beschrieben – Korrektheit ist natür-
lich immer ein entscheidendes Kriterium (also die Funktionalität), die
anderen Merkmale werden durch die sogenannten Nicht-Funktionalen
Anforderungen (NFAs) beschrieben.

1.2.2 Die „Hacker“-Sicht

Eine Sicht, die für uns nicht weiter von Bedeutung ist, aber der Voll-
ständigkeit halber dennoch erwähnt werden sollte. Diese Sichtweise
beschreibt ein Programm bzw. ein Stück Software dann als professio-
nell1, wenn das Problem möglichst „innovativ“ (soll heißen: möglichst
überraschend) gelöst wurde. Die Hacker-Sicht dient dazu, die eigenen
Fähigkeiten unter Beweis zu stellen oder sich für eine Firma unabding-
bar zu machen.

Leider wird die hieraus entstehende Herangehensweise immer noch
häufig in der Praxis beobachtet.

1 Aber nicht unbedingt als qualitativ hochwertig

Was ist Qualität? 1

1.0.0210 / 9033 © Integrata AG 1-5

1.2.3 Die Programmierer-Sicht

Die Programmierer-Sicht misst die Qualität eines Programmes anhand
von Kriterien, die für den Nutzer nicht direkt sichtbar sind, wie bei-
spielsweise Lesbarkeit des Quellcodes, und deshalb analog zu den ex-
ternen als interne Qualitätsmerkmale bezeichnet werden. Ein anderer
gängigerer Begriff ist „Sourcecode-Qualität“2. Grob betrachtet beein-
flussen diese Merkmale alle den Aufwand, den ein Programmierer zu-
künftig erbringen muss, um bestimmte Ziele zu erreichen. Die wichtigs-
ten Merkmale sind:

Wartungsfreundlichkeit: Wie leicht kann der Code angepasst wer-
den, um Fehler zu korrigieren, die Leistungsfähigkeit zu erhöhen
oder Fähigkeiten geändert bzw. hinzugefügt werden?

Flexibilität: Wie leicht lässt sich das Programm an neue Situationen
anpassen?

Portierbarkeit: Wie viel Arbeit muss aufgewendet werden, um das
Programm in einer anderen Umgebung einzusetzen?

Wiederverwendbarkeit: Können Teile des Codes in anderen Pro-
grammen/Systemen verwendet werden?3

Lesbarkeit: Wie viel Anstrengung muss ein Entwickler aufbringen,
um den Code zu verstehen? Wie viel Fachwissen muss dieser dazu
mitbringen?

Testbarkeit: Wie gut lässt sich das Programm bzw. einzelne Kom-
ponenten (automatisiert) testen?

Verständlichkeit: Wie leicht ist das Programm an sich verständlich –
also wie die Komponenten zusammenarbeiten, bzw. „was das Pro-
gramm macht“?

Bei den internen Merkmalen gibt es ebenso wie bei den externen natür-
lich Überschneidungen bzw. die Merkmale selbst unterscheiden sich
teilweise nur in Nuancen. Auch wirken einige Merkmale sicher in den
anderen Bereich hinein. Mit der Frage, welche Merkmale wie zusam-
men hängen werden wir uns im Folgenden noch ein wenig ausführli-
chen beschäftigen.

Wie wir dabei auch sehen werden, nehmen zwei Merkmale, nämlich
Flexibilität und Portierbarkeit eine Sonderstellung ein.

2 Eine weitere, etwas verkürzende Bezeichnung ist „Les- und Wartbarkeit“. Hierbei

Werden allerdings einige Punkte nicht gewürdigt.
3 Das heißt nicht, dass der Code jemals in anderen Systemen verwendet wird. Den-

noch ist das Maß der Wiederverwendbarkeit ein deutlicher Prüfstein für die Source-
code-Qualität

1 Was ist Qualität?

1-6 © Integrata AG 1.0.0210 / 9033

1.2.4 Die betriebswirtschaftliche Sicht

Die betriebswirtschaftliche Sichtweise verfolgt eine gänzlich andere
Strategie. Qualität bezeichnet hierbei die Kosten die zum einen für die
Erstellung eines Programmes, zum anderen aber auch im weiteren Le-
ben der Software für Wartung, Pflege und Erweiterung anfallen. Ein aus
betriebswirtschaftlicher Sicht hochwertiges Programm kostet also in
Entwicklung und Pflege möglichst wenig.

Traditionell kostet die Wartung eines Programmes ein Vielfaches der
Entwicklungskosten, weshalb die betriebswirtschaftliche Sicht natürlich
Herangehensweisen favorisiert (bzw. favorisieren sollte), die möglichst
den Wartungsaufwand reduzieren.

Es gilt der Grundsatz: „Gerade so viel nötig“, was die externen Merkma-
le angeht. Also nicht maximale Effizienz oder Benutzerfreundlichkeit,
sondern eben nur so viel, wie gefordert wurde (anhand des Pflichten-
heftes bzw. anderer Anforderungsdokumente).

Man könnte die betriebswirtschaftliche Sicht auch als Zukunftsorientier-
te Sicht betrachten.

Natürlich soll nicht unerwähnt bleiben, dass zum einen die Weitsicht für
diese Sicht in der Praxis fehlt und zum anderen, dass in besonderen
Fällen die Gewichtung aus betriebswirtschaftlicher Sicht gänzlich an-
ders sein kann. Das ist zum Beispiel der Fall, wenn das Produkt explizit
nicht gepflegt wird, sondern lediglich als Wegwerfprodukt in einem klar
definierten Rahmen genutzt wird (zum Beispiel zu Konvertierung eines
Datenbestandes): Allerdings hat die Erfahrung immer wieder gezeigt,
dass auch Code, der nie für eine längere Nutzung gedacht war, doch
über Jahre hinweg nicht nur genutzt, sondern eben auch gepflegt und
weiter entwickelt wird.

1.2.5 Die Auftraggeber-Sicht

Die vollkommene Umkehrung der betriebswirtschaftlichen Sicht ist die
Auftraggeber-Sicht. Für den Auftraggeber (nicht den späteren Nutzer)
ist es weniger relevant, wie gut eine Software tatsächlich funktioniert,
sondern dass sie die geforderten Kriterien erfüllt. Für diese Sichtweise
sind die internen Merkmale nebensächlich. Stattdessen ist ein Maßgeb-
liches Kriterium für Qualität (bzw. hier natürlich auch eher von Professi-
onalität), wie lange die Auftragserfüllung dauert.

1.2.6 Zusammenhänge zwischen Merkmalen

Natürlich kann man die oben erwähnten Merkmale nicht ohne weiteres
von einander losgelöst betrachten. So kann sich z.B. eine Erhöhung der
Genauigkeit eines Programmes negativ auf die Effizienz auswirken.
Ebenso wirken sich insbesondere interne Merkmale auf die externen
aus. Die folgende Tabelle stellt die Zusammenhänge zwischen den
Merkmalen exemplarisch dar:

Was ist Qualität? 1

1.0.0210 / 9033 © Integrata AG 1-7

K
or

re
kt

he
it

B
en

ut
ze

rf
re

un
dl

ic
hk

ei
t

E
ffi

zi
en

z

Z
uv

er
lä

ss
ig

ke
it

In
te

gr
itä

t

A
np

as
su

ng
sf

äh
ig

ke
it

G
en

au
ig

ke
it

R
ob

us
th

ei
t

W
a

rt
u

n
g

s
fr

e
u

n
d

lic
h
k
e

it

F
le

x
ib

ili
tä

t

P
o

rt
ie

rb
a

rk
e
it

W
ie

d
e

rv
e

rw
e

n
d

b
a

rk
e

it

L
e

s
b

a
rk

e
it

T
e

s
tb

a
rk

e
it

V
e

rs
tä

n
d

lic
h
k
e

it

Korrektheit + + + - - +
Benutzerfreundlich-
keit + + - - + - -
Effizienz - - - - - - - - -
Zuverlässigkeit + + + - -
Integrität - + -
Anpassungsfähigkeit - + + -
Genauigkeit + - + - -
Robustheit - + - - - + - + -
Wartungsfreundlich-
keit + + + + + + +
Flexibilität - - - + - - + - - -
Portierbarkeit - - - + +
Wiederverwendbar-
keit + + + + + + + + + +
Lesbarkeit + + + + + + +
Testbarkeit + + + + + + + +
Verständlichkeit + + + +

Das kann natürlich nur eine exemplarische Aufstellung sein, die genau-
en Einflüsse unterscheiden sich von Projekte zu Projekt. Wir wollen
aber dennoch einen Blick auf einige wesentliche Erkenntnisse werfen
und daraus Regeln ableiten.

Regel 1-1: eine maximale, externe Qualität ist nicht erreichbar,
Schwerpunkte müssen anhand klarer Anforderungen
gestellt werden.

Verbesserungen der Benutzerfreundlichkeit ziehen in der Regel eine
Verschlechterung der Sourcecode-Qualität nach sich. Das liegt daran,
dass eine benutzerfreundlicher Oberfläche in der Regel viele verschie-
dene, intelligente Möglichkeiten anbietet, um dasselbe Ziel zu erreichen

1 Was ist Qualität?

1-8 © Integrata AG 1.0.0210 / 9033

und damit den Code mit sehr vielen Fallunterscheidungen anreichert,
was sich insbesondere deutlich negativ auf die Les- und Testbarkeit
auswirkt.

Regel 1-2: Verbesserungen der Benutzerfreundlichkeit sollten
wohl überlegt sind und nur bei begründeten Fällen
(Nutzerforderung!) über ein übliches Maß hinaus ge-
hen.4

Viele Verbesserungen an den externen Merkmalen bewirken potentiell
eine Verschlechterung der Lesbarkeit, was sich ggf. wieder negativ auf
andere Punkte auswirkt.

Regel 1-3: Eine Betonung eines externen Merkmal muss durch
Nicht-funktionale Anforderungen (NFAs) begründet
sein.

Verbesserungen an Wartungsfreundlichkeit, Wiederverwendbarkeit,
Lesbarkeit und Testbarkeit (und in geringerem Maße auch Verständ-
lichkeit) haben in der Regel positive Auswirkungen auf eine Vielzahl
anderer (insbesondere interner, aber auch externer) Merkmale. Gleich-
zeitig ziehen diese Verbesserungen keine negativen Konsequenzen
nach sich.

Regel 1-4: Wartungsfreundlichkeit, Wiederverwendbarkeit, Les-
barkeit und Testbarkeit sollten, solange der Aufwand
vertretbar ist, so hoch wie möglich sein.

Höhere Flexibilität und höhere Effizienz bedeuten Abstriche in fast allen
anderen Bereichen.

Regel 1-5: Flexibilität und Effizienz sollten in der Entwicklung ei-
ne geringe Priorität haben.

Zusammengefasst wollen wir uns die betriebswirtschaftlich bzw. die
Programmierer-Sicht zu eigen machen. Dabei nehmen wir aber explizit
die Merkmale Flexibilität und Effizienz aus unseren Überlegungen her-
aus, da diese eben im Gegensatz zu den anderen internen Merkmalen
deutliche, negative Nebeneffekte haben.

4 Eine Multitouch-Eingabe für eine normale Eingabemaske geht (zumindest derzeit)

über das üblich Maß weit hinaus

Was ist Qualität? 1

1.0.0210 / 9033 © Integrata AG 1-9

1.3 Extrinsische und Intrinsische Merkmale

Um diese Unterscheidung auch im Sprachgebrauch deutlich zu ma-
chen, unterscheiden wir die internen Merkmale weiterhin in intrinsische
und extrinsische Merkmale. Intrinsische sind dabei diejenigen Merkma-
le, die sich gegenseitig bedingen, aber nach außen hin wenig Auswir-
kungen haben (also die eigentliche Sourcecode-Qualität), konkret: War-
tungsfreundlichkeit, Wiederverwendbarkeit, Lesbarkeit, Testbarkeit und
Verständlichkeit, die beiden extrinsischen dagegen diejenigen, die eben
eine konkrete, von außen vorgegebene Forderung erfüllen.

Die beiden extrinsischen Merkmale (Flexibilität und Portierbarkeit)
nehmen also eigentlich eine Zwitterstellung zwischen externen und in-
ternen Merkmalen ein. Zum einen könnten sie als extern betrachtet
werden, weil sie durch äußere Anforderungen begründet werden, zum
anderen handelt es sich aber um Eigenschaften, die zu allererst direkt
den Programmierer betreffen.

Der Autor hat sich entschieden, sie für diese Unterlage den internen
Merkmalen zugeteilt zu lassen, vor allem weil damit die Definition von
McConnell nicht verändert oder durch eine weitere Alternative ersetzt
wird.

1 Was ist Qualität?

1-10 © Integrata AG 1.0.0210 / 9033

1.4 „Code Smells5“ – Anzeichen für schlechten Code

Die Qualitätsmerkmale, auf die wir hinarbeiten wollen haben wir be-
sprochen. Bevor wir diese Kapitel schließen, wollen wir noch einen kur-
zen Blick auf die andere Seite werfen: auf schlechten Code und Anzei-
chen dafür.

Wer jetzt vermutet, dass wir dabei im Prinzip die Qualitätsmerkmale
umdrehen, liegt sicher richtig. Wir wollen dennoch auf einige interes-
sante Punkte näher eingehen. Und wie Frage, was die Konsequenzen
von mangelnder Qualität sind, kann uns natürlich auch helfen, unser
Auge für Qualität weiter zu schärfen.

1.4.1 Starre

Ein System ist dann starr, wenn es nur schwer oder umständlich zu
verändern ist. Das liegt in der Regel daran, dass eine Änderung viele
andere Änderungen nach sich zieht.

Ein Code Smell, den fast jeder Programmierer bereits erlebt hat. Man
bekommt einen einfachen Änderungsauftrag, schätzt seinen Aufwand
als äußerst gering ein („mach ich in einer Stunde“) und ist nachher mit
Folgeänderungen deutlich länger beschäftigt („Es war doch komplizier-
ter als gedacht“).

1.4.2 Zerbrechlichkeit

Ein System ist zerbrechlich, wenn Änderungen an einer Stelle dazu füh-
ren können, dass Bereiche nicht mehr funktionieren, die mit der geän-
derten Stelle eigentlich gar nichts zu tun haben (sollten).

In der Praxis äußert sich das so, dass eine Änderung eine Vielzahl an
kleineren und größeren Problemen nach sich zieht, deren Behebung
wiederum eine Reihe neuer Probleme mit sich bringt (die hoffentlich
wenigstens frühzeitig durch Tests erkannt werden).

Diese problematischen Programmteile neigen dazu, ein wichtiger Be-
standteil des Systems zu sein, an den sich niemand mehr herantraut.
Probleme werden dann lieber an einer ganz anderen Stelle umgangen,
als an der Wurzel behoben.

1.4.3 Unbeweglichkeit

Ein unbewegliches System lässt sich schwer in einzelne Komponenten
zerlegen, die dann in anderen Systemen wiederverwendet werden kön-
nen. Dieser Smell tritt dann auf, wenn einzelne (allgemein nützliche)

5 Ein Code Smell (übler Geruch des Codes) beschreibt ein negatives Anzeichen, dass

auf ein tieferliegendes Problem hindeutet.

Was ist Qualität? 1

1.0.0210 / 9033 © Integrata AG 1-11

Teile des Codes so eng mit den speziellen Teilen vermischt sind, dass
ein Herauslösen nur unter größter Anstrengung möglich ist.

1.4.4 Zähflüssigkeit

Ein System gilt als zähflüssig (oder einfach nur zäh), wenn es leichter
ist Dinge falsch (oder unsauber) umzusetzen (auch bekannt als
„Hacks“, als es richtig zu machen.

Je schwerer es ist, die korrekte Lösung (die das Design nicht verletzt)
umzusetzen, desto größer ist die Versuchung die schnelle Lösung zu
wählen.

Das muss sich nicht nur auf den Code selbst beziehen, auch das Um-
feld kann zähflüssig sein. Dauert ein vollständiger Build-Vorgang meh-
rere Stunden, so ist ein Entwickler versucht, nicht die Lösung zu wäh-
len, die am besten das Design umsetzt, sondern die, die am wenigsten
Kompilier-Aufwand erfordert.

1.4.5 Unnötige Komplexität

Ein ungemein häufig anzutreffender Code Smell. Er sagt aus, dass das
Design Elemente beinhaltet, die (derzeit) nicht benötigt werden und nur
deshalb aufgenommen wurden, weil man sie ja „später brauchen könn-
te“.

Der Entwickler sieht kommende Entwicklungen voraus und bereitet sich
darauf vor. Prinzipiell eine gute Sache, nur wird dabei meistens über
das Ziel hinaus geschossen. Der Schritt von der Flexibilität zur unnöti-
gen Komplexität ist ziemlich klein.

1.4.6 Unnötige Wiederholungen

Ein Verstoß gegen das uralte Prinzip der Softwareentwicklung: DRY –
Don’t repeat yourself (Wiederhole Dich nicht). Das Problem mit sich
wiederholendem Code ist, dass eine Änderung an dem kopierten Code
an jeder Stelle vorgenommen werden muss, an die der Code gesetzt
wurde – eine unnötige Anstrengung, die in der Praxis teilweise auch
nicht mehr machbar ist.

1.4.7 Undurchsichtigkeit

Das genaue Gegenteil der Lesbarkeit. Je mehr Energie ein Program-
mierer aufbringen muss, um ein Stück Code zu verstehen, je öfter er
beim Überfliegen innehalten muss, um sich eine Passage genauer an-
zuschauen, desto undurchsichtiger ist der Code.

1 Was ist Qualität?

1-12 © Integrata AG 1.0.0210 / 9033

1.5 Was ist professioneller Code?

Kehren wir also zurück zur Ausgangsfrage: „was ist professioneller Co-
de?“

Für uns ist also professioneller Code Sourcecode, der die intrinsischen
Qualitätsmerkmale (Wartungsfreundlichkeit, Wiederverwendbarkeit,
Lesbarkeit, Testbarkeit und Verständlichkeit) maximiert, aber dabei na-
türlich die erforderlichen externen Qualitätsmerkmale umsetzt.

Im weiteren Verlauf dieser Unterlage werden wir uns mit den externen
Qualitätsmerkmalen nur noch am Rande auseinandersetzen, da diese
ja maßgeblich durch die NFAs bestimmt werden. Das Ziel, dass wir ab
hier verfolgen heißt demnach, die intrinsischen Merkmale, also die Qua-
lität unseres Sourcecodes so weit wie möglich zu steigern. Jede Maß-
nahme wollen wir dabei direkt an den intrinsischen Merkmalen, die sie
beeinflusst, bewerten.

Wenn wir in Zukunft Regeln aufstellen, werden wir sie daher mit Kür-
zeln versehen, die die dazu gehörigen intrinsischen Merkmale be-
schreiben (Wart, Wied, Lesb, Test, Vers).

Tatsächlich werden wir feststellen, dass dabei Lesbarkeit einen über-
proportional hohen Stellenwert bekommt. Bei genauerer Überlegung
liegt das natürlich nahe. Um einen Code zu warten oder ihn wiederzu-
verwenden, muss er ja zwangsläufig erst gelesen und verstanden wor-
den sein.

1.0.0210 / 9033 © Integrata AG 2-1

Objektorientierte Programmierung

2.1 Einleitung.. 2-3

2.2 Arten der Programmierung ... 2-3

2.2.1 Prozedurale Programmierung.. 2-3

2.2.2 Funktionale Programmierung... 2-3

2.2.3 Logische Programmierung... 2-4

2.2.4 Objektorientierte Programmierung..................................... 2-5

2.2.5 Mischformen .. 2-5

2.3 Grundsätze objektorientierter Programmierung.............................. 2-6

2.3.1 Unified Modeling Language (UML) 2-6

2.3.2 Die Holper-Regel ... 2-6

2.3.3 Abstraktion... 2-7

2.3.4 Klassen .. 2-7

2.3.5 Komposition und Aggregation.. 2-8

2.3.6 Assoziation .. 2-10

2.3.7 Komponenten .. 2-11

2.3.8 Vererbung .. 2-12

2.3.9 Polymorphie... 2-13

2.3.10 Sichtbarkeiten .. 2-14

2.3.11 Persistenz .. 2-15

2 Objektorientierte Programmierung

2-2 © Integrata AG 1.0.0210 / 9033

2.3.12 Nachrichten.. 2-15

2.4 Die drei „K“ der Objektorientierung... 2-16

2.4.1 Kapselung (encapsulation) .. 2-16

2.4.2 Kopplung (coupling) ... 2-21

2.4.3 Kohäsion (cohesion) .. 2-24

2.5 Zusammenfassung... 2-26

Objektorientierte Programmierung 2

1.0.0210 / 9033 © Integrata AG 2-3

2 Objektorientierte Programmierung

2.1 Einleitung

In diesem Kapitel werden wir uns mit einigen Grundsätzen und Begrif-
fen beschäftigen. „Objektorientierte Programmierung“ setzt sich aus
zwei Begriffen zusammen mit der Objektorientierung und der Program-
mierung. Folgerichtig werden wir im Folgenden beide Begriffe näher be-
leuchten. Wir werden die Objektorientierung mit anderen Programmie-
rer-Techniken vergleichen und daraus erste Konsequenzen für die fol-
genden Kapitel ableiten. Naturgemäß besitzen die folgenden zwei Kapi-
tel eine starke Schnittmenge zur Objektorientierten Analyse bzw. zum
Objektorientierten Design.

2.2 Arten der Programmierung

Lässt man spezielle und nur akademisch relevante Fälle außen vor, so
können wir prinzipiell zwischen vier Programmier-Paradigmen unter-
scheiden.

2.2.1 Prozedurale Programmierung

Prozedurale Programmiersprachen stellen die „klassische“ Art zu Pro-
grammieren dar. Ein Programm besteht aus einer Reihe von Anwei-
sungen, die vom Rechner Schritt für Schritt, eine nach der anderen
ausgeführt werden. Zwischenergebnisse können in Variablen abgelegt
und mehrere Programmier-Schritte zu einem Unter-Programm (eben
einer Prozedur) zusammengefasst werden.

Diese Arbeitsweise kommt dem Rechner sehr entgegen, da sie sehr
dicht an der Funktionsweise eines Rechners selbst liegt. Damit wird der
Aufwand, aus dem Quellcode ein ausführbares Programm herzustellen,
deutlich geringer als bei den anderen Alternativen.

Typische Vertreter prozeduraler Programmiersprachen sind Basic, Co-
bol oder C.

2.2.2 Funktionale Programmierung

Funktionale Programmiersprachen, die auch als deklarativ1 bezeichnet
werden, beschreiben im Gegensatz zu prozeduralen Programmierspra-
chen nicht, wie etwas zu berechnen ist, sondern stattdessen, was zu

1 Wobei deklarative Sprachen eine Obermenge darstellt zu der auch die im Folgenden

beschriebenen, logischen Sprachen gehören.

2 Objektorientierte Programmierung

2-4 © Integrata AG 1.0.0210 / 9033

berechnen ist. Sie besitzen keinen inneren Zustand und keine Schlei-
fen-Konstrukte, sondern ein Programm besteht aus einer Reihe von
Funktionsdefinitionen, die mittels Komposition, Verzweigung und Re-
kursion zusammengesetzt werden. Ein Funktionsaufruf liefert dabei das
Ergebnis zurück, hat aber sonst keine Seiteneffekte.

Funktionale Programmierung hat einige Zeit ein Schattendasein geführt
und war schwerpunktmäßig an Universitäten interessant, erlebt aber in
letzter Zeit eine Renaissance. Das ist nicht zuletzt in der Tatsache be-
gründet, dass funktionale Programme viel leichter in eine Multi-
Threading Umgebung umzusetzen sind, als das bei prozeduralen und
objektorientierten Programmen der Fall ist. Mit der zunehmenden An-
zahl an Mehrkern-Prozessoren wird diese Art der Programmierung da-
bei immer wichtiger.2

Typische Vertreter funktionaler Programmiersprachen sind Haskell,
LISP und (als neue Sprache) Scala. Allen diesen Sprachen ist aller-
dings gemeinsam, dass sie Ansätze besitzen, die über einen reinen,
funktionalen Kern hinausgehen.

2.2.3 Logische Programmierung

Logische Programmiersprachen folgen einem gänzlich anderen Ansatz.
Ein Logik-Programm ist keine Sammlung von Anweisungen oder Funk-
tionen, sondern besteht aus einer Menge von Fakten (Axiomen) und
darauf aufbauenden Regeln. Eine Anfrage an das System ist dann die
Frage nach einer Folgerung aus Fakten und Regeln, um weitere, abge-
leitete Fakten zu generieren.

Das folgende, aus Wikipedia3 übernommene, einfache Beispiel soll das
Prinzip verdeutlichen:

Fakten:

Lucia ist die Mutter von Minna.

Lucia ist die Mutter von Klaus.

Minna ist die Mutter von Nadine.

Regel:

Falls X ist die Mutter von Y und Y ist die Mutter
von Z Dann X ist die Großmutter von Z.

Frage/Ziel:

Wer ist die Großmutter von Nadine?

Antwort des Computers, Folgerung aus den Fakten und
Regeln:

Lucia

2 Vergleiche hierzu auch das Kapitel über Nebenläufigkeit.
3 http://de.wikipedia.org/wiki/Logische_Programmierung

Objektorientierte Programmierung 2

1.0.0210 / 9033 © Integrata AG 2-5

Wie aus dem Beispiel ersichtlich werden dürfte, ist die logische Pro-
grammierung nur für einen deutlich umrissenen Problembereich (vor al-
lem künstliche Intelligenz bzw. Expertensysteme) sinnvoll.

Ein typischer Vertreter dieser Sprachen ist Prolog.

2.2.4 Objektorientierte Programmierung

Wie auch der prozeduralen liegt der objektorientierten Programmierung
der Gedanke zu Grunde, dass dem Rechner Schritt für Schritt vorgeben
wird, was er tun soll. Der Unterschied liegt in der Verbindung von An-
weisungen und Daten.

Ein Programm besteht in der objektorientierten Programmierung aus
einem Zusammenschluss von einzelnen Objekten. Ein Objekt verbindet
dabei eine Reihe von Daten (der Zustand) mit einem Verhalten (die
Anweisungen, mit denen das Objekt gesteuert werden kann).

Die Vorteile der objektorientierten Programmierung liegen in der Tatsa-
che, dass sich die Realität (bzw. ein System) objektorientiert in der Re-
gel leichter formulieren lässt, als das mit ausschließlich prozeduralen
Hilfsmittel möglich wäre. Außerdem erleichtert die objektorientierte Pro-
grammierung das Zerlegen eines Programms in einzelne Partitionen
(Komponenten), was der Wiederverwendbarkeit zugute kommt.

Nachdem sich diese Unterlage konkret auf die objektorientierte Pro-
grammierung bezieht, werden wir uns mit diesem Thema natürlich im
Folgenden noch ausführlicher auseinandersetzen.

Typische Vertreter objektorientierter Programmiersprachen sind C++,
Java und Smalltalk.

2.2.5 Mischformen

In der Softwareentwicklung setzen sich seit einiger Zeit immer mehr
Mischformen zwischen den einzelnen Arten zu Programmieren durch.
So kann beispielsweise das steuernde Framework objektorientiert, die
eigentliche Fachlichkeit aber funktional realisiert sein. Gerade im Java-
Umfeld werden Kombinationen aus Java, Scala und einer Skriptsprache
immer beliebter.

Ein Beispiel hierfür könnte eine Prozessmodelierung sein. Die Prozess-
ablaufsteuerung selbst (der Server und/oder das Framework) sind in
Java geschrieben, die einzelnen Business Komponenten in Java oder
Scala und die (recht dynamischen) Entscheidungsknoten des konkreten
Prozess dann in einer Skriptsprache (zum Beispiel Groovy oder JRu-
by).4

4 Skriptsprache bedeutet in diesem Fall, dass der Code nicht vorher kompiliert wird,

sondern dynamisch erst zur Laufzeit des Programms.

2 Objektorientierte Programmierung

2-6 © Integrata AG 1.0.0210 / 9033

2.3 Grundsätze objektorientierter Programmierung

Im folgenden Abschnitt wollen wir zunächst einige typische, objektorien-
tierter Begriffe definieren, und uns dann mit den Prinzipien dieser Art zu
Programmieren beschäftigen. Unser besonderes Ziel sollte dabei sein,
die objektorientierte Programmierung dazu zu benutzen, die intrinsi-
schen Qualitätsmerkmale unserer Software zu verbessern.

2.3.1 Unified Modeling Language (UML)

Wir werden die folgenden Punkte mit UML-Diagrammen ergänzen.
UML ist eine formale, grafische Beschreibungssprache, die unter ande-
rem dazu genutzt wird, Beziehungen zwischen Klassen zu visualisieren.
Für alle wichtigen Konzepte gibt es in der UML festgeschriebene Nota-
tionen. Für unseren Anwendungsbereich reicht aber ein kleiner Aus-
schnitt der Sprache, den wir im Folgenden mit beleuchten wollen.

UML unterscheidet zwischen drei verschiedenen Sichtweisen auf eine
Architektur:

• Konzeptionell: Die konzeptionelle Sichtweise beschreibt die Kon-
zepte der Domänen-Sprache. Das Diagramm ist also ein fachliches
Modell mit möglichst wenig Rücksicht auf die spätere, technische
Implementierung. Die konzeptionelle Sicht ist damit sprachunabhän-
gig.

• Spezifikation: Die Spezifikation definiert die Schnittstellen und wie
diese miteinander interagieren, aber nicht die konkrete Implementie-
rung (vgl. hierzu den Abschnitt „Klasse“ weiter unten).

• Implementierung: In dieser Sicht werden tatsächliche Klassen mit
ihren Implementierungsdetails modelliert. Die Praxis zeigt, dass die-
se Sicht am häufigsten verwendet wird, wobei es sinnvoller wäre,
häufiger die Spezifikation zu modellieren.

Für unsere Zwecke sind die Unterscheidungen nicht wirklich von Be-
deutung, sie wirken sich aber auf die Terminologie der einzelnen Ele-
mente aus. So spricht man in der Konzeptionellen Sicht beispielsweise
von einem Attribut, in der Implementierung aber von einem Feld.

Es gibt derzeit zwei gebräuchliche Versionen von UML, Version 1.4 und
Version 2. Die Unterschiede sind für uns aber nicht weiter relevant, wir
werden uns an der 1.4 Notation orientieren.

2.3.2 Die Holper-Regel

In den Grundkonzepten der Objektorientierung wird in der Literatur im-
mer wieder auf Sprechweisen eingegangen (Ein Pferd ist ein (eine be-
sondere Form) von Tier), die wir im Folgenden auch wiederholen. Hier-
bei handelt es sich keineswegs nur um eine Verständniserleichterung
oder Eselsbrücke. Vielmehr können wir diese Sprechweise auch als
Prüfstand für unsere Architektur benutzen. Klingt der passende Satz

Objektorientierte Programmierung 2

1.0.0210 / 9033 © Integrata AG 2-7

holprig oder „unfertig“ ist das ein gutes Zeichen dafür, dass unsere Ar-
chitektur bzw. unser Design noch nicht ausreichend ausgefeilt ist.

Regel 2-1: (1. Holper-Regel) Klingt eine Sprechweise für ein ob-
jektorientiertes Konzept holprig, so ist das Konzept
nicht korrekt angewendet. (Vers)

2.3.3 Abstraktion

Jedes Objekt im System kann als ein abstraktes Modell ei-
nes Akteurs betrachtet werden, der Aufträge erledigen, seinen Zustand
berichten und ändern und mit den anderen Objekten im System kom-
munizieren kann, ohne offenlegen zu müssen, wie diese Fähigkeiten
implementiert sind. Solche Abstraktionen sind entweder Klassen (in der
klassenbasierten Objektorientierung) oder Prototypen (in der prototyp-
basierten Programmierung).

Grundsätzlich ist die Abstraktion kein Begriff, der sich ausschließlich auf
die objektorientierte Programmierung bezieht, sondern auch durchaus
in der prozeduralen Programmierung Anwendung findet. Er geht in der
Objektorientierung allerdings noch weit über dieses Maß hinaus.

2.3.4 Klassen

In der Objektorientierung werden Objekte häufig durch ihre Klasse defi-
niert. Eine Klasse fast dabei gleichartige Objekte zusammen. Gleichar-
tig bedeutet dabei, dass die Objekte ein vergleichbares Verhalten und
die gleiche Art von Zustand besitzen. Eine Klasse beschreibt genau je-
nes Verhalten und die Art des Zustandes (mit eventuellen Standardwer-
ten), die konkreten Objekte (die Instanzen der Klasse) den konkreten
Zustand. Zustände bezeichnet man in der Objektorientierung als Attri-
bute, Member- oder Instanzenvariablen, Fähigkeiten als Methoden.5

Beispiel:

Die Klasse „Kreis“ wird definiert durch den Mittelpunkt, den Radius
sowie die Farbe. Jeder Kreis besitzt die Fähigkeit, seine Fläche und
seinen Umfang zurück zu berechnen und zurück zu liefern.

Eine Instanz der Klasse Kreis besitzt den Mittelpunkt (10 3), den Ra-
dius 23 und die Farbe „Rot“. Eine weitere Instanz besitzt Mittelpunkt
(0 0), den Radius 1 sowie die Farbe „Blau“.

Wir unterscheiden bei einer Klasse zwischen der äußeren und der inne-
ren Sicht. Die äußere Sicht (die sogenannte Schnittstelle) beschreibt
dabei die Fähigkeiten der Klasse, ohne konkret darauf einzugehen, wie
diese realisiert werden. Die innere Sicht (der eigentliche Programmcode
bzw. die Implementierung) beschreibt dagegen, wie die Methode tat-
sächlich funktioniert, also die einzelnen Anweisungen, die für diese Me-

5 Traditionell wird aber für eine Methode ohne Seiteneffekte auch weiterhin häufig der

Begriff „Funktion“ gebraucht.

2 Objektorientierte Programmierung

2-8 © Integrata AG 1.0.0210 / 9033

thode ausgeführt werden. Viele Programmiersprachen bieten die Mög-
lichkeit, beide Sichten voneinander zu trennen6.

Eine Klasse wird in UML als Kasten dargestellt, der in drei Bereiche
eingeteilt ist. Zuoberst steht der Name der Klasse, gefolgt von den Att-
ributen und zuletzt den Methoden (bzw. in der UML-Terminologie: Ope-
rationen). Interfaces, also die Trennung von Schnittstelle und Imple-
mentierung (und damit auch vom Zustand) werden als „Klasse“ darge-
stellt, die keinen Attribut-Bereich besitzt und zusätzlich mit dem Stereo-
typ «interface» markiert ist.7

Kreis

berechneUmfang() : float

berechneFläche() : float

x : float

y : float

radius : float

Farbe : String

<<interface>>

Kreis

berechneUmfang() : float

berechneFläche() : float

Abbildung 2-1: Eine Klasse und ein Interface

2.3.5 Komposition und Aggregation

Objekte, deren Zustände ihrerseits wieder durch Objekte beschrieben
werden, sind sogenannte Kompositionen. Abgegrenzt ist dieser Begriff
zur Aggregation, die im Programmcode in der Regel identisch aussieht
(auch hier sind die Attribute eines Objektes wieder Objekte), aber eine
inhaltlich etwas unterschiedliche Bedeutung hat. Eine Komposition be-
deutet dabei eine so enge Verknüpfung, dass die Bestandteile (die
Komponenten) in der Regel alleine keinen Sinn machen bzw. ihre Le-
bensdauer an die des Komposites (des „Besitzers“) geknüpft sind.

Eine gängige Sprechweise für Komposition ist „besteht aus“ bzw. in
umgekehrter Richtung „ist Bestandteil von“.

Ein Auto besteht aus vier Reifen, einem Motor und einer Karosserie.

Ein Motor ist Bestandteil eines Autos.

6 Z.B. bei Java durch Interfaces, bei C++ durch Header-Dateien.
7 Ein Stereotyp ist eine Möglichkeit, in UML zusätzliche Informationen unterzubringen,

die an anderer Stelle definiert wurden. Stereotypen werden in französischen Anfüh-
rungszeichen eingefasst («stereotyp»). Einige Stereotypen (wie «interface» sind in
der UML-Definition vorbelegt.

Objektorientierte Programmierung 2

1.0.0210 / 9033 © Integrata AG 2-9

Ohne das Auto machen die einzelnen Komponenten allerdings wenig
Sinn8.

Eine Aggregation könnte man dagegen als „hat Zugriff auf“ oder „hat
eine direkte Beziehung zu“ formulieren9:

Eine Person hat eine direkte Beziehung zu ihrem Partner.

In diesem Fall bedeutet das Ende der Person nicht das Ende des Part-
ners (aus Objektsicht betrachtet).10

Grundsätzlich ist die Frage, ob eine Beziehung zwischen zwei Objekten
eine Aggregation oder eine Komposition darstellt, auch immer durch die
Fachlichkeit beeinflusst. Trotzdem wollen wir zumindest zwei Grundsät-
ze beschreiben, die bei der Auswahl nützlich sein könnten:

• Ein Objekt kann immer nur Teil einer einzigen Komposition sein.
Taucht das Objekt als Attribut weiterer Objekte auf, sind diese Be-
ziehungen zwangsläufig Aggregationen.

• Eine Komposition ist immer gerichtet. Ist eine Beziehung beidseitig,
so kann nur eine Richtung die Komposition sein, die andere muss
zwangsläufig eine Aggregation sein (Ein Auto besteht (unter ande-
rem) aus einem Motor, ein Motor hat eine direkte Beziehung zu sei-
nem Auto).

Im UML-Diagramm werden Kompositionen als Linie mit einer ausgefüll-
ten Raute auf Besitzer-Seite dargestellt, bei Aggregationen ist die Rau-
te nicht gefüllt. Die beiden Seiten der Linien werden mit Angaben der
Kardinalität versehen. Diese wir in üblicher Form mit 1, 1..*, 0..* oder
einer festen Zahl dargestellt. Gegenüber der Kardinalität kann die Rolle
der Zielklasse angegeben werden, die diese in der Assoziation belegt,
üblicherweise steht hier der Name des Attributes, unter dem die Ziel-
klasse im Besitzer abgelegt ist. Ist kein Name angegeben, so wird der
Name der Zielklasse angenommen. Bei einer Komposition ist die Kardi-
nalität auf Komposite-Seite logischerweise immer 1.

8 Was natürlich von der fachlichen Aufgabe abhängt. Für die Verwaltung eines Auto-

teile-Zulieferers macht es natürlich sehr wohl Sinn, die Komponenten einzeln zu be-
trachten.

9 „Kennt“ würde zwar oft auch Sinn machen, ist aber in der Objektorientierung bzw. in
der Modellierung mit UML schon vorbelegt.

10 Wenn man von gewissen Bräuchen der alten Pharaonen bewusst absieht.

2 Objektorientierte Programmierung

2-10 © Integrata AG 1.0.0210 / 9033

Auto

fahren() : void

Reifen

MotorKarosserie

1

1
karosserie

11
reifen

1

1
motor

Person
0..1

partner

1

Abbildung 2-2: Komposition und Aggregation

2.3.6 Assoziation

Eine Assoziation stellt eine deutlich leichtere Verbindung von einem
Objekt zu einem anderen (bzw. einer Klasse zu einer anderen) dar. Ei-
ne Assoziation wird formuliert als „kennt“. Kennen bedeutet in diesem
Fall, die Fähigkeiten des anderen Objektes kennen und damit auch da-
rauf zugreifen können. Eine andere Sichtweise wäre: Der Name der ge-
kannten Klasse taucht im Code der kennenden Klasse auf und ist auch
zur Kompilierzeit der Klasse verfügbar (ggf. als Header-Datei oder Inter-
face).

Kompositionen sind in der Regel auch Assoziationen, für Aggegrationen
gilt das häufig auch (aber nicht so häufig wie bei Kompositionen). Ein
Auto, das unter anderem aus einem Motor besteht, wird normalerweise
auch die Klasse Motor kennen, umgekehrt wird der Motor häufig auch
Zugriff auf sein Auto haben und es damit kennen. Denkbar ist allerdings
auch, dass dieses Kennen explizit nur in Gegenrichtung der Kompositi-
on / Aggregation existiert.

Ein Beispiel:

In einem Baumdiagramm kennt jeder Knoten seinen Vaterknoten,
aber der Vaterknoten selbst kennt seine Kinder nicht.

Objektorientierte Programmierung 2

1.0.0210 / 9033 © Integrata AG 2-11

In UML werden Assoziationen als einfache Linien dargestellt, ggf. um
eine Pfeilspitze erweitert, die die Richtung angibt. Ist diese nicht vor-
handen, so bedeutet das entweder, dass die Richtung beidseitig ist,
oder dass sie nicht bekannt ist.

<<interface>>

Gehaltsrechner

berechneGehalt(Person : void) : int

<<interface>>

Angestellter

Abbildung 2-3: Assoziation

2.3.7 Komponenten

Eine Komponente ist eine weitere Abstraktionsebene oberhalb der
Klasse. Es handelt sich um den Zusammenschluss einer Reihe von
Klassen zu einem gemeinsamen Zweck. Dabei werden weitere Imple-
mentierungsdetails verborgen und die Komponente zeigt nach außen
eine oder mehrere Schnittstellen. Die Bestandteile einer Komponente
sind dabei in der Regel über Komposition und Aggregation mit einander
verknüpft. Eine Komponente kann wiederum aus Unterkomponenten
bestehen. Auf diese Weise entsteht eine Architektur, die bei jedem
Schritt einen Abstraktionslevel tiefer geht. Je nach Programmiersprache
gibt es Sprachelemente, die entweder direkt Komponenten darstellen
oder dazu genutzt werden können.11

Komponenten sind wieder über Assoziationen mit anderen Komponen-
ten verknüpft.

Eine Komponente wird in UML als Kasten mit zwei kleinen Rechtecken
auf der linken Seite dargestellt.12

11 In Java sind das Beispielsweise Pakete (packages)
12 Das gilt für UML 1.4. In UML 2 wird die Komponente als Rechtecke mit dem «com-

ponent» Classifier und einem Komponentensymbol in der rechten oberen Ecke
dargestellt. Für unsere Zwecke ist aber auch diese Unterscheidung unerheblich.

2 Objektorientierte Programmierung

2-12 © Integrata AG 1.0.0210 / 9033

Buchhaltung Versand

Abbildung 2-4:Komponenten

2.3.8 Vererbung

Klassen können in der Regel voneinander erben. Man bezeichnet das
Erben auch als Spezialisierung einer Basisklasse. Die erbende Klasse
übernimmt damit alle Fähigkeiten der Oberklasse, kann diese aber ge-
gebenenfalls erweitern oder überschreiben. Auch der Zustand wird ge-
erbt, wobei nicht gesagt ist, dass die Unterklasse auch direkten Zugriff
auf ihren ererbten Zustand hat (vgl. Sichtbarkeiten). Der Zweck der
Vererbung liegt darin, Gemeinsamkeiten zusammen zu fassen, was
insbesondere im Zusammenspiel mit der Polymorphie (vgl. folgenden
Abschnitt) sehr saubere und zukunftssichere Architekturen ermöglicht.

Man kann eine Vererbungsbeziehung auch als „ist ein“ (oder „ist eine
besondere Form von“) Satz formulieren:

Ein Angestellter ist eine (spezielle) Person

Ein Hund ist ein Tier.

Aus äußerer Sicht (der Schnittstellen-Sicht) stellt eine Unterklasse im-
mer nur eine Erweiterung ihrer Oberklasse dar, d.h. eine Fähigkeit der
Oberklasse kann einer Unterklasse nicht wieder aberkannt werden. Aus
innerer Sicht kann sich die Unterklasse aber sehr wohl anders verhal-
ten.

Erbt eine Klasse von einem Interface (also auf Implementierungsebe-
ne), so nennt sich die Vererbung auch „Realisierung“ bzw. Implementie-
rung.

In UML wird eine Spezialisierung durch einen Pfeil mit einer dreieckigen
Spitze dargestellt (die zur Basisklasse zeigt), bei der Realisierung ist
der Pfeil selbst gestrichelt dargestellt.

Objektorientierte Programmierung 2

1.0.0210 / 9033 © Integrata AG 2-13

Auto

fahren() : void

Benzinauto

tanken() : void

<<interface>>

Angestellter

Zeitarbeiter

Abbildung 2-5: Vererbung

2.3.9 Polymorphie

Ein wichtiges Konzept der Vererbung ist die Polymorphie (Vielgestaltig-
keit). Sie sagt aus, dass ein Objekt auch als eine Instanz seiner Ober-
klasse angesprochen werden kann, bzw. dass der aufrufende Code
nicht einmal Kenntnis darüber benötigt, um was für eine Klasse es sich
bei dem agierenden Objekt konkret handelt.

Ein Beispiel:

Die Klasse Auto besitzt eine Methode „fahren“. Damit ist garantiert,
dass jede Unterklasse von Auto diese Fähigkeit auch besitzt (nicht
aber, was die jeweilige Unterklasse im Einzelnen tut). Fügen wir nun
dem Beispiel zwei Unterklassen hinzu: Elektroauto und Benzinauto.
Beide können „fahren“, allerdings mit unterschiedlichen Ergebnissen
– so wird der Verbrauch sicher unterschiedlich berechnet und von
anderen Betriebsstoffen abgezogen.

Eine Klasse Person, die nur das Auto kennt (aber nicht die Unter-
klassen), kann trotzdem alle drei Auto-Arten fahren, da sie nur Fä-
higkeiten nutzen muss, die ihr auch bekannt sind.

Erst zur Laufzeit wird , anhand der tatsächlichen Klasse des Autos,
entschieden, welche Methode tatsächlich aufgerufen wird.

Die Person ist allerdings nicht in der Lage, die Autos aufzutanken, da
die Fähigkeit „tanken“ bzw. „laden“ teil der jeweiligen Unterklasse ist.

2 Objektorientierte Programmierung

2-14 © Integrata AG 1.0.0210 / 9033

Auto

fahren() : void

Person

Elektroauto

laden() : void

Benzinauto

tanken() : void

Abbildung 2-6: Polymorphie

2.3.10 Sichtbarkeiten

Sichtbarkeiten definieren, wer welche Methode und Felder einer Klasse
nutzen kann. Welche Sichtbarkeiten konkret zur Verfügung stehen, ist
von der genutzten Programmiersprache abhängig. Die vier Sichtbarkei-
ten, die die Sprache Java bietet, decken aber den Normalfall ab und
finden sich auch ähnlich in der UML-Darstellung wieder. Zum Vergleich
werden wir hierbei auch die C++-Sichtbarkeiten aufführen. In UML wer-
den Sichtbarkeiten durch ein einzelnes Symbol vor dem Feld oder der
Methode dargestellt (was natürlich in der Implementierungssicht wirklich
Sinn macht).

• Public(+): Public Methoden oder Felder sind für alle sicht- bzw.
nutzbar, unabhängig davon, aus welcher Klasse Sie aufgerufen wer-
den. Das gilt sowohl für C++ als auch für Java.

• Private(-): Private Methoden und Felder sind nur in der Klasse sicht-
bar, in der sie definiert wurden – also auch nicht in Unterklassen.
Auch das ist in C++ und Java gleich.

• Protected(#): Protected Methoden und Felder sind unter C++ nur für
die Klasse und ihre Unterklassen sichtbar. Darüber hinaus sind pro-
tected Methoden unter Java zusätzlich auch für Klassen im gleichen
Paket sichtbar.

• Package(~): Die Methoden und Felder sind nur für Klassen im eige-
nen Paket sichtbar. C++ hat keine direkte Entsprechung für diese
Sichtbarkeit, unter Java wird sie auch als default-Sichtbarkeit be-
zeichnet, da sie gültig ist, wenn nicht explizit eine Sichtbarkeit ange-
geben ist.

Objektorientierte Programmierung 2

1.0.0210 / 9033 © Integrata AG 2-15

SichtbarkeitsDemo

-privOp() : void

~defOp() : void

#protOp() : void

+pubOp() : void

-privAttr : int

~defAttr : int

#protAttr : int

+pubAttr : int

Abbildung 2-7:Sichtbarkeiten

In der Praxis gehören Sichtbarkeiten zu den Elementen, bei denen es
sich selten lohnt, sie im UML-Diagramm aufzuführen, da sie sich sowie-
so im Laufe der Zeit ändern werden. Ein einfacher Ansatz lautet: Attri-
bute sind standardmäßig private (dazu später mehr) und werden nur
dann markiert, wenn es Gründe gibt, davon abzuweichen. In das Dia-
gramm eingetragene Methoden sind dagegen standardmäßig public.
Grundsätzlich bleibt dann zu klären, in wieweit nicht-public Methoden
überhaupt in das Diagramm aufgenommen werden sollten.

2.3.11 Persistenz

Persistenz ist in der heutigen Programmierung ein doppeldeutiger Beg-
riff. Die gängige Bedeutung lautet, dass ein Objekt länger lebt, als das
Programm läuft, also irgendwo außerhalb der Programms auf einem
nicht-flüchtigen Speicher abgelegt wird (häufig eine Datenbank oder
das Dateisystem).

In der ursprünglichen Bedeutung ist damit allerdings gemeint, dass Ob-
jekte länger leben als nur für einen Methodenaufruf, wie das mit Variab-
len in der prozeduralen Programmierung in der Regel der Fall ist.

2.3.12 Nachrichten

Auch der Nachrichtenbegriff ist mittlerweile mehrfach belegt. Heute ver-
steht man darunter in der Regel eine Nachricht (also Objekt oder Da-
tenstruktur), die mittels eines Dienstes innerhalb eines Programms oder
zwischen Programmen und Rechnern, meist asynchron, ausgetauscht
wird. Für diese Art der Programmierung, die in erster Linie der Entkopp-
lung von Teilsystemen gilt, gibt es einige „Buzz-Words“, wie zum Bei-
spiel „Message-oriented-Middleware (MOM)“ oder „Enterprise Service
Bus (ESB)“. Auch das Schlagwort „SOA (Service oriented architecture)“
zielt oftmals in diese Richtung.

2 Objektorientierte Programmierung

2-16 © Integrata AG 1.0.0210 / 9033

In der ursprünglichen Sprachweise der Objektorientierung bedeutet „ei-
ne Nachricht versenden“ aber lediglich, eine Methode eines Zielobjek-
tes aufzurufen bzw. auszuführen. Mit dieser Terminologie sollte der Ei-
genständigkeits-Gedanke der Objekte unterstrichen werden.

2.4 Die drei „K“ der Objektorientierung

Nachdem wir uns bisher mit den (handwerklichen) Grundsätzen der Ob-
jektorientierung beschäftigt haben, werden wir uns als nächstes mit den
Regeln für gutes Design auseinandersetzen. Es gibt in der Objektorien-
tierung drei Eigenschaften, die gutes Design fördern können. Diese be-
zeichnen wir im Folgenden als „die drei K der Objektorientierung“.

2.4.1 Kapselung (encapsulation)

Die Kapselung (auch: „Datenkapselung“) hat ihren Ursprung in den
Abstrakten Datentypen in der prozeduralen Programmierung. Grundge-
danke dabei ist, dass der Zugriff auf die eigentlichen Daten nur über de-
finierte Prozeduren möglich ist. Damit wird die Datenstruktur nicht mehr
durch ihren internen Aufbau, sondern durch ihr Verhalten bestimmt13.

In der objektorientierten Programmierung bedeutet Kapselung, das Imp-
lementierungsdetails verborgen werden und ein Objekt nur über eine
wohldefinierte Schnittstelle genutzt oder verändert werden kann. Typi-
sche Implementierungsdetails sind dabei Felder (Instanzvariablen) und
Hilfsmethoden.

Indem mit technischen Hilfsmitteln verhindert wird, dass der Nutzer ei-
nes Objektes direkt auf Implementierungsdetails zugreift, hat der Pro-
grammierer der Klasse des Objektes die Möglichkeit, diese Details je-
derzeit zu verändern, ohne die Funktionalität andere Elemente zu ge-
fährden14.

Werkzeuge zur Kapselung sind die oben erwähnten Sichtbarkeiten und
Zugriffsmethoden (sog. Getter und Setter). Bei letzterem handelt es
sich um Methoden, die in der Regel nur ein Feld auslesen und zurück-
liefern oder das Feld neu setzen.

2.4.1.1 Sichtbarkeiten

Durch eingeschränkte Sichtbarkeiten verhindern wir, dass bestimmte
Methoden von außen aufgerufen werden. Als Faustregel gilt: alles was
zur öffentlichen Schnittstelle gehört, sollte auch als public deklariert
sein. Was nicht dazu gehört, sollte eine eingeschränkte Sichtbarkeit be-
sitzen (welche, werden wir gleich noch beleuchten).

13 Was eine Vorstufe zur echten Objektorientierung darstellt.
14 Weil die Implementierung dabei „geheim“ bleibt, ist ein weiterer Name „Geheimnis-

prinzip“

Objektorientierte Programmierung 2

1.0.0210 / 9033 © Integrata AG 2-17

Mit jeder öffentlichen Methode definieren wir einen Vertrag (englisch:
Contract) über das Verhalten unserer Klasse. Ändern wir eine öffentli-
che Methode in ihrem Verhalten (ob nun in der Signatur oder im Algo-
rithmus), so verändern wir auch diesen Vertrag, mit dem Ergebnis, dass
wir sicherstellen müssen, dass jeder Code, der diese Methode nutzt,
ebenfalls geändert (oder zumindest überprüft) werden muss. Jede öf-
fentliche Methode stellt also einen potentiellen Kopplungspunkt für an-
dere Klassen dar. Dass das einen großen Aufwand nach sich ziehen
kann, dürfte klar sein. Um diesen klein zu halten, definieren wir eine
Regel:

Regel 2-2: Die Signatur und das Verhalten von Schnittstellen-
Methoden sollte nachträglich nur noch in Ausnahmefäl-
len geändert werden (Wart, Wied).

Das hat umgekehrt die Konsequenz, dass wir die Schnittstellen eben so
klein wie möglich halten sollten.

Regel 2-3: Neue Methoden sollten der Schnittstelle nur dann hin-
zugefügt werden, wenn es dafür einen konkreten An-
wendungsfall gibt (Wart).

Damit bleibt nur die Frage offen, welche Sichtbarkeit statt public verge-
ben werden soll. Ein sinnvoller Ansatz ist es, so eingeschränkt wie
möglich zu programmieren, d.h. grundsätzlich ist jedes Feld und jede
Methode, die nicht zur öffentlichen Schnittstelle gehört, zunächst private
und wird erst bei einer Notwendigkeit sichtbarer gemacht.

Der Vorteil der Lösung über private ist, dass auf diese Art auch eine in-
nere Kapselung erreicht wird. Dabei kapselt sich eine Klasse nicht nur
gegen fremde Klassen, sondern effektiv auch gegen „freundliche“ Klas-
sen (sprich Klassen im selben Paket / in derselben Komponente) und
ihre eigenen Unterklassen ab.

Ob das sinnvoll und notwendig ist, hängt von den Umständen ab. So er-
leichtert die innere Kapselung natürlich auch interne Veränderungen an
der Klasse. Das wird aber durch zusätzlichen Aufwand erkauft. Gibt
man statt dessen Feldern und internen Methoden die Sichtbarkeit pa-
ckage, so entsteht zwangsläufig eine engere Kopplung zwischen den
Klassen des Pakets. In der Regel ist der damit verbundene Zusatzauf-
wand aber vertretbar, es sei denn, die Komponente ist ungewöhnlich
groß, stark volatil oder wird durch einen weit verzweigten Entwickler-
kreis weiterentwickelt.

Ob die Sichtbarkeit protected Sinn macht, hängt vor allem davon ab, ob
die Klasse dazu entwickelt wurde, durch andere Entwickler bzw. in an-
deren Projekten abgeleitet zu werden (also Teil einer offenen API ist).
Ist das der Fall, so schafft man effektiv eine zweite Schnittstelle mit der
Sichtbarkeit protected, für die die beiden oben aufgeführten Regeln
ebenso gelten müssen.

Es gibt aber zumindest einen guten Grund für den Verzicht von private
zugunsten von package: Unit-Tests. Wir werden uns mit dem Thema

2 Objektorientierte Programmierung

2-18 © Integrata AG 1.0.0210 / 9033

Testen später noch näher befassen, das wichtigste soll aber hier schon
vorab genannt sein: Unit-Test sind separate Klassen (Testklassen), de-
ren Aufgabe es ist, die Funktionalität ihrer zu testenden Klasse sicher-
zustellen. Sie können entweder als reine Schnittstellen-Tests (sog.
Black-Box-Tests) implementiert werden, bei denen ausschließlich die
öffentliche Schnittstelle getestet wird, oder aber als White-Box-Tests,
die eben auch die Interna (also beispielsweise Hilfsmethoden) testen.
Zu bevorzugen ist natürlich eine Kombination aus beidem, wobei die
White-Box-Tests natürlich eng mit dem eigentlichen Code gekoppelt
sind und deshalb bei Änderung i.d.R. mit angefasst werden müssen.

Aber was hat das mit der Sichtbarkeit zu tun? Nun, wenn White-Box-
Tests Internas testen wollen, so müssen sie auch Zugriff auf diese ha-
ben, was mit private nicht gestattet wäre. Liegen die Tests aber im glei-
chen Paket wie die zu testende Klasse, so reicht die Sichtbarkeit „pa-
ckage“ aus, um diesen Zugriff zuzulassen.15

Fassen wir noch einmal in einer Regel zusammen:

Regel 2-4: Felder sollten standardmäßig private, Hilfsmethoden
standardmäßig package-visible sein. (Wart, Test)

2.4.1.2 Getter und Setter

Effektiv haben wir damit also den direkten Feldzugriff im Code durch
den Zugriff auf eine Methode ersetzt. Das scheint in erster Linie noch
keinen großen Unterschied zu machen, aber der Schein trügt. Dadurch,
dass die Zugriffsmethoden eben Methoden sind, sind sie Teil der
Schnittstelle unserer Klasse. Das hat einige positive Konsequenzen:

• Durch die Aufnahme in die Schnittstelle machen wir deutlich, dass
wir erwarten, dass dieses Attribut von anderen genutzt wird. Damit
haben wir auch eine gute Stelle, um Konsequenzen des Zugriffs zu
dokumentieren (Seiteneffekte).

• Dadurch, dass der Zugriff über eine Methode läuft, können wir den
Zugriff kontrollieren. Damit können zum Beispiel Einschränkungen
auf das Feld (nur positive Werte) oder Invarianten auf die ganze
Klasse durchgesetzt werden:

Eine Klasse Rechnungszeile besitzt zwei Attribute: Grundpreis und
Menge. Dazu eine Methode berechneGesamtpreis(), die tut,

was der Name suggeriert. Eine sinnvolle Invariante16 für unsere
Klasse wäre, dass die Menge niemals negativ sein darf17.

15 Existiert in der Sprache keine Paket-Sichtbarkeit (wie beispielsweise in C++), wo

muss man adäquate Alternative suchen (im Falle von C++ z.B. friendly)
16 Eine Invariante ist eine Regel die zu jeder Zeit (genauer gesagt zu Beginn und zum

Ende jeder Schnittstellen-Methode) gültig sein muss.
17 Den Grundpreis schränken wir dagegen nicht ein, so sind auch Rabatte und Gut-

schriften abbildbar.

Objektorientierte Programmierung 2

1.0.0210 / 9033 © Integrata AG 2-19

Greift ein Client direkt auf die Felder zu, so muss die Methode be-
rechneGesamtpreis() zusätzlich noch die Gültigkeit der Werte
sicherstellen (was dem „Einzelne-Verantwortungs-Prinzip“ wider-
sprechen würde, dazu später mehr). Gleichzeitig wäre die „Invarian-
te“ damit in diesem Fall eigentlich gar keine Invariante, sondern le-
diglich eine Regel. Mit einer Setter-Methode kann aber schon beim
Setzen des Wertes festgestellt werden, ob dieser gegen Regeln ver-
stößt und damit eine echte Invariante umgesetzt werden. Außerdem
muss die Überprüfung so nur einmal stattfinden. Bei direktem Feld-
zugriff müsste die Überprüfung ja auch in einer weiteren Methode
berechenMehrwertssteuer() erfolgen.

public class Rechnungszeile {

 public int menge;

 public int grundpreis;

 public int berechneGesamtpreis() {

 if (menge < 0) throw new IllegalStateException();

 return menge * grundpreis;

 }

}

public class RechnungszeileBesser {

 private int menge;

 private int grundpreis;

 … weitere getter und setter …

 public void setMenge(int menge) {

 if (menge < 0) throw new IllegalArgumentException);

 this.menge = menge;

 }

 public int berechneGesamtpreis() {

 return menge * grundpreis;

 }

}

Bleibt noch zu erwähnen, dass das die Verwendung von Zugriffsme-
thoden für den aufrufenden Code nur minimale Veränderungen er-
fordert.

Bei einigen Programmiersprachen ist die Benutzung von Zugriffsme-
thoden sogar gar nicht zu vermeiden. So sind beispielsweise in
Smalltalk Felder immer private, d.h. der Zugriff kann nur über Getter
und Setter erfolgen.

2 Objektorientierte Programmierung

2-20 © Integrata AG 1.0.0210 / 9033

• Die Getter und Setter müssen nicht zwangsläufig auf real existierende
Felder verweisen. Sie können auch sogenannte virtuelle Felder be-
schreiben, also Felder, bei denen die Schnittstelle nur so aussieht, als
ob diese Felder existieren. Das ist nützlich, wenn der Wert eines Fel-
des sich aus einem anderen berechnen lassen kann (Radius und
Durchmesser eines Kreises), oder aber, wenn die Implementierung –
also konkret die Felder – einer Klasse im Nachhinein geändert werden
müssen.

Auch hierzu ein Beispiel:

public class Rectangle {

 public int top, left;

 public int width, height;

}

Wird nun später in der Entwicklung entschieden, dass der innere Zu-
stand nicht mehr aus top, left, width und height bestehen soll, sondern
sinnvollerer zwei gegenüberliegende Ecken mit ihren Koordinaten an-
geben werden sollen (also top, left, bottom, right), so muss jeder Co-
de, der die Klasse benutzt im Zuge dieser Veränderung angepasst
werden – was einen immensen Aufwand nach sich ziehen würde.

Hätte man stattdessen die Klasse mit Gettern und Settern modelliert,
so hätte die Umstellung keinerlei Auswirkungen auf aufrufenden Code,
d.h. dieser arbeitet immer noch mit den für ihn bekannten „Feldern“
height und width:

public class RectangleGetterSetter {

 private int top, left;

 private int width, height;

 public int getHeight() {

 return height;

 }

 public void setHeight(int height) {

 this.height = height;

 }

 // ... set/getWidth analog

 // weitere getter und setter

}

public class RectangleGetterSetterNeu {

 private int top, left;

 private int bottom, right;

 public int getHeight() {

 return bottom - top;

 }

 public void setHeight(int height) {

 this.bottom = top + height;

 }

 // ... set/getWidth analog

 // weitere getter und setter

}

Auf diese Art und Weise haben wir natürlich die Wartungsfreundlich-
keit unsere Klasse deutlich verbessert.

Objektorientierte Programmierung 2

1.0.0210 / 9033 © Integrata AG 2-21

Getter und Setter zu verwenden, hat natürlich auch Nachteile:

• Der Code selbst wird deutlich länger, und das in der Regel um Inhal-
te, die keine Informationen bringen (sog. Boilerplate-Code).

• Je nach Anwendung und Programmiersprache kann das Verwenden
einer zusätzlichen Methode Geschwindigkeitseinbußen mit sich brin-
gen.

Zum ersten Nachteil gibt es je nach Programmiersprache einige Ansät-
ze, um das Problem zu reduzieren, z.B. in dem die Zugriffsmethoden
automatisch im Buildprozess generiert werden.

Der zweite Nachteil ist je nach Programmiersprache minimal bzw. gar
nicht vorhanden (in neueren Java-Versionen ist die Zugriffszeit sogar
identisch!). Grundsätzlich sollte man aber vermeiden, aus Geschwin-
digkeitsgründen vom guten Stil abzuweichen (es sei denn, es liegt ein
konkretes Performanceproblem vor, vgl. hierzu das Kapitel Optimie-
rung).

Regel 2-5: Felder sollten immer gekapselt werden, der Zugriff dar-
auf darf nur über Getter und Setter möglich sein. (Wart,
Wied)

2.4.2 Kopplung (coupling)

Kopplung beschreibt, wie eng zwei Klassen zusammenhängen, bzw.
wie eigenständig die Klassen (bzw. Komponenten18) sind. Umgekehrt
sind sie daher ein Maß dafür, wie viele Änderungen das Ändern einer
abhängigen Komponente nach sich zieht.

Je loser die Kopplung, d.h. je weniger Abhängigkeiten zu anderen Klas-
sen existieren, desto isolierter ist eine Klasse. Das erhöht die Wieder-
verwendbarkeit und - wie wir später noch sehen werden - auch die
Testbarkeit einer Klasse.

Wir unterscheiden zwischen verschiedenen Arten der Kopplung:

2.4.2.1 Inhaltskopplung (enge Kopplung)

Die Klasse greift auf Internas der jeweils anderen Klasse zu. Das wich-
tigste innere Detail sind dabei natürlich die Felder, die eben nicht direkt
zugreifbar sein sollten. Inhaltskopplung ist damit ein Gegenstück zur
Kapselung. Anders formuliert: eine starke Kapselung vermeidet eine In-
haltskopplung.

18 Kopplungen zwischen Klassen und Kopplungen zwischen Komponenten folgen ex-

akt den gleichen Prinzipien, nur in unterschiedlichen Größenordnungen. Das gleich
gilt auch für die später angesprochene Kohäsion. Wir werden im Folgenden der
Lesbarkeit halber nur noch von Klassen sprechen und Komponenten implizit ein-
schließen.

2 Objektorientierte Programmierung

2-22 © Integrata AG 1.0.0210 / 9033

Eine Inhaltskopplung stellt eine enge Kopplung dar, die wir unbedingt
vermeiden wollen. Sind zwei Klassen inhaltlich eng gekoppelt, so wird
jede Änderung der einen Klasse eine potentielle Änderung der anderen
Klasse nach sich ziehen, was die Wartbarkeit natürlich immens ver-
schlechtert. Auch die Verständlichkeit leidet deutlich unter einer engen
Kopplung, da man zum Verständnis einer Klasse zwangsläufig auch die
andere verstehen muss.

2.4.2.2 Schnittstellenkopplung (lose Kopplung)

Gibt es ein derartiges Konzept in der verwendeten Programmierspra-
che, so sind Interfaces das beste Mittel, um enge Kopplungen zu ver-
meiden. Da der aufrufende Code hier in der Regel nur die Schnittstelle
zu sehen bekommt, kann er eben auch nicht auf Implementierungsde-
tails zugreifen. Gibt es kein eigenes Interface-Konzept in der Sprache,
so werden stattdessen abstrakte Klassen ohne konkrete Implementie-
rung verwendet.

Das entbindet den Programmierer natürlich nicht von der Notwendig-
keit, seine Klasse stark zu kapseln, er sollte die Klasse so programmie-
ren, als würde ein Client-Code direkt (ohne das Interface) auf die Klas-
se zugreifen. Anders formuliert: die Klasse selbst sollte nicht mehr Imp-
lementierungsdetails preisgeben, als es das Interface tut.

Regel 2-6: Jede Klasse sollte mit einem entsprechenden Interface
gekapselt sein. Client-Code sollte ausschließlich über
das Interface auf die Klasse zugreifen. (Wart, Wied,
Test)

Im Idealfall sollte also die konkrete Implementierung im Quellcode der
aufrufenden Klasse gar nicht vorkommen. Anders formuliert: im UML-
Diagramm sollte keine Assoziation von einer Klasse zu einer anderen
Klasse, sondern immer nur zu einem Interface erfolgen.

Eine weitere Möglichkeit, die die Schnittstellenkopplung uns bietet, ist
die Implementierung nicht nur zu verändern, sondern vollständig auszu-
tauschen.

Ein einfaches Beispiel soll das verdeutlichen:

TODO: Besseres Beispiel

Damit das Prinzip allerdings vollständig umgesetzt werden kann, darf
auch die konkrete Instanz des Interfaces niemals direkt in der aufrufen-
den Klasse erzeugt werden, sonst wäre ja zumindest an dieser einen
Stelle eine enge Kopplung gegeben. Um diese Dilemma zu lösen kann
man sich eines von zwei Design Patterns (dazu später mehr) zunutze
machen:

• Das FACTORY-Pattern: Nicht die Klasse selbst erzeugt das Objekt,
sondern eine Hilfsklasse, deren einziger Zweck es ist, Instanzen zu
erzeugen, die das Interface implementieren (welche konkreten In-
stanzen erzeugt werden, muss natürlich irgendwo festgelegt werden.

Objektorientierte Programmierung 2

1.0.0210 / 9033 © Integrata AG 2-23

Damit hat die Factory zwar potentiell eine enge(re) Kopplung zu den
Implementierungen, aber eben nicht mehr die aufrufende Klasse.

• Das DEPENDENCY INJECTION Pattern (auch bekannt als INVERSION

OF CONTROL oder IOC): Die Klasse holt sich ihre Abhängigkeiten
überhaupt nicht selbst, sondern bekommt diese von außen „unterge-
schoben“, durch Setter-Methoden oder im Konstruktor.

Natürlich sollte abschließend die Frage erlaubt sein, wann denn von
dieser Regel abgewichen werden darf oder sollte. Grundsätzlich ist die-
ser Ansatz umso wichtiger, je volatiler (veränderlicher) die Zielklasse
ist. Ist diese in einem stabilen Zustand (wie das zum Beispiel für Basis-
klassen und reine Datenklasse häufig der Fall ist), so ist das Erstellen
eines zusätzlichen Interfaces nicht notwendig und führt ggf. sogar zu
unnötiger Komplexität.19

2.4.2.3 Datenkopplung (freie Kopplung)

Datenkopplung bedeutet, dass die eigentliche Kopplung nicht mehr
über eine fachliche Schnittstelle erfolgt, sondern nur noch über ein ge-
meinsames Austauschformat. Das könnte zum Beispiel ein String sein,
der die auszuführende Anweisung enthält. (Statt dass eine Methode
berechneSteuer() aufgerufen wird, wird eine Methode tuEs() mit
dem Parameter berechneSteuer aufgerufen). Es handelt sich damit
effektiv um den Austausch des Protokolls, mit dem die beiden Klassen
mit einander sprechen, von einem sprachabhängigen Protokoll (dem
Aufruf von Methoden) zu einem selbst-implementierten Modell.

Wo liegt nun der Vorteil dieser Methode? Wir erreichen dadurch die
kleinst-mögliche Kopplung zwischen den Komponenten (auf Klassen-
ebene macht die Datenkopplung wenig Sinn). Eine Komponente kann
damit zur Laufzeit Funktionalität aufrufen, die zum Zeitpunkt der Pro-
grammierung noch überhaupt nicht bekannt war.

Außerdem wird damit erleichtert, mit anderen Programmiersprachen zu
kommunizieren, da es nun nicht mehr notwendig ist, dass alle Sprachen
die gleichen Fähigkeiten besitzen. Es reicht im obigen Beispiel schon
aus, dass die Zielsprache mit Zeichenketten umgehen kann – sie muss
nicht einmal objektorientiert sein. Diese freie Kopplung ist das Prinzip
der Service-Oriented-Architectures (SOA), die beispielsweise über
WebServices mit einander kommunizieren.

Der Nachteil dieser Kopplung ist allerdings, dass hier der Compiler kei-
ne Hilfestellungen mehr liefern kann (z.B. bei Tipp-Fehlern). Außerdem
leidet die Lesbarkeit des Codes in der Regel deutlich.

Deshalb sollte freie Kopplung nur dann eingesetzt werden, wenn es
fachlich wirklich notwendig ist.

19 Niemand würde unter Java für die Klasse String ein extra Interface verwenden –

selbst wenn dies möglich wäre.

2 Objektorientierte Programmierung

2-24 © Integrata AG 1.0.0210 / 9033

2.4.3 Kohäsion (cohesion)

Kohäsion bedeutet wörtlich übersetzt Zusammenhalt oder Bindung. Es
beschreibt die fachliche/inhaltliche Bindung der Elemente einer Klasse
untereinander. Aus fachlicher Sicht besitzt eine Klasse also dann eine
hohe Kohäsion, wenn ihre Felder und Methoden fachlich zusammenge-
hören. Ein erster Prüfstein hierfür ist der Klassename. Passt dieser zu
allen Methodennamen bzw. zu allen Feldern, verfügt die Klasse vermut-
lich über eine hohe Kohäsion20.

Aus technischer Sicht ist ein gutes Maß für Kohäsion, wie viele Felder
eine Methode benutzt. Je mehr Felder sie nutzt, desto enger hängt die
Methode mit ihrer Klasse zusammen. Eine maximal kohäsive Klasse
wäre demnach eine Klasse, bei der sämtliche Methoden sämtliche Fel-
der nutzen. Dass das in der Realität kaum zweckmäßig wäre, dürfte
klar sein (zumal damit ja auch Getter und Setter nicht benutzt werden
dürften). Trotzdem sollte unsere Kohäsion möglichst hoch sein. Folgt
eine Klasse nur einem bestimmten Zweck, so ist ihre Wiederverwend-
barkeit deutlich höher, als wenn sie mehrere Verantwortlichkeiten
gleichzeitig bedient.

Ein Beispiel:

Die Klasse Warteschlange dient dazu, Person-Objekte einzureihen
und wieder zurückzuliefern.

public class Warteschlange {

 private int naechstesElement = 0; // Feld (1)

 private List<Person> eintraege

 = new LinkedList<Person>(); // Feld (2)

 public int groesse() { // nutzt (1)

 return naechstesElement;

 }

 public void hinzufuegen(Person p) { // nutzt (1) und (2)

 naechstesElement++;

 eintraege.add(p);

 }

 public Person naechstePerson() { // nutzt (1) und (2)

 if (naechstesElement == 0)

 throw new SchlangeLeerException();

 naechstesElement--;

 Person result = eintraege.get(naechstesElement);

20 „Passen“ bedeutet hier aus der Sicht eines Sprechers der benutzen Sprache

(Deutsch, Englisch, …), nicht der Programmiersprache!

Objektorientierte Programmierung 2

1.0.0210 / 9033 © Integrata AG 2-25

 eintraege.remove(naechstesElement);

 return result;

 }

 public String personAlsString(Person p) {

 return p.getVorname() + " " + p.getNachname();

 }

}

Die ersten drei Methoden besitzen eine starke Kohäsion, die letzte Me-
thode allerdings überhaupt keine. Das ist ein guter Hinweis darauf, dass
diese Methode hier fehl am Platze ist und besser ausgelagert werden
sollte (z.B. in die Klasse Person).

Regel 2-7: Klassen sollten eine starke Kohäsion besitzen (Wied,
Lesb, Vers)

2 Objektorientierte Programmierung

2-26 © Integrata AG 1.0.0210 / 9033

2.5 Zusammenfassung

Wir haben uns in diesem Kapitel mit den Grundsätzen der objektorien-
tierten Programmierung auseinandergesetzt. Insbesondere haben wir
wesentliche Begriffe wiederholt und dabei die drei „K“ der Objektorien-
tierung näher beleuchtet.

Wir haben erste Regeln für professionellen Code aufgestellt – auf diese
wollen wir im nächsten Kapitel weiter aufbauen.

1.0.0210 / 9033 © Integrata AG 3-1

Professionelle Klassen und Objekte

3.1 Einleitung.. 3-3

3.2 Klassenhierarchien ... 3-3

3.2.1 Das Liskovsche Substitutionsprinzip (LSP)........................ 3-5

3.2.2 Die Holper-Regel ... 3-5

3.2.3 Mehrfachvererbungen.. 3-6

3.3 Schnittstellen .. 3-8

3.3.1 Hierarchieschnittstellen.. 3-8

3.3.2 Fähigkeitsschnittstellen.. 3-10

3.3.3 Mix-Ins ... 3-11

3.3.4 Parallele Schnittstellen-Hierarchien 3-14

3.3.5 Client-Schnittstellen ... 3-15

3.3.6 Das Schnittstellen-Abgrenzungs-Prinzip (Interface-
Segregation-Principle ISP)... 3-15

3.4 Klassengrößen ... 3-20

3.4.1 Das Visions-Prinzip.. 3-22

3.4.2 Das Einzelne-Verantwortlichkeits-Prinzip
(Single-Responsibility-Principle – SRP) 3-23

3.5 Änderungen ermöglichen ... 3-24

3.5.1 Das Offen-Gesperrt-Prinzip
(Open-Closed-Principle – OCP)....................................... 3-24

3 Professionelle Klassen und Objekte

3-2 © Integrata AG 1.0.0210 / 9033

3.5.2 Das Prinzip der umgekehrten Abhängigkeiten
(Dependency-Inversion-Principle – DIP).......................... 3-26

3.6 Zusammenfassung... 3-28

Professionelle Klassen und Objekte 3

1.0.0210 / 9033 © Integrata AG 3-3

3 Professionelle Klassen und Objekte

3.1 Einleitung

In diesem Kapitel bauen wir auf den Grundlagen des vorherigen Kapi-
tels auf, und beschäftigen uns mit den Details, die eine gute Klasse von
einer professionellen Klasse unterscheiden. Wir beschäftigen uns ins-
besondere mit dem Zusammenspiel mehrerer Klassen, sei es über
Vererbung oder Assoziationen.

Weiterhin legen wir einige Regeln und Prinzipien fest, die wir auch in
weiteren Kapiteln immer wieder aufgreifen werden.

Insbesondere gehen wir dabei auf fünf Prinzipien zur Klassenmodellie-
rung ein, die Robert C. Martin in einem Artikel1 formuliert bzw. zusam-
mengefasst2 hat.

3.2 Klassenhierarchien

Zunächst wollen wir uns mit Klassenhierarchien auseinandersetzen und
dabei insbesondere mit der Frage, wann es sinnvoll ist, eine Klasse von
einer anderen abzuleiten. Um diese Frage zu motivieren, beginnen wir
mit einem kleinen Beispiel:

Es gibt eine Klasse Person und eine Klasse Buchhaltung. Beide be-
sitzen eine Methode darstellungsName(), der den fachlichen
Namen der jeweiligen Instanz in einer nutzerfreundlichen Form zu-
rückliefert.

Person

darstellungsName() : String

Buchhaltung

darstellungsName() : String

Abbildung 3-1: Zwei Basisklassen

Eine Möglichkeit, die sich leicht aufzudrängen scheint, ist es, eine ge-
meinsame Oberklasse zu schaffen, die eben die Methode darstel-
lungsName() definiert (wahrscheinlich abstrakt). Aufdrängen deshalb,

1 http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
2 Nicht alle diese Prinzipien stammen von ihm selbst.

3 Professionelle Klassen und Objekte

3-4 © Integrata AG 1.0.0210 / 9033

weil leider die erste Begründung für Vererbung die Vermeidung von
doppeltem Code zu sein scheint. Tatsächlich wird diese Begründung in
Ausbildung und Unterricht aber nur deshalb oft zuerst genannt, weil
diese Begründung deutlich leichter zu verstehen und einzusehen ist, als
das Konzept der Polymorphie.

Tatsächlich ist es unzweckmäßig bzw. in der Regel sogar schlichtweg
falsch, hier eine gemeinsame Oberklasse einzubringen. Der erste und
vornehmlichste Zweck der Vererbung ist eben nicht, Code einzusparen,
sondern Beziehungen zwischen den beteiligten Klassen darzulegen
(ist-ein-Beziehungen, bzw. Spezialisierungen). Bringt man eine Klasse
in eine Vererbungsbeziehung mit einer anderen Klasse, mit der Sie in-
haltlich nichts zu tun hat, so missbraucht man den Mechanismus, wor-
unter zu allererst die Verständlichkeit leidet.

Natürlich gibt es Situationen, in denen Beziehungen notwendigerweise
gegen diesen Grundsatz verstoßen (allen voran haben objektorientierte
Sprachen ja in der Regel eine gemeinsame Oberklasse, von der alle
Klassen ableiten – im Falle von Java ist das java.lang.Object), und
wir werden weiter unten auch einen Mechanismus kennenlernen, mit
dem wir die ja ohne Zweifel vorhandenen Gemeinsamkeiten zusam-
menfassen können, ohne die Vererbung zu verbiegen.

Regel 3-1: Vererbung sollte nur dazu benutzt werden, tatsächliche
Spezialisierungen zu beschreiben. (Vers)

Allerdings ist hier zumindest in bestimmten Fällen Vorsicht geboten,
manchmal kann die Spezialisierungseigenschaft auch in die Irre führen.

Ein klassisches Beispiel ist das Kreis-Ellipse-Problem:

Es gibt eine Klasse Kreis und eine Klasse Ellipse. Aus geometrischer
Sicht ist folgende Aussage sicher richtig:

Ein Kreis ist eine spezielle Ellipse (bei der eben beide Halbachsen
gleich lang sind).

Leider kann das aus objektorientierter Sicht je nach Anwendungsfall
in die falsche Richtung führen. Unsere Ellipse könnte beispielsweise
zwei Methoden skaliereX() und skaliereY() besitzen (bei-
spielsweise in einem Grafikprogramm). Da Kreis eine Unterklasse
von Ellipse ist, würde Kreis diese beiden Methoden erben, die aber
für einen Kreis unzulässig wären, da nach einer Anwendung der
Kreis wahrscheinlich kein Kreis mehr wäre.

Professionelle Klassen und Objekte 3

1.0.0210 / 9033 © Integrata AG 3-5

3.2.1 Das Liskovsche Substitutionsprinzip (LSP)

Eine Möglichkeit, dieses Problem zu erkennen, bietet das Liskovsche
Substitutionsprinzip3. Es lautet folgendermaßen:

Sei q(x) eine beweisbare Eigenschaft von Objekten x des Typs T.
Dann soll q(y) für Objekte y des Typs S wahr sein, wobei S ein Un-
tertyp von T ist.

Versuchen wir, diesen ziemlich akademischen Satz auf unser Kreis-
Ellipse-Problem anwenden: Unsere beweisbare Eigenschaft lautet in
diesem Fall „die Achsen können unabhängig voneinander skaliert wer-
den“ (beweisbar bedeutet in diesem Fall: die Methoden werden korrekt
ausgeführt und das Ergebnis ist das zu erwartende4).

Versuchen wir noch zwei weitere Formulierungen:

Überall, wo die Oberklasse verwendet wird, muss auch bedenkenlos
eine Instanz der Unterklasse eingesetzt werden können.5

Oder, im Vorgriff auf Unit-Tests:

Alle Tests, die auf eine Instanz der Oberklasse korrekt ausgeführt
werden, müssen auch auf Instanzen der Unterklasse korrekt ausge-
führt werden können.

Das Liskovsche Substitutionsprinzip ist eines der erwähnten fünf Prinzi-
pien von Robert C. Martin. Allerdings hat er sich einer einfacheren For-
mulierung bedient, die ungefähr unserer ersten Umdeutung entspricht:

Regel 3-2: (LSP) Unterklassen müssen an die Stelle ihrer Oberkla-
sen treten können. (Test, Vers)

3.2.2 Die Holper-Regel

Offen bleibt natürlich die Frage, wie man erkennt, ob eine Vererbung
sinnvoll ist oder nicht. Im vorangegangen Kapitel haben wir die Holper-
Regel definiert, die wir im Folgenden noch um eine zweite Regel erwei-
tern wollen:

Regel 3-3: (2. Holper-Regel) Lässt sich für die Anwendung einer
objektorientierten Technik kein vernünftiger (nicht-
holpriger) Name finden, so ist die Technik nicht korrekt
angewendet. (Vers)

Wenden wir die Holper-Regeln auf das obige Beispiel an. Wie könnte
eine gemeinsame Oberklasse heißen? Zwei wenig sinnvolle Möglich-

3 1993 von Barbara Liskov und Jeannette Wing formuliert
4 Ansonsten wäre es ja auch denkbar, dass skaliereX() und skaliereY() für einen Kreis

einfach das gleiche tun würden. Das wäre aber keinesfalls das zu erwartenden Er-
gebnis.

5 Was ja das Grundprinzip der Polymorphie ist.

3 Professionelle Klassen und Objekte

3-6 © Integrata AG 1.0.0210 / 9033

keiten wären DarstellungsObjekt oder DarstellbaresObjekt.
Beides klingt schon ziemlich gekünstelt. Auch die Sprechweise klingt
nicht besser:

Eine Person ist eine (besondere Form) eines darstellbaren Objektes.

Beide Holper-Regeln deuten also deutlich darauf hin, dass eine ge-
meinsame Oberklasse hier nicht das Mittel der Wahl ist. Bleibt natürlich
die Frage: Wenn nicht so, wie dann? Schließlich wollen wir ja trotzdem
doppelten Code vermeiden.

3.2.3 Mehrfachvererbungen

Eine mögliche Lösung wäre die Verwendung von Mehrfachvererbun-
gen. Hierbei handelt es sich um eine Architektur, in der eine Klasse von
zwei Oberklassen erbt. In der Sprechweise wäre das eine „und“ Ver-
knüpfung von zwei „ist-ein“-Bedingungen.

Ein Amphibienfahrzeug ist ein Landfahrzeug und ein Wasserfahrzeug.

Zunächst erscheint der Satz vollständig sinnvoll und logisch, verstößt
also nicht gegen die Holper-Regel. Allerdings gibt es im Detail einige
Probleme:

• Es kann zu Überschneidungen bei Methoden und Attributnamen
kommen, die über sprachliche Mittel behandelt werden müssen, was
die Lesbarkeit in der Regel deutlich erschwert.

• Es kann zum klassischen Diamant-Problem kommen, bei der eine
Klasse von zwei Oberklassen erbt, die wieder von einer gemeinsa-
men Klasse erben.

In unserem Beispiel erben sowohl Landfahrzeug als auch Wasser-
fahrzeug von Fahrzeug. Besitzt nun Fahrzeug eine Methode fah-
ren(), welche Methode wird dann aufgerufen, wenn auf einer In-
stanz eines Amphibienfahrzeuges fahren() aufgerufen wird? Die
des Landfahrzeuges, des Wasserfahrzeuges oder beide? Wird das
Fahrzeug konkret als Wasserfahrzeug oder als Landfahrzeug ange-
sprochen, ist der Fall recht klar. Bei einem Amphibienfahrzeug direkt
kennt der Entwickler zumindest die Problematik und kann mit ange-
ben, welche Methode gemeint ist.

Problematisch wird es aber, wenn die Methode fahren() auf ein
beliebiges Fahrzeug aufgerufen wird, das tatsächlich ein Amphibien-
fahrzeug ist. Möglicherweise kennt der aufrufende Code die Unter-
klassen gar nicht und hat somit gar keine Chance, auszuwählen,
welche Methode ausgeführt wird.

Professionelle Klassen und Objekte 3

1.0.0210 / 9033 © Integrata AG 3-7

Landfahrzeug

fahren() : void

Wasserfahrzeug

fahren() : void

Amphibienfahrzeug

fahren() : void

Fahrzeug

fahren() : void

Abbildung 3-2: Diamant-Vererbung

Relativ schnell fällt auf, dass diese Struktur natürlich das Liskovsche
Substitutionsprinzip zumindest gefährdet. Um dieses Problem zu be-
handeln, haben unterschiedlich Programmiersprachen verschiede Lö-
sungen bereitgestellt. Die einfachste lautet: Mehrfachvererbung ist nicht
erlaubt, zumindest nicht was die Implementierung angeht (Java erlaubt
beispielsweise, das eine Klasse mehrere Interfaces (also Schnittstel-
lenbeschreibungen) implementiert, aber konkrete Methoden werden nur
von einer einzigen Klasse, nämlich der Oberklasse geerbt, womit das
obige Problem effektiv verhindert wird).

In der Theorie führen Mehrfachvererbungen häufig zu Lagerkämpfen, in
der Praxis zu schwer nachvollziehbarem Code, was uns zur nächsten
Regel motiviert:

Regel 3-4: Mehrfachvererbung ist zu vermeiden. (Lesb, Vers)

3 Professionelle Klassen und Objekte

3-8 © Integrata AG 1.0.0210 / 9033

3.3 Schnittstellen

3.3.1 Hierarchieschnittstellen

Interfaces haben wir bisher als Möglichkeit kennengelernt, Schnittstel-
len von der Implementierung zu trennen. In diesem Fall erfüllt die
Schnittstelle normalerweise die Aufgabe einer abstrakten Klasse in der
Vererbungshierarchie, d.h. die Schnittstelle selbst wird wie eine Ober-
klasse behandelt6. Diese Schnittstellen wollen wir, wenn die Unter-
scheidung deutlich gemacht werden soll, als Hierarchieschnittstelle be-
zeichnen. Sie ist aus objektorientierter Sicht keine echte Schnittstelle,
sondern eigentlich eine abstrakte Klasse ohne implementierte Metho-
den und ohne Felder7.

Für Hierarchieinterfaces gelten im Großen und Ganzen die gleichen
Regeln wir für normale Klassen auch: Der Name sollte ein Substantiv
sein, auf hohe Kohäsion und gute Kapselung ist zu achten (wobei gera-
de die Kapselung hierbei natürlich nur deutlich schwächer ausgeprägt
ist – gute Kapselung bedeutet hierbei, das nur Dinge in die Schnittstelle
aufgenommen werden, die auch wirklich öffentlich gemacht werden sol-
len).

Benzinauto

tanken() : void

tank : int
AutoImpl

fahren() : void

gefahren : int

Elektroauto

laden() : void

batterie : Int

<<interface>>

Auto

fahren() : void

Abbildung 3-3: Hierarchieschnittstelle

Die Sprechweise ist die gleiche, wie bei der normalen Vererbung, und
damit gilt auch die Holper-Regel. Eine alternative Formulierung, die für
die direkte Beziehung zwischen AutoImpl und Auto einen saubereren
Satz ergibt, lautet „ist eine Implementierung von“ oder „ist ein konkre-
tes“.

Weil eine Hierarchieschnittstelle prinzipiell eine (maximal) abstrakte
Klasse ist und wir weiter oben bereits Mehrfachvererbungen ausge-
schlossen haben, können wir hier unsere Regel noch ein wenig ver-
deutlichen:

6 Für Sprachen, die kein eigenes Sprachelement für Schnittstellen besitzen, ist das

sowieso der Normalfall.
7 Dennoch wird man in Sprachen, die es unterstützen, das Sprachelement für Schnitt-

stellen dafür verwenden (z.B. Interfaces in Java)

Professionelle Klassen und Objekte 3

1.0.0210 / 9033 © Integrata AG 3-9

Regel 3-5: Eine Klasse sollte immer nur entweder von einer Ober-
klasse ableiten oder eine Hierarchieschnittstelle imp-
lementieren. (Vers)

Umgekehrt wird eine Hierarchieschnittstelle häufig nur eine direkte Imp-
lementierung besitzen (wenn man von Dummy-Implementierungen o.ä.
für Tests absieht).

Namen von Hierarchieschnittstellen

Wir sollten uns einen Moment mit der Vergabe von Namen bei Hierar-
chieschnittstellen beschäftigen. Zwischen einer Schnittstelle und ihrer
direkt implementierenden Klasse existiert zwangsläufig eine sehr enge
Bindung, die sich auch im Namen wiederfindet. Hier existieren zwei
gängige Varianten:

<<interface>>

Auto

AutoImpl

<<interface>>

IAuto

Auto

Abbildung 3-4: Schnittstellennamen

Der Autor bevorzugt die erste Variante. Wenn wir uns die Regeln der
Kopplung zu Eigen machen, dann werden wir möglichst immer nur mit
den Schnittstellen und nicht mit den konkreten Implementierungen ar-
beiten, der Name der Schnittstelle wird also häufig in unserem Code
vorkommen (je nach Variante also Auto oder IAuto). Da das zusätzli-
che „I“ keine neue Information einbringt, den Lesefluss aber möglicher-
weise hemmt, erscheint die erste Variante die sinnvollere. Das können
wir auch wieder als Regel definieren:

Regel 3-6: Der Name des Konstruktes (Klasse, Schnittstelle), der
im Code am häufigsten verwendet wird, sollte der
„schönste“ sein. (Lesb)

Mit der Namensvergabe werden wir uns in einem späteren Kapitel noch
ausführlicher beschäftigen.

Bleibt hinzuzufügen, dass in beiden Sprachvarianten abstrakte Klassen,
die nur dazu dienen, gemeinsame Funktionalität vorzudefinieren (also

3 Professionelle Klassen und Objekte

3-10 © Integrata AG 1.0.0210 / 9033

ein reines, technisches Hilfsmittel für Ableiter sind) mit dem Wort „Abs-
tract“ oder „Abstrakt“ beginnen sollten (also zum Beispiel Abstrac-
tAuto).

3.3.2 Fähigkeitsschnittstellen

Offen ist aber immer noch die Frage, wie wir unser Darstellungsproblem
aus Abschnitt 3.2 lösen. Versuchen wir es zunächst mal mit einem bes-
seren Satz (kehren wir also die Holperregel um):

Eine Person ist darstellbar.

Eine Buchhaltung ist darstellbar.

Klingt zumindest nicht mehr holprig. Allerdings haben wir jetzt statt ei-
nes zweiten Substantivs ein Adjektiv in unserem Satz. Hierfür bietet die
Objektorientierung ein weiteres Konzept an, das der Fähigkeitsschnitt-
stelle. Eine Fähigkeitsschnittstelle beschreibt, was ein Objekt einer
Klasse tun kann, also welche Methode es besitzt. Sie beschreibt aber
nicht, wie diese Fähigkeit umgesetzt wird. Sie ist damit eine klassische
Schnittstelle.

Im Gegensatz zur Hierarchieschnittstelle kann eine Klasse beliebig vie-
le Fähigkeitsschnittstellen (zusätzlich zu ihrer einen Oberklasse bzw. ih-
rer Hierarchieschnittstelle) besitzen. Eine andere Bezeichnung für Fä-
higkeitsschnittstelle ist Querschnittschnittstelle, weil sie querschnittliche
Aufgaben abbildet.

Person

darstellungsName() : String

Buchhaltung

darstellungsName() : String

<<interface>>

Darstellbar

darstellungsName() : String

DIenst

Abbildung 3-5: Fähigkeitsschnittstelle

Der große Vorteil an Fähigkeitsschnittstellen ist, dass auch sie poly-
morph eingesetzt werden können, d.h. eine (eher technische) Kompo-
nente, die das konkrete, fachliche Objekt überhaupt nicht kennen muss,
kann dennoch mit allen Objekten, die dieses Interface implementieren,
zusammenarbeiten. Das reduziert die Kopplung und erhöht die Wieder-
verwendbarkeit dieser Komponente ungemein.

In dem konkreten oberen Beispiel könnte man beispielsweise eine
Klasse „ListenDruck“ erwarten, deren Aufgabe es ist, dem Nutzer ei-

Professionelle Klassen und Objekte 3

1.0.0210 / 9033 © Integrata AG 3-11

ne Liste von Objekten auszudrucken. Statt nun für jedes ausdruckbare
Objekt eine eigene Methode zu definieren, reicht es, eine einzige Me-
thode drucke(Liste<Darstellbar>) zu erstellen.

Ein anderes, konkretes Beispiel aus der Java-Klassenbibliothek (leicht
modifiziert):

Das Interface Comparable beschreibt die Fähigkeit „vergleichbar“,
d.h. jedes Objekt einer Klasse, die dieses Interface implementiert, ist
mit anderen Objekten derselben Klasse vergleichbar (bezüglich einer
Reihenfolge, der natürlichen Ordnung). Die einzige Methode des In-
terfaces, compareTo(Object) liefert nur mit einer Zahl zurück,
welches von beiden Objekten kleiner ist. Kann man alle Elemente ei-
ner Liste paarweise mit einander vergleichen, so kann man damit ef-
fektiv die Liste auch sortieren, was durch die statische Methode
Collections.sort(List) auch ermöglicht wird. Durch das Aus-
lagern dieser querschnittlichen, nicht fachlichen Fähigkeit in ein ei-
genes Interface kann man jetzt mit minimalem Aufwand Listen von
eigenen, fachlichen Objekten sortieren.

<<interface>>

Comparable

compareTo(other : void) : int

Collections

sort(List<Comparable> : list) : void

positiv, wenn das andere Objekt kleiner ist

negativ, wenn das andere Objekt größer ist

0, wenn keine Aussage möglich (Objekte gleich)

Teilnehmer

geburtstag : Date

Abbildung 3-6: Das Comparable Interface

Regel 3-7: Querschnittliche Fähigkeiten werden über Fähigkeits-
schnittstellen realisiert. (Wied, Vers, Test)

Fähigkeitsschnittstellen sind also ein äußerst nützliches Hilfsmittel und
umgehen dabei die Probleme von Mehrfachvererbung, da jede Metho-
de nur einmal implementiert sein kann.

3.3.3 Mix-Ins

Der Nachteil von Fähigkeitsschnittstellen ist, dass dadurch der dupli-
zierte Code noch nicht verschwindet. Besteht die Schnittstelle nur aus
disjunkten Methoden (bzw. aus einer einzigen Methode), so ist die Imp-
lementierung dieser Methode sicher vom eigenen Objekt abhängig.
Was aber, wenn die Implementierungen der Methoden aufeinander
aufbauen?

3 Professionelle Klassen und Objekte

3-12 © Integrata AG 1.0.0210 / 9033

Definieren wir eine Schnittstelle Rechteckig. Passend dazu zwei
Klassen, Rechteck und Bildausschnitt, die aus fachlichen
Gründen keinen gemeinsamen Vorfahren haben, aber beide Recht-
eckig implementieren.

<<interface>>

Rechteckig

getOben() : int

getLinks() : int

getRechts() : int

getUnten() : int

breite() : int

hoehe() : int

flaeche() : int

skaliere(x : float,y : float) : void

bewege(x : int,y : int) : void

Rechteck Bildausschnitt

Zusätzlich Setter für

oben, unten, links, rechts

Abbildung 3-7: Nicht-disjunkte Schnittstellen-Methoden

Zusätzlich besitzt das Interface für die vier Koordinatenvariablen
auch noch Setter, die wir hier aus Platzgründen nicht aufgeführt ha-
ben.

Professionelle Klassen und Objekte 3

1.0.0210 / 9033 © Integrata AG 3-13

Wenn wir nun beide Klassen implementieren, dann werden zumin-
dest die Implementierungen der unteren, nicht kursiven Methoden
sich auf die Implementierungen der Getter und Setter abstützen und
deshalb in beiden Implementierungen identisch sein:

 public int breite() {

 return getRechts() – getLinks();

 }

 public int hoehe() {

 return getUnten() – getOben();

 }

 public int flaeche() {

 return breite() * hoehe();

 }

 public void skaliere(float x, float y) {

 setRechts(getLinks() + breite * x);

 setUnten(getOben() + hoehe * y);

 }

 public void bewege(int x, int y) {

 setLinks(getLinks() + x);

 setRechts(getRechts() + x);

 setOben(getOben() + y);

 setUnten(getUnten() + y);

 }

Tatsächlich würden diesen Methoden in fast allen Implementierungen
von Rechteckig genauso aussehen. Um diesen duplizierten Code zu
vermeiden, gibt es Techniken, die eine Hilfsklasse nutzen, die die ge-
meinsamen Methoden als statische Methoden anbieten.

Die Alternative dazu sind sogenannte Mix-Ins, die einige Sprachen (z.B.
Scala) liefern (ein anderer Name ist Trait). Mix-Ins sind abstrakte Klas-
sen, die als Fähigkeitsschnittstellen auftreten, d.h. sie definieren nicht
nur die Schnittstelle, sondern auch konkrete Implementierungen der
abgeleiteten Methoden.

Ein weiteres nützliches Beispiel wäre ein erweitertes Comparable In-
terface, das zusätzlich noch (abgeleitete) Methoden wie grea-
terThan(), lessThan(), equals(), notEquals() usw. definieren
könnte. Damit hat man durch das Implementieren einer Methode (com-
pareTo()) auf einen Schlag die restlichen Methoden „für lau“ gewon-
nen.

3 Professionelle Klassen und Objekte

3-14 © Integrata AG 1.0.0210 / 9033

Nicht verschwiegen werden darf allerdings, dass natürlich bei Mix-Ins
die Gefahren der Mehrfachvererbung zumindest wieder denkbar sind,
auch wenn sie deutlich geringer sind, da wir es hier ja nicht mit fachli-
chen, sondern mit querschnittlichen Schnittstellen zu tun haben.

3.3.4 Parallele Schnittstellen-Hierarchien

Eine besondere Alternative zu den Hierarchieschnittstellen stellen die
parallelen Hierarchien dar. Hierbei wird jede Vererbung sowohl mit
Schnittstellen als auch mit Implementierungen abgebildet. Der Vorteil ist
eine saubere Architektur (modelliert wird nur mit dem Interface-Baum)
und die Möglichkeit einer äußerst losen Kopplung, ohne die Fähigkeiten
der Polymorphie aufzugeben.

Als Beispiel sei hier ein Auszug aus dem Collection-Framework von Ja-
va gegeben:

<<interface>>

Collection

AbstractCollection

<<interface>>

List

<<interface>>

Set

<<interface>>

SortedSet

ArrayListHashSet

TreeSet

AbstractListAbstractSet

AbstractSortedSet

Abbildung 3-8:Parallele Hierarchien

Regel 3-8: Fachliche Vererbungen sollten als Parallele Hierarchien
abgebildet werden. (Wied, Test)

Der Nachteil dieser Technik soll natürlich auch nicht verschwiegen wer-
den: Die Anzahl der Klassen und Dateien steigt damit natürlich enorm
an.

Professionelle Klassen und Objekte 3

1.0.0210 / 9033 © Integrata AG 3-15

3.3.5 Client-Schnittstellen

Im Laufe der Entwicklung wachsen Schnittstellen naturgemäß immer
weiter an. Neue Funktionalität, die ein Client benötigt, wird mit aufge-
nommen und die Schnittstelle immer schwergewichtiger. Irgendwann
kristallisiert sich heraus, dass bestimmte Clients auch nur bestimmte
Teile der Schnittstelle nutzen. Die Schnittstelle selbst verliert ihre Kohä-
sion.

3.3.6 Das Schnittstellen-Abgrenzungs-Prinzip (Interface-Segregation-
Principle ISP)

Ein weiteres der Martin-Prinzipien ist das Schnittstellen-Abgrenzungs-
Prinzip, das sich mit genau diesem Problem beschäftigt. Es lautet fol-
gendermaßen:

Regel 3-9: Clients sollten nicht gezwungen sein, sich auf Schnitt-
stellen abzustützen, die sie nicht benutzen. (Test, Vers,
Wied)

Tun sie das nämlich doch, so koppelt man unweigerlich die unter-
schiedlichen Clients aneinander. Eine Änderung an einem Client kann
durchaus eine Änderung des Server-Interfaces nach sich ziehen, eine
Änderung, die sich damit auch wieder auf alle Clients auswirkt – was
zumindest Kompilierzeit kostet, gerade wenn die verwendete Program-
miersprache nur statisch verlinkt.

Das Problem der ja eigentlich vernachlässigbaren Kompilierzeit ist aber,
dass wir als Programmierer ja schnell dazu neigen, einem Problem aus
dem Weg zu gehen. Wenn wir die Wahl haben, eine saubere Lösung
für ein Problem umzusetzen, die allerdings eine Stunde Kompilierzeit
nach sich zieht (man denke nur an die notwendigen Tests!) oder eine
Quick-And-Dirty-Lösung, die aber eigentlich an der völlig falschen Stelle
ansetzt, anzugehen, so wird bei steigendem Zeitdruck natürlich die
Versuchung der zweiten Lösung immer größer.

Schauen wir uns das Prinzip an dem Beispiel an, mit dem das Prinzip
ursprünglich motiviert wurde.

Eine Tür kann versperrt und entsperrt werden und kennt ihren Zu-
stand (bezüglich der Sperre).

Eine Anwendung dieser Klasse ist TimerTür, die einen Alarm signa-
lisiert, wenn sie zu lange offen steht. Zu diesem Zweck registriert sie
sich bei einer Instanz der Klasse Timer.

Ein Timer kann TimerClient-Objekte registrieren und deren Me-
thode timeout() aufrufen, wenn die Zeit abgelaufen ist.

3 Professionelle Klassen und Objekte

3-16 © Integrata AG 1.0.0210 / 9033

Erste Möglichkeit: Normale Vererbung

Die Frage ist jetzt, wie Tür beide Interfaces implementieren kann. Falls
die verwendete Programmiersprache keine Mehrfachvererbung und
keine Interfaces unterstützt, ist die einzige Möglichkeit TimerClient
und Tür von einander ableiten zu lassen. Da TimerClient das weit-
aus generischere Interface ist (wahrscheinlich werden mehr Projekte
Timer benötigen als Türen), sollten wir natürlich das TimerClient-
Interface so rein wie möglich halten.

<<interface>>

TimerClient

timeout() : void

<<interface>>

Tür

sperre() : void

entsperre() : void

istGesperrt() : boolean

Timer

registriere(client : TimerClient) : void

TimerTür

sperre() : void

entsperre() : void

istGesperrt() : boolean

timeout() : void

BrandschutzTür

sperre() : void

entsperre() : void

istGesperrt() : boolean

timeout() : boolean

Abbildung 3-9: Einfache Vererbung

Das Problem an dieser Lösung ist, dass eine andere Tür, die über-
haupt nichts mit einem Timer zu tun hat (z.B. BrandschutzTür),
trotzdem das Interface TimerClient erbt und damit immer eine zu-
sätzliche Last mit sich herumträgt. Man kann das zwar vom Schreib-
aufwand her begrenzen, indem man TimerClient eine leere Imple-
mentierung für timeout() mitgibt, es bleiben aber dennoch drei Prob-
leme:

• Wenn TimerClient:timeout() nicht mehr abstrakt ist, so unter-
stützt der Compiler uns bei Klassen, die wirklich einen Timer nutzen

Professionelle Klassen und Objekte 3

1.0.0210 / 9033 © Integrata AG 3-17

wollen nicht mehr, indem er uns zwingt, die Methode auch tatsäch-
lich zu implementieren.

• Die Schnittstelle von BrandschutzTür ist trotzdem durch fachfrem-
de Inhalte verschmutzt.

• Jede Änderung am TimerClient führt ggf. dazu, dass auch
BrandschutzTür (und damit jede Klasse, die BrandschutzTür
oder eine andere Tür nutzt) neu kompiliert werden muss.

Zweite Möglichkeit: Mehrfachvererbung

Die zweite Möglichkeit, die wir haben, besteht in der Mehrfachverer-
bung. Tür und TimerClient sind unabhängig voneinander, der Ti-
mer bekommt nur einen beliebigen TimerClient zu sehen, und ein
Benutzer nur das Tür Interface. Trotzdem muss natürlich TimerTür
beide Interfaces implementieren und damit auch alle Methoden beinhal-
ten.

<<interface>>

Tür

sperre() : void

entsperre() : void

istGesperrt() : boolean

TimerTür

sperre() : void

entsperre() : void

istGesperrt() : boolean

timeout() : void

<<interface>>

TimerClient

timeout() : void

Timer

registriere(client : TimerClient) : void

BrandschutzTür2

sperre() : void

entsperre() : void

istGesperrt() : boolean

Abbildung 3-10: Mehrfachvererbung

Diese (im Artikel von R. Martin favorisierte) Lösung hat allerdings aus
Sicht des Autors immer noch einige Nachteile:

• Die Implementierung von TimerTür ist immer noch nicht kohäsiv.

• TimerTür besitzt eine Methode timeout(), die fachlich keine
Aussagekraft besitzt, ihr Name wird nicht durch ihre fachliche Aufga-
be definiert, sondern durch die Definition der Komponente Timer.

• Die Art des Timers, also welche konkrete Klasse genutzt wird, sollte
eigentlich ein Implementierungsdetail von TimerTür sein, ein Nutzer
der TimerTür wird nie direkt auf den Timer zugreifen. Trotzdem ist
der Timer indirekt sichtbar gemacht.

3 Professionelle Klassen und Objekte

3-18 © Integrata AG 1.0.0210 / 9033

• Sie verstößt gegen die Regel, dass eine Klasse nur eine einzige Hie-
rarchie-Schnittstelle oder Oberklasse haben sollte, hier sind es zwei.
Das könnten wir allerdings dadurch lösen, dass wir TimerClient in
eine Fähigkeitsschnittstelle umwandeln (durch Umbenennen in Zeit-
gesteuert, bzw. indem wir sie einfach als solche betrachten).

• Wenn mehr als ein Timer genutzt wird (beispielsweise noch ein Ti-
mer der einmal im Monat die Tür öffnet und wieder schließt, damit
sie sich nicht festfrisst), muss die Methode timeout() noch deutlich
mehr bewältigen (nämlich auch noch überprüfen, welcher Event das
eigentlich war).

Die aus Sicht des Autors beste Lösung ist die dritte Möglichkeit:

Dritte Möglichkeit: Das ADAPTER Pattern

Auf Design Patterns gehen wir später noch ausführlicher ein. Für jetzt
soll die Definition genügen, dass ein Design-Pattern eine formulierte
Lösung für ein gängiges Problem ist. Das Adapter-Pattern löst das
Problem, dass eine Schnittstelle kompatibel zu einer (ähnlichen) ande-
ren gemacht werden soll, ohne die Schnittstellen selbst zu verändern.
Die Lösung erfolgt über einen Übersetzer (den Adapter), der nach au-
ßen das neue Interface implementiert, innen aber Zugriff auf das eigent-
liche Objekt (mit der alten Schnittstelle hat) und die Aufrufe übersetzt
und weiterleitet.

In unserem Fall wäre der Adapter also ein TürTimerAdapter, eine
Klasse, die nach außen als TimerClient auftritt und daher beim Ti-
mer registriert werden kann, innen aber Zugriff auf eine Instanz von
TimerTür hat und jetzt die externe Nachricht (timeout()) in eine in-
terne fachliche Nachricht umwandelt (z.B. alamiere()). Alamiere()
ist im Gegensatz zu timeout() nicht nur fachlich, was uns die ge-
wünschte Trennung zwischen fachlichen und technischen Elementen
erlaubt, sie muss darüber hinaus auch nicht public sein (in der Regel
reicht package, da ja der TürTimerAdapter im gleichen Paket liegt),
was wiederum unsere Kapselung fördert.

Professionelle Klassen und Objekte 3

1.0.0210 / 9033 © Integrata AG 3-19

<<interface>>

TimerClient

timeout() : void

<<interface>>

Tür

sperre() : void

entsperre() : void

istGesperrt() : boolean

BrandschutzTür2

sperre() : void

entsperre() : void

istGesperrt() : boolean

Timer

registriere(client : TimerClient) : void

TimerTür2

sperre() : void

entsperre() : void

istGesperrt() : boolean

~alamiere() : void

TürTimerAdapter

timeout() : void

1

timeout() ruft alarmiere() auf

Abbildung 3-11: Tür mit Adapter

Wichtig an dieser Lösung ist, dass TürTimerAdapter eine rein tech-
nische Klasse ist, die dementsprechend auch nur technische Aufgaben
erfüllt. Sie übersetzt Aufrufe in einer „Sprache“ (die des Timers) in Auf-
rufe in der Sprache der TimerTür, damit sollten sie sich auch darauf
beschränken. In ihren Aufgabenbereich fällt umwandeln von Parame-
tern und (primitives) prüfen von Wertebereichen, aber alles andere ist
Aufgabe der fachlichen Methode in TimerTür.

Wollen wir das oben kurz erwähnte Beispiel von mehr als einem Timer
(Alarmierung und monatliches Bewegen), so haben wir jetzt die Mög-
lichkeit, zwei Adapter zu schreiben (die dann aber andere Namen ha-
ben sollten, z.B. AlarmierungTimerAdapter und WartungTimerA-
dapter), oder es bei einem Adapter zu belassen, dieser muss dann in
seiner timeout()-Methode entscheiden, welche Methode von Ti-
merTür endgültig aufgerufen wird.

Ein weiterer Vorteil dieser Lösung ist, dass sie auch anwendbar ist,
wenn die verwendete Sprache weder Mehrfachvererbung noch Inter-
faces unterstützt.

Unter Java lässt sich diese Struktur sehr elegant mit dem Mechanismus
der inneren Klasse lösen (eine Klasse, die in eine andere eingebettet ist
und implizit Zugriff auf die Instanz der äußern Klasse hat, die sie er-
zeugt hat). Damit könnten die fachlichen internen Methoden alarmie-
re() und wartung() sogar private sein (eine innere Klasse unter
Java kann auf private-Methoden der äußeren Klasse zugreifen). Da die

3 Professionelle Klassen und Objekte

3-20 © Integrata AG 1.0.0210 / 9033

innere Klasse fest der äußeren zugeordnet ist, kann man den Namen
damit sogar noch etwas kürzen (TimerAdapter, vollständig heißt die
Klasse dann TimerTür.TimerAdpater).

Regel 3-10: Das Interface-Segregation-Principle sollte mit Hilfe
des ADAPTER-Patterns umgesetzt werden. (Lesb, Vers,
Wied)

3.4 Klassengrößen

In diesem Abschnitt beschäftigen wir uns mit der Größe einer Klasse.
Hierfür definieren wir als erstes zwei Regeln:

Regel 3-11: Klassen sollten klein sein. (Lesb, Vers, Test)

Regel 3-12: Klassen sollten noch kleiner sein. (Lesb, Vers, Test)

Je kleiner eine Klasse ist, desto leichter ist sie zu überblicken und dem-
entsprechend auch zu verstehen.

Dabei stellt sich die Frage, wie die Größe einer Klasse definiert werden
kann. Ein trivialer Ansatz wäre, Zeichen zu zählen – was natürlich als
Metrik vollkommen ungeeignet ist.

Die nächste Überlegung, eine Metrik, die lange Zeit recht beliebt war,
ist die Anzahl der Zeilen (LOC – Lines of Code). Allerdings kann diese
je nach Sourcecode-Formatierung schon deutlich abweichen. Eine et-
was bessere Metrik sind Anweisungen, genauer Nicht-Kommentar-
Anweisungen (NCSS – Non commenting source statements), diese
sind genauer, aber aufwendiger zu zählen / zu berechnen.

Allerdings sind beide Varianten eher dazu geeignet, Methoden zu be-
werten. Für Klassen empfiehlt sich eine andere Metrik: Die Anzahl der
Verantwortlichkeiten. Die Nähe des Begriffs der Verantwortlichkeit zur
Kohäsion sollte deutlich werden. Wenn alle Methoden fachlich zusam-
menhängen, dann wird die Klasse auch nur eine Verantwortlichkeit ha-
ben. Das ist aber nur zum Teil richtig, Verantwortlichkeiten können tat-
sächlich feiner sein, als fachliche Zusammenhänge.

Professionelle Klassen und Objekte 3

1.0.0210 / 9033 © Integrata AG 3-21

Betrachten wir ein gekürztes Beispiel (entnommen aus „Clean Code“
von Robert C. Martin):

public class SuperDashboard

 extends JFrame

 implements MetaDataUser {

 public String getCustomizerLanguagePath();

 public void setSystemConfigPath(String systemConfigPath);

 public String getSystemConfigDocument();

 public void setSystemConfigDocument(String systemConfigDocument);

 public boolean getGuru();

 public boolean getNoviceState();

 public boolean getOpenSourceState();

 public void showObject(MetaObject object);

 public void showPreogress(String s);

 public boolean isMetadataDirty();

 public void setMetadataDirty(boolean isMetaDataDirty);

 public Component getLastFoucedComponent();

 public void setLastFocusedComponent(Component lastFocused);

 public boolean isMouseSelected();

 public void setMouseSelectState(boolean isMouseSelected);

 public LanguageManager getLanguageManager();

 public Project getProject();

 public Project getFirstProject();

 public Project getLastProject();

 public String getNewProjectName();

 public void setComponentSizes(Dimension dim);

 public String getCurrentDir();

 public void setCurrentDir(String currentDir);

 public void updateStatus(int dotPos, int markPos);

 public void Properties getProps();

 public void String getUserHome();

 public void String getBaseDir();

 public int getMajorVersionNumber();

 public int getMinorVersionNumber();

 public int getBuildNumber();

 public void processMenuItems();

 public void runProject();

 // weitere public Methoden

 // jede Menge private Methoden

}

3 Professionelle Klassen und Objekte

3-22 © Integrata AG 1.0.0210 / 9033

Das diese Klasse zu groß ist, sollte natürlich klar sein. Der geneigte Le-
ser kann versuchen, diese Klasse anhand der Methodennamen in ein-
zelne Verantwortlichkeiten zu zerlegen. Außerdem stellt die Klasse
noch ein deutliches Beispiel für einen Verstoß gegen das Interface-
Segragation-Principle dar.

Betrachten wir eine bessere Version aus demselben Buch:

public class SuperDashboard

 extends JFrame

 implements MetaDataUser {

 public Component getLastFoucedComponent();

 public void setLastFocusedComponent(Component lastFocused);

 public int getMajorVersionNumber();

 public int getMinorVersionNumber();

 public int getBuildNumber();

}

Sieht schon deutlich besser aus. Allerdings enthält diese Klasse noch
mehr als eine Verantwortlichkeit.

3.4.1 Das Visions-Prinzip

Einen ersten Lackmus-Test für unsere Klasse erreichen wir mit Hilfe
des Visions-Prinzips. Es lautet folgendermaßen:

Regel 3-13: (Visions-Prinzip) Jedes Konzept (Pakete, Klassen, Me-
thoden) muss sich verständlich in einem Hauptsatz
(der Vision) beschreiben lassen. (Vers, Wied)

Diese Beschreibung muss nicht alle Feinheiten beinhalten, sollte aber
für sich alleine aussagekräftig genug sein. Ein typisches Zeichen für ei-
nen Verstoß gegen dieses Prinzip ist die Verwendung von Bindewörtern
wie „und“, „oder“, „falls“ oder „außer“.

Versuchen Sie doch einmal, eine Vision für die zweite Version zu for-
mulieren.

SuperDashboard liefert uns Zugriff auf die Komponente, die zuletzt
den Fokus hatte, und gibt die aktuelle Version und Build-Nummer zu-
rück.

Das Visions-Prinzip offenbart uns also, dass unsere Klasse offensicht-
lich zu viel tut.

Professionelle Klassen und Objekte 3

1.0.0210 / 9033 © Integrata AG 3-23

3.4.2 Das Einzelne-Verantwortlichkeits-Prinzip (Single-Responsibility-
Principle – SRP)

Das Single-Responsibility-Principle ist ein weiteres der fünf Prinzipien
von Robert C. Martin. Es lautet folgendermaßen:

Regel 3-14: (SRP) Für jede Klasse sollte es nur einen einzigen
Grund geben, sie zu ändern. (Vers, Wied)

Verantwortlichkeit wird also mit Änderungsgrund gleichgesetzt. Überle-
gen wir, welche Gründe es geben könnte, unser SuperDashboard zu
ändern:

• Eine neue Version wird ausgeliefert (d.h. die Versionsnummer ändert
sich)

• Die Benutzeroberfläche ändert sich.

Beide Änderungen sind disjunkt. Zwar würde sich bei einer Änderung
der Oberfläche wahrscheinlich auch die Versionsnummer ändern, aber
umgekehrt eben nicht.

Anhand potentieller Änderungsgründe lassen sich die Methoden einer
Klasse oft leichter aufteilen. In unserem Beispiel könnten wir die Versi-
ons-Methoden in eine separate Klasse auslagern:

public class Version {

 public int getMajorVersionNumber();

 public int getMinorVersionNumber();

 public int getBuildNumber();

}

Diese Klasse hat definitiv nur eine Verantwortlichkeit, damit eine hohe
Kohäsion und einen starken Wiederverwendbarkeitswert.

Natürlich führt das Zerlegen unserer Klassen in immer mehr kleine
Klassen zu einer deutlichen höheren Anzahl an Gesamtklassen. Die
Komplexität unseres Codes erhöht sich dadurch aber nicht. Vielmehr
findet man sich eher leichter zurecht, da das Konzept einer Klasse bes-
ser durch den Namen beschrieben werden kann.

Wichtig ist dabei nur, dass man seine Klasse vernünftig organisiert, in
Komponenten und Paketen.

Unser Ziel ist damit das folgende:

Unser System besteht aus einer Vielzahl kleiner Klassen (statt weniger
großer). Jede Klasse kapselt eine einzelne Verantwortlichkeit, hat nur
einen einzigen, potentiellen Änderungsgrund und arbeitet mit wenigen

3 Professionelle Klassen und Objekte

3-24 © Integrata AG 1.0.0210 / 9033

anderen Klassen zusammen, um das gewünschte Verhalten abzubil-
den.8

3.5 Änderungen ermöglichen

Wir haben zu Beginn dieses Kapitels die fünf Prinzipien von Robert C.
Martin erwähnt, bisher aber nur drei davon besprochen (das Single-
Responsibility-Principle, das Liskov-Substitution-Principle und das Inter-
face-Segregation-Principle).

Mit den beiden fehlenden Prinzipien wollen wir uns im Folgenden be-
schäftigen.

3.5.1 Das Offen-Gesperrt-Prinzip (Open-Closed-Principle – OCP)

Das Open-Closed-Principal beschäftigt sich mit der Problemstellung
nachträglicher Änderungen an Klassen oder Modulen. Das Ziel sollte es
sein, dass jede nachträgliche Änderung (Erweiterung) an einer Klasse
nicht dazu führt, dass bestehender Code beeinflusst wird (bzw. dass
dieser nicht einmal neu kompiliert werden muss).

Das Prinzip lautet:

Regel 3-15: (OCP) Klassen sollten offen für Erweiterungen, aber
gesperrt für Veränderungen sein. (Wied, Wart)

Zerlegen wir diese Aussage in ihre zwei Bestandteile:

⇒ „Offen für Erweiterungen“

Das Verhalten der Klasse (des Moduls) muss erweiterbar sein. Das
heißt, wir können die Klasse bei neuen Anforderungen so erweitern,
dass die Änderungen eingearbeitet werden. Wir können also das
Verhalten des Moduls ändern.

⇒ „Gesperrt für Veränderungen“

Das Erweitern des Verhaltens sollte nicht dazu führen, dass die
Klasse selbst verändert wird. Im Klartext: weder der Sourcecode der
Klasse, noch die aus dieser Klasse generierten Artefakte (Class-
oder Object-Dateien, DLL- und Jar-Dateien, andere Bibliotheken)
sollten durch die Erweiterung verändert werden.

Zusammen genommen stellen uns diese beiden Aussagen natürlich vor
eine schwierige Aufgabe. Die offensichtlichste Art, das Verhalten einer
Klasse zu ändern, nämlich die Klasse selbst zu modifizieren, wird durch
die zweite Bedingung effektiv verhindert.

Der Schlüssel liegt natürlich in der Abstraktion. Wir erweitern unsere
Klassen, indem wir von ihnen erben und verwenden umgekehrt in unse-

8 Ein Satz, der sich lohnt, auf einem großen Plakat in den Entwicklerbüros aufgehängt

zu werden.

Professionelle Klassen und Objekte 3

1.0.0210 / 9033 © Integrata AG 3-25

rem Client-Code nur die abstrakten Oberklassen oder Interfaces (letzte-
res zieht sich ja durch alle Prinzipien).

Das bedeutet, wir müssen uns frühzeitig Gedanken darüber machen,
ob eine Klasse überhaupt erweiterbar sein soll, und wenn ja, in welchen
Methoden. Und diese Tatsache muss deutlich dokumentiert sein!

Umgekehrt muss verhindert werden, dass Klassen und Methoden, die
nicht überschrieben werden sollen, das auch gar nicht zulassen dürfen9.
Hierunter fallen zum Beispiel Methoden, die Invarianten (den Contract
der Klasse) verletzen könnten.

Formulieren wir das als Regel:

Regel 3-16: Potentielle Oberklassen sollten verhindern, dass ihre
Kind-Klassen jemals das Liskovsche Substitutions-
prinzip verletzen können. (Wied, Wart)

Schauen wir uns das Prinzip an einem einfachen Beispiel an.

Wir haben bei der Definition der Fähigkeitsschnittstelle (Abschnitt 3.3.2,
Seite 3-10) das Java-Interface Comparable kennengelernt. Nehmen
wir nochmal unsere Klasse Teilnehmer hinzu, die dieses Interface imp-
lementiert, und zwar in der Art, dass Teilnehmer nach ihren Nachna-
men sortiert werden (mit Hilfe der Methode Collections.sort()).

Wie können wir jetzt das Verhalten ändern, dass Teilnehmer nach ih-
rem Geburtstag sortiert werden?

Die Methode sort() zu ändern scheidet aus, da es sich dabei um ei-
ne Java-Basisklasse handelt, die wir nicht ändern können.

Wir könnten die Methode compareTo() unseres Teilnehmers über-
schreiben (die ja zwei Teilnehmer mit einander vergleicht), aber damit
würden wir gegen das „Closed“-Prinzip verstoßen, da sich diese Ände-
rung sofort auf alle Module, die Teilnehmer nutzen, auswirken würde.

Eine Alternative wäre, eine Unterklasse von Teilnehmer zu schreiben,
die nur die compareTo()-Methode ersetzt (z.B. GeburtstagsSor-
tierterTeilnehmer), dadurch würden wir dem Prinzip genüge tun.
Damit würden wir aber sehr deutlich gegen die Holper-Regel verstoßen.

Die Alternative, die die Java-Entwickler gewählt haben, nutzt das
STRATEGY-Pattern, ein Pattern das beschreibt, wie die konkrete Imple-
mentierung eines Algorithmus in eine separate Klasse ausgelagert wird.
Konkret heißt das, es gibt eine zweite sort()-Methode, die zusätzlich
ein Comparator-Objekt bekommt. Comparator ist ein Interface, dass
nur eine Methode besitzt: compare() (nicht compareTo()!). Diese
bekommt zwei Parameter und liefert zurück, wie die beiden zueinander
stehen (kleiner 0 -> das linke ist kleiner, größer 0 -> das linke ist größer,
gleich 0 -> beide sind nicht unterscheidbar).

9 Das wird zum Beispiel in Java mit dem Schlüsselwort final sichergestellt.

3 Professionelle Klassen und Objekte

3-26 © Integrata AG 1.0.0210 / 9033

Wir können also eine neue Sortierung definieren, in dem wir eine neue
Implementierung von Comparator schreiben (ohne dabei die sort()-
Methode oder die Klasse Teilnehmer anzurühren).

<<interface>>

Comparator

compare(left : Object,right : Object) : int

GeburtstagsComparator

compare(left : Object,right : Object) : int Nachnahme Comparator

compare(left : Object,right : Object) : int

Teilnehmer

geburtstag : Date

nachname : String

Collections

sort(list : List<Comparable>) : void

sort(list : List,comp : Comparator) : void

Abbildung 3-12: Comparator

3.5.2 Das Prinzip der umgekehrten Abhängigkeiten (Dependency-
Inversion-Principle – DIP)

Das Prinzip der umgekehrten Abhängigkeiten beschreibt, wie einzelne
Klassen und Komponenten voneinander abhängen. In der „klassischen“
(prozeduralen) Softwareentwicklung gilt der Grundsatz, dass hochlevli-
ge Module auf niedriglevlige Module zurückgreifen (ein Druckvorgang
besteht aus dem Drucken von Zeichen und der Druckersteuerung).

Das Prinzip der umgekehrten Abhängigkeiten kehrt diese Ansicht um.
Im Kern besteht es aus zwei Regeln:

Regel 3-17: (DIP) Hochlevlige Module sollten nicht von niedrig-
levligen Modulen abhängen. Beide sollten nur von
Abstraktionen abhängen (Wied, Wart, Test).

Regel 3-18: (DIP) Abstraktionen sollten nicht von Details abhän-
gen. Details sollten von Abstraktionen abhängen.
(Wied, Wart, Test)

Professionelle Klassen und Objekte 3

1.0.0210 / 9033 © Integrata AG 3-27

Wo besteht nun das Problem? Die hochlevligen Module sind die Be-
standteile unserer Software, in der die „interessanten“, fachlichen Ent-
scheidungen getroffen werden, die niedriglevligen diejenigen, die „in der
Schlammzone“ die ganzen Details umsetzen. Ändert sich jetzt eines
dieser Details, so hat das natürlich auch Auswirkungen auf die davon
abhängigen Komponenten, als die hochlevligen Anteile unserer Soft-
ware. Ein Implementierungsdetail ändert also möglichweise unsere
fachlichen Elemente! Umgekehrt wollen wir natürlich wenn möglich die
hochlevligen Elemente auch wiederverwenden, denn diese enthalten ja
den „interessanten“ Code – mit der klassischen Abhängigkeit können
wir diese aber eben nicht von der Schlammzone trennen.

Diese Regel beschreibt natürlich im Großen und Ganzen, was wir wei-
ter oben schon recht ausführlich diskutiert haben: Die Kopplung zwi-
schen Modulen sollten nicht eng – über Klassen –, sondern lose – über
Abstraktionen, also Interfaces – erfolgen. Der Leser sei hierzu insbe-
sondere auf den Abschnitt zur Schnittstellenkopplung im vorherigen
Kapitel verwiesen.

3 Professionelle Klassen und Objekte

3-28 © Integrata AG 1.0.0210 / 9033

3.6 Zusammenfassung

Wir haben uns in diesem Kapitel mit den tiefergehenden Grundsätzen
des Klassendesigns auseinandergesetzt. Dabei haben wir besprochen,
wie Klassenhierarchien sinnvollerweise aufgebaut sein sollten, welche
Grundsätze für die Größe einer Klasse an sich gelten und wie wir unse-
re Klasse offen für Veränderungen machen können.

In diesem Zusammenhang haben wir einige Prinzipien kennengelernt,
die wir hier noch einmal aufzählen wollen. Die fünf Martin-Prinzipien
lassen sich dabei mit dem Akronym SOLID auflisten, das letzte Prinzip
(das Visions-Prinzip) ist davon unabhängig.

SRP
Single-Responsibility-Principle

Für jede Klasse sollte es nur einen einzigen Grund geben, sie
zu ändern.

OCP
Open-Closed-Principle

Klassen sollten offen für Erweiterungen, aber gesperrt für Ver-
änderungen sein.

LSP
Liskov-Substitution-Principle

Unterklassen müssen an die Stelle ihrer Oberklasen treten kön-
nen.

ISP
Interface-Segregation-Principle

Clients sollten nicht gezwungen sein, sich auf Schnittstellen ab-
zustützen, die sie nicht benutzen.

DIP

Dependency-Inversion-Principle

Hochlevlige Module sollten nicht von niedriglevligen Modulen
abhängen. Beide sollten nur von Abstraktionen abhängen.

Abstraktionen sollten nicht von Details abhängen. Details sollten
von Abstraktionen abhängen.

Das Visions-Prinzip

Jedes Konzept (Pakete, Klassen, Methoden) muss sich verständlich in
einem Hauptsatz (der Vision) beschreiben lassen.

1.0.0210 / 9033 © Integrata AG 4-1

Namen

4.1 Einleitung.. 4-3

4.2 Welche Sprache? ... 4-3

4.3 Bedeutungsvolle Namen .. 4-4

4.3.1 Klassen .. 4-5

4.3.2 Abstrakte Klassen.. 4-5

4.3.3 Interfaces ... 4-6

4.3.4 Methoden... 4-6

4.3.5 Konstruktoren .. 4-7

4.3.6 Namen und Kontexte ... 4-8

4.3.7 Besondere Namen... 4-8

4.3.8 Missverständliche Namen.. 4-10

4.3.9 Textrauschen ... 4-11

4.3.10 Domänen-Sprache vs. Lösung-Sprache 4-12

4.3.11 Ein Konzept, ein Wort .. 4-12

4.3.12 Verwandte Konzepte.. 4-13

4.4 Namen und ihre Form... 4-14

4.4.1 Groß- und Kleinschreibung .. 4-14

4.4.2 Optische Verwechslungen ... 4-14

4.4.3 Aussprechbare Namen .. 4-15

4 Namen

4-2 © Integrata AG 1.0.0210 / 9033

4.4.4 Typ- und Kontextbezeichner (encodings) 4-16

4.4.5 Wortspiele und „Slang“ .. 4-17

4.5 Vorgehen.. 4-18

4.5.1 Ändern von Namen.. 4-18

4.5.2 Der Style-Guide ... 4-19

4.6 Zusammenfassung... 4-20

Namen 4

1.0.0210 / 9033 © Integrata AG 4-3

4 Namen

4.1 Einleitung

Nachdem wir uns in den letzten Kapitel mit objektorientierten Grundsät-
zen beschäftigt haben, werden wir uns jetzt ein wenig davon lösen und
uns mit Namen in unserem Programmcode beschäftigen.

Allen voran geht es hier natürlich um die Namen, die wir unseren Vari-
ablen geben, aber natürlich auch um die Namen für Methoden, Klassen
und Komponenten.

Die Vergabe von guten Namen ist eines der wichtigsten Werkzeuge,
das wir besitzen, um unseren Code lesbar und verständlich zu machen,
und das mit in der Regel äußerst geringem Aufwand.

Wir werden uns im Folgenden mit einzelnen Prinzipien für gute und für
schlechte Namen auseinandersetzen. Diese Prinzipien sind dabei wei-
testgehend eigenständig und unabhängig voneinander.

4.2 Welche Sprache?

Die erste Entscheidung, die zu treffen ist (bzw. die meist schon lange
für uns getroffen wurde) ist die Frage, in welcher (menschlichen) Spra-
che soll unser Code geschrieben sein, und in welcher Sprache die
Kommentare.

In der Regel bleiben eigentlich nur zwei Optionen: Die Muttersprache
des Teams oder Englisch. Der Vorteil der Muttersprache besteht darin,
dass die Entwickler ggf. weniger Energie in die Übersetzung ihrer
Kommentare stecken müssen. Ist auf der anderen Seite Englisch ge-
fordert, so könnte ein Entwickler zu der Einsicht kommen, lieber keine
oder nur einfache Kommentare zu schreiben, statt sich die Blöße zu
geben, falsches Englisch einzusetzen.

Umgekehrt gilt dieses Problem in der Zeit multinationaler Kooperation
und Outsourcings natürlich auch für Team-Mitglieder deren Mutterspra-
che eine andere ist.

Schwierig wird es insbesondere, wenn ein nationales Team erst später
internationalisiert wird, weil zum Beispiel ein Teil der Softwarepflege in
ein außer-europäisches Land outgesourced wird. Hier können im Zwei-
felsfall deutlich Mehrkosten für eine Übersetzung entstehen (die ja teil-
weise gar nicht mehr möglich ist); nachträglich Klassen und Methoden
umzubenennen ist kaum möglich.

4 Namen

4-4 © Integrata AG 1.0.0210 / 9033

Ein weiterer Punkt der für Englisch spricht, ist die Tatsache, dass die
meisten Programmiersprachen selbst (also die Schlüsselwörter wie z.B.
if, while goto, …) eben auch in „Englisch“ verfasst sind. Verwendet
man englische Namen, so ist das Ergebnis näher an einem lesbaren
Satz, als beim Wechsel zwischen den Sprachen. Das gleiche gilt für
Sprachkonventionen wie Getter und Setter.

Im Normalfall ist das natürlich keine Entwicklerentscheidung, sondern
wird in den Firmen- oder Projektrichtlinien festgeschrieben.

4.3 Bedeutungsvolle Namen

Der Name einer Variablen sollte aussagen, was diese Variable bedeu-
tet bzw. wofür sie gedacht ist. Moderne Programmiersprachen lassen
heute beliebige Längen für Variablennamen zu, und auch der zusätzli-
che Platzbedarf der Quelldateien ist kein Kriterium mehr.

Schauen wir uns ein Beispiel an:
for (int i = 1; i < m; i++) {

 boolean b = true;

 for (int j = 2; j < i; j++) {

 if (i % j == 0) {

 b = false;

 break;

 }

 }

 if (b) {

 System.out.println(i);

 }

}

Was machen die einzelnen Variablen? Was macht der gesamte Code-
Block? Ersetzen wir die Namen, ist der Algorithmus schon deutlich bes-
ser lesbar:

for (int possiblePrime = 1; possiblePrime < maxNumber; possiblePrime++) {

 boolean isPrime = true;

 for (int possibleDivider = 2; possibleDivider < possiblePrime; possibleDivider++) {

 if (possiblePrime % possibleDivider == 0) {

 isPrime = false;

 break;

 }

 }

 if (isPrime) {

 System.out.println(possiblePrime);

 }

}

Natürlich lässt sich dieser Code-Block noch weiter verbessern, aber da-
zu später mehr.

Namen 4

1.0.0210 / 9033 © Integrata AG 4-5

Regel 4-1: Variablen sollten Namen haben, die ihre Bedeutung
wiederspiegeln. (Lesb)

4.3.1 Klassen

Die objektorientierte Lehre verlangt, dass Klassennamen Substantive
oder zusammengesetzte Substantive sind, also Employee, Person oder
Document.

„Weichmacher“-Bezeichnungen wie Manager, Service, Processor, Data
oder Info sollten möglichst nicht in einem Klassennamen vorkommen,
diese deuten in der Regel auf einen Verstoß gegen das Single-
Responsibility-Principle hin.

Implementiert eine Klasse direkt ein (Hierarchie-)Interface, so ist das In-
terface die zu benutzende Abstraktion, die Klasse trägt dann den Inter-
face-Namen + „Impl“.

4.3.2 Abstrakte Klassen

Wir unterscheiden hier zwischen zwei Arten von Abstrakten Klassen:
Echte Abstraktionen im fachlichen Sinnen, also Oberklassen, die selbst
nur nicht instanziiert werden können, aber im Client-Code polymorph
verwendet werden (und teilweise auch als Ersatz für Hierarchie-
Schnittstellen oder parallele Hierarchien verwendet werden, wenn die
verwendete Sprache keine echten Interfaces kennt):

Player ist eine abstrakte Oberklasse von Golfer und VideoGamer.

Car ist eine abstrakte Oberklasse von GasolineCar und ElectroCar.

In diesem Fall gelten die gleichen Namensregeln wie für konkrete Klas-
sen.

Die zweite Variante sind Implementierungsdetails, die für den Client-
Code niemals sichtbar sind sondern dem Implementierer einer Schnitt-
stelle als Ausgangspunkt dienen. Diese stehen in der Regel zwischen
dem Hierarchie-Interface und den konkreten Implementierungen. Diese
Klassen sollten im Namen deutlich machen, dass sie nur abstrakte
Hilfskonstrukte sind. Das wird durch das Präfix „Abstract“ verdeutlicht.

Im Java Collection Framework gibt es zu dem Interface List eine Imp-
lementierung namens AbstractList. Diese erlaubt es, neue Listen

zu implementieren, indem nur zwei Methoden realisiert werden (die
in AbstractList abstrakt sind). Alle anderen (zahlreichen) Metho-

den von List sind bereits in AbstractList als Abstützung auf die

beiden abstrakten Methoden realisiert.

Regel 4-2: Klassen und Abstraktionen tragen die Namen von (ggf.
zusammengesetzten) Substantiven. (Vers)

Regel 4-3: Abstrakte Klassen als Implementierungshilfen sollten
mit dem Präfix „Abstract“ versehen werden. (Lesb,
Vers)

4 Namen

4-6 © Integrata AG 1.0.0210 / 9033

4.3.3 Interfaces

Zur Benennung von Interfaces haben wir in den vorangegangenen Ka-
piteln ja schon einiges gesagt. Fassen wir noch einmal zusammen:

(Parallele) Hierarchie-Interfaces sind Abstraktionen und folgen damit
den Regeln für Klassen.

Regel 4-4: Fähigkeits-Interfaces und Mixins tragen Adjektive als
Namen. (Vers)

Beispiele für Fähigkeitsinterfaces sind: Interruptible, Compa-
rable, Serializable, etc…

4.3.4 Methoden

Regel 4-5: Methoden sollten Verben oder aus Verben abgeleitete
Bezeichnungen als Namen tragen. (Lesb, Vers)

Beispiele: printPrimes(), postSave(), start()

Besitzt die Methode ein einzelnes Argument1, dessen Bedeutung nicht
direkt aus dem Namen der Methode hervorgeht, so kann der Name um
Beziehungswörter angereichert werden:

Beispiel:

Statt printPrimes(int max) kann man auch printPrimesUp-
To(int max) schreiben. Der Aufruf liest sich dann eleganter:
printPrimesUpTo(15).

Regel 4-6: Zugriffsmethoden sollten mit get, set oder is anfangen.
Andere Methoden sollten diese Präfixe nicht benutzen.
(Lesb)

String name = participant.getName();

employee.setSalary(500);

if (printjob.isRunning()) …

Grundsätzlich sollten Methoden aus Sicht des aufrufenden Clients be-
nannt werden. Klingt die Methode in der Klasse selbst also ungewöhn-
lich (nicht falsch oder holprig) und dafür in einem Aufrufszenario gut
und „richtig“, so ist das vollkommen zu verschmerzen.

1 Eine monadische Methode. Vergleiche hierzu auch das spätere Kapitel über Funkti-

onen.

Namen 4

1.0.0210 / 9033 © Integrata AG 4-7

4.3.5 Konstruktoren

Natürlich ist der Begriff Konstruktor hier ein wenig ungewöhnlich, da wir
ja in den meisten Sprachen den Konstruktor nicht umbenennen können.
Stattdessen können wir aber statische Factory-Methoden (vgl. vorheri-
ges Kapitel) verwenden, die dann wieder sprechende Namen haben
können. Das ist umso wichtiger, wenn wir überladene Konstruktoren
verwenden.

Beispiel:

Eine Klasse Point besitzt zwei Konstruktoren, einen, der den Punkt
mittels kartesischer Koordinaten (also x und y) erstellt, und einen zwei-
ten, der diesen Punkt mittels Polarkoordinaten (Winkel und Abstand
zum Ursprung) erstellt.

Mittels Konstruktoren würde der aufrufende Code folgendermaßen aus-
sehen:

Point upperLeft = new Point(10, 20);

Point lowerRight = new Point(10f, 20f);

Die Unterschiede zwischen den beiden Konstruktor-Aufrufen sind hier
nicht wirklich eingängig. Nur das Vorhandensein des „f“ bei den Argu-
menten unterscheidet die beiden Aufrufe, aber das Ergebnis ist natür-
lich grundverschieden.

Mittels einer Factory-Methode sieht das ganze schon wesentlich besser
aus:

Point upperLeft = Point.FromCartesian(10, 20);

Point lowerRight = Point.FromPolar(10f, 20f);

Die Verwechslungsmöglichkeiten sind hiermit ausgeschlossen. Bleibt
anzumerken, dass die zweite Zeile immer noch darunter leidet, dass die
beiden Argumente vom gleichen Typ sind, aber ihre Reihenfolge nicht
unbedingt eingängig ist (bei x und y ist das in der Regel besser). Ele-
ganter könnte man hier durch die Verwendung des BUILDER-Patterns
werden:

Point lowerRight =

 Point.buildWith().angle(10f).distance(20f).build();

Das ist zwar ein wenig mehr Schreibarbeit, aber dafür völlig unmissver-
ständlich.2

Regel 4-7: Unklare Konstruktoren sollten durch Factory-Methoden
„benannt“ werden. Der Konstruktor selbst sollte dann
nicht mehr sichtbar sein. (Lesb, Vers)

2 Alternativ könnte man die Builder Methoden noch „menschlicher“ formulieren und

den Aufruf mit Bindewörtern (and() in diesem Fall) erweitern.

Point.buildWith().angleOf(10f).and().distanceOf(20f).andReturnIt()

4 Namen

4-8 © Integrata AG 1.0.0210 / 9033

4.3.6 Namen und Kontexte

Namen stehen immer in einem bestimmten Kontext, und auch nur in
diesem müssen sie gültig sein. Das Feld name kann vieles bedeuten,
aber im Kontext einer Klasse Person ist seine Bedeutung klar. Kontext
bedeutet in der Regel entweder Klasse oder Methode, seltener auch
Schleifenkonstrukt.

Es besteht ein grundsätzlicher Zusammenhang zwischen der Größe
des Kontexts und der Länge des Variablennamens: Je größer der Kon-
text, desto länger und eindeutiger muss auch der Name der Variablen
sein. Oder umgekehrt: Für einen sehr kurzen und einfachen Kontext ist
es durchaus erlaubt, auch einen kurzen Namen zu wählen (Beispiel:
der Schleifenzähler).

Verlässt eine Variable den Kontext, so muss der Kontext dem Vari-
ablennamen beigefügt werden:

Person user = ...;

String userName = user.getName();

4.3.7 Besondere Namen

Es gibt in der Softwareentwicklung einige Namen, die typischerweise
immer gleich benutzt werden. Ein Beispiel dafür ist der Schleifenzähler
i. Er ist so häufig und traditionell, dass wir in unbedenklich verwenden
können. Warum haben wir das im Beispiel weiter oben nicht getan?
Weil der Zähler darüber hinaus auch noch eine fachliche Bedeutung
hatte.

Als Faustregel gilt: Dient der Zähler nur zum Durchlaufen einer Daten-
struktur, so ist in der Regel die Benutzung von i und j unproblematisch.

Sind Schleifen geschachtelt (was wir, wie wir später sehen werden, na-
türlich als erstes beheben wollen), so sind i und j eher unzweckmäßig,
weil die Übersichtlichkeit hier ganz schnell leidet.

Andere Standardnamen werden sich einbürgern, sollten aber in den
Programmierrichtlinien formuliert worden sein.

Einige Beispiele für derartige Konventionen:

• Der Rückgabewert, der im Laufe einer Methode berechnet oder zu-
sammengebaut wird, heißt immer result.

• Die Variable, die beim Iterieren das jeweils nächste Element auf-
nimmt, lautet next.

Namen 4

1.0.0210 / 9033 © Integrata AG 4-9

• Der Iterator in einer Schleife heißt it.

public int sum(int[] values)

{

 int result = 0;

 for (int next : values) {

 result += next;

 }

 return result;

}

Regel 4-8: Eine Handvoll definierter Standardnamen erleichtert die
Übersichtlichkeit, wenn sie allen Entwicklern bekannt
sind. (Lesb)

Eine weitere Art von besonderen Namen sind zusammengesetzte.
Nehmen wir eine Methode an, die aus einem Array von Employee-
Objekten das Durchschnittsgehalt bestimmt. Wahrscheinlich wird die
aufnehmende Variable in der Methode selbst den Namen result ha-
ben. Aber welcher Variablen im aufrufenden Code wird dieser Wert zu-
geordnet:

int avg = averageSalary(employees);

Was wäre hier ein sinnvoller Name für avg? Es gibt einige denkbare
Optionen:

• Prefix: averageSalaryOfEmployees

• Suffix: employeesAverageSalary

• Kurz: averageSalary

• Kurz, suffix: salaryAverage

Die Prefix-Lösung besticht durch die Tatsache, dass der der Variablen-
name fast genauso aussieht/klingt, wie der Methodenaufruf, der das
Ergebnis geliefert hat. Wichtig ist dabei, dass des Argumente-Teil nicht
dem Typ der Argumente, sondern den tatsächlich übergeben Argumen-
ten entspricht:

int averageSalaryOfPartTimeWorkers = averageSalary(partTimeWorkers);

Der Vorteil der beiden Suffix-Lösungen, dass das entscheidende fachli-
che Konzept (Employee bzw. Employee.salary) zuerst genannt wird,
wird dadurch erkauft, dass es sprachlich ein wenig holprig klingt – ein
Ziel, das wir später noch näher formulieren wollen, ist, dass sich unser
Code fast wie Text liest. Die Suffix-Formen laufen diesem Ziel entge-
gen.

Die normale Kurzform (die eigentlich nur aus dem Methodennamen oh-
ne seine Argumente besteht) ist natürlich kurz und kompakt, stützt sich

4 Namen

4-10 © Integrata AG 1.0.0210 / 9033

aber relativ stark auf ihren Kontext ab. Ist dieser eindeutig und hinrei-
chend kurz, so ist die Kurzform natürlich vollkommen ausreichend.

Regel 4-9: Variablen, die das Ergebnis einer Methode aufnehmen,
sollten den Namen dieser Methode tragen. Gibt es Ver-
wechslungsgefahr, so sind dem Namen die Argumente
des Aufrufs beizufügen. (Lesb)

Gelegentlich kann es notwendig sein, der Ergebnisvariablen auch noch
den Namen der Instanz, auf der die Methode ausgeführt wurde, beizu-
fügen.

public void createFamilyName(Person mother, Person father) {

 String fatherLastName = father.getLastName();

 String motherLastName = mother.getLastName();

 return fatherLastName + "-" + motherLastName;

}

4.3.8 Missverständliche Namen

Ein Name sollte ein Konzept vermitteln. Passt der Name allerdings nicht
zum Konzept oder deutet er sogar auf ein anderes Konzept hin, so wird
die Name missverständlich.

Der Name employeeList für eine Variable sollte auch nur dann ver-
wendet werden, wenn es sich tatsächlich um eine List (den Datentyp)
handelt, nicht etwa bei einem Array oder einer eigenen Klasse. Besser
wären Namen wie employeeGroup oder einfach nur employees.

Genauso sollte eine Methode auch nur dann mit set beginnen, wenn
es sich dabei tatsächlich um einen Setter handelt. Das heißt nicht, dass
unbedingt genau diese Variable unter der Haube gesetzt wird (das wäre
ja ein Implementierungsdetail), aber die Semantik sollte einem Setter
entsprechen:

public void setRunning() {

 controlThread.start();

}

Hier hat ein Programmierer zumindest noch die Chance zu erkennen,
dass es sich bei der Methode nicht um einen Setter handelt, da die Sig-
natur nicht passt (kein Argument). Bekäme setRunning() jetzt auch
noch ein boolean Argument, wäre aber auch das dahin. Ein besserer
Name wäre startControlThread().

Namen 4

1.0.0210 / 9033 © Integrata AG 4-11

4.3.9 Textrauschen

Als Textrauschen bezeichnen wir Anhänge an Variablennamen, die wir
nur deshalb verwenden, damit „der Compiler sich nicht beschwert“. Ein
häufiger anzutreffendes Rauschen sind Zahlen:

public void addEvenValues(

 List<Integer> list1, List<Integer> list2) {

 for (Integer next : list1) {

 if (next % 2 == 0) {

 list2.add(next);

 }

 }

}

List1 und list2 haben hier unterschiedliche Bedeutungen. Bessere
Bezeichnungen wären hier source und destination gewesen, damit
wäre die Routine deutlich besser lesbar.

Eine Variante davon sind beabsichtigte Schreibfehler (zum Beispiel
Pointer und Pointr), eine weitere Füllwörter wie „a“ und „the“ (was
ist der Unterschied zwischen aPoint und thePoint?).

Eine andere Form von Textrauschen sind inhaltlich bedeutungslose
Wörter wie Info und Data. Was ist der Unterschied zwischen den Klas-
sen Person und PersonInfo3? Wie unterscheiden sich Payment
und PaymentObject.

Auch redundante Informationen sind unnötig. Den Namen einer Person
als NameString zu bezeichnen ist eine solche Redundanz.

Um es noch einmal deutlich zu machen: Für alle oben genannten Fälle
kann es Sinn machen, den Code doch so zu schreiben. Wenn aber ei-
ner der Punkte nur angewendet wird, um zwei Variablen voneinander
zu unterscheiden, dann ist es Textrauschen.

Regel 4-10: Die Unterschiede zwischen zwei gewählten Namen
müssen so gewählt werden, dass der Leser sie inhalt-
lich versteht. (Lesb, Vers)

3 Natürlich mag es vollkommen begründete Situationen, in denen genau dieses Kon-

strukt verwendet werden sollte, aber diese Fälle sind dann API spezifisch und dort
auch entsprechend dokumentiert.

4 Namen

4-12 © Integrata AG 1.0.0210 / 9033

4.3.10 Domänen-Sprache vs. Lösung-Sprache

Wenn wir Namen vergeben, müssen wir uns entscheiden, aus welcher
Sprache wir unsere Namen wählen. Dafür gibt es zwei Möglichkeiten:
Namen aus der Domänen-Sprache - also dem Fachbereich -, oder Na-
men aus der Lösungs-Sprache - grob gesagt unserer Programmier-
sprache mit Bibliotheken, Patterns und Konzepten.

Aus welcher Sprache sollten wir unsere Begriffe wählen? Klar ist, dass
wir die wichtigen, fachlichen Klassen sicher in der Domänensprache
schreiben werden. Auch die fachlichen Berechnungsmodule werden si-
cher fest in die Domäne eingebettet.

Die ganzen technischen Details allerdings sollten in der Lösungsspra-
che formuliert werden. Benutzen wir einen Observer (ein weiteres Pat-
tern), dann sollte die Klasse auch den Namen xyObserver bzw. xy-
Listener tragen.

Grundsätzlich wird der Code schließlich von Programmierern und nicht
von Angehörigen der Fachabteilung gelesen.

Regel 4-11: Fachliche Konzepte sollten in Domänen-Sprache,
technische Details in der Lösungssprache formuliert
werden. (Lesb, Vers)

4.3.11 Ein Konzept, ein Wort

Konzepte sollten durch ein einzelnes, durchgängig verwendetes Wort
beschrieben werden. Wechselndes Verwenden von get, retrieve
und fetch, um Objekte aus Datenstrukturen auszulesen, ist nicht nur
verwirrend zu lesen, es erschwert auch das eigentliche Schreiben von
Code.

Moderne IDEs bieten automatische Vervollständigung. Wissen wir also,
dass wir aus unserer Datenstruktur ein Objekt mit retrieve… ausle-
sen können, nicht aber wie die Methode genau heißt, liefern uns wenige
Tastendrücke alle Methoden, die mit retrieve anfangen. Kennen wir
allerdings nicht einmal den Anfang, so müssen wir zwangsläufig alle
Methoden der Klasse durchsehen, bis wir die richtige gefunden haben.

Umgekehrt sollte ein Wort aber auch nur ein Konzept ausdrücken. Um
bei dem obigen Beispiel zu bleiben: retrieveFirst() sollte nicht bei
der einen Datenstruktur nur das erste Element zurückliefern, bei einer
anderen aber das erste Element entfernen und zurückliefern.

Regel 4-12: Gleiche Konzepte sollten durch das gleiche Wort be-
schrieben werden, unterschiedliche Konzepte durch
unterschiedliche Wörter. (Lesb, Vers)

Namen 4

1.0.0210 / 9033 © Integrata AG 4-13

4.3.12 Verwandte Konzepte

Oftmals finden wir in unserem Code verwandte Konzepte, die häufigste
Verwandtschaft ist dabei der Gegensatz (zum Beispiel add und remo-
ve). Um diese Konzepte zu beschreiben, gibt es im Sprachgebrauch
natürlich Wortpaare. Diese Paarbildung sollten wir auch im Code ein-
halten.

Heißt eine Methode, um einen Nutzer hinzuzufügen addUser(), so
sollte die Methode, um ihn wieder zu entfernen removeUser() und
nicht etwa deleteUser() heißen.

Einige Beispiel für gängige Wortpaare:

add/remove insert/delete begin/end lock/unlock

show/hide create/destroy source/target start/stop

min/max next/previous open/close old/new

first/last up/down get/set get/put

Regel 4-13: Verwandte Konzepte sollten auch mit verwandten
Begriffen beschrieben werden. (Lesb, Vers)

4 Namen

4-14 © Integrata AG 1.0.0210 / 9033

4.4 Namen und ihre Form

Nachdem wir oben auf die Bedeutung und den Inhalt eines Namens
eingegangen sind, beschäftigen wir uns jetzt mit der Form, die der (mitt-
lerweile hoffentlich bedeutungsvolle) Name annehmen sollte.

4.4.1 Groß- und Kleinschreibung

Folgen Sie bezogen auf Groß- und Kleinschreibung den Konventionen
ihrer Sprache. Gibt es keine allgemeinen Konventionen, so sollten die-
se in den internen Programmierrichtlinien geschaffen werden. Selbst
wenn diese bereits existieren, sollten sie sich trotzdem in den Richtli-
nien wiederfinden.

Als Beispiel hier die Konventionen für Java (C++ hat sehr ähnliche):

• Klassennamen beginnen mit einem Großbuchstaben, gefolgt von
Kleinbuchstaben, Wortgrenzen werden durch einen weiteren Groß-
buchstaben kenntlich gemacht (sog. CamelCase).

Person, Player, Document

• Variablennamen beginnen mit einem Kleinbuchstaben und sind
ebenfalls in CamelCase.

document, numberOfPlayers

• Konstanten werden ganz in Großbuchstaben geschrieben, wobei
Wortgrenzen durch einen Unterstrich (_) deutlich gemacht werden.

MAX_VALUE, SQRT_OF_2

• Der Unterstrich und das Dollarzeichen sind zwar gültige Zeichen für
einen Variablennamen, sollten aber nur in Ausnahmefällen benutzt
werden.

4.4.2 Optische Verwechslungen

Regel 4-14: Namen sollten sich optisch so weit unterscheiden,
dass man sie auf einen Blick auseinanderhalten kann.
(Lesb)

Wir begründen diese Regel am besten mit einigen Gegenbeispielen:

Was tut folgender Code:

int a = l;

if (O == 1)

 a = O1;

else

 l = 01;

Namen 4

1.0.0210 / 9033 © Integrata AG 4-15

Je nach verwendeter Schriftart muss man sich schon sehr dicht zum
Code vorbeugen, um noch zu erkennen, was tatsächlich gemeint ist. Zu
kurzen Variablennamen haben wir ja bereits einiges gesagt, hier sei nur
noch erwähnt, dass das Problem sich noch massiv verstärkt, wenn die
verwendeten Buchstaben das kleine L (Verwechslung mit der Ziffer 1)
und das große O (Verwechslung mit der Ziffer 0) sind.

Das zweite Problem sind lange Namen, die sich nur in Nuancen unter-
scheiden: XYZControllerForEfficientHandlingOfStrings und
irgendwo in einem anderen Modul die Klasse XYZControllerForEf-
ficientStorageOfStrings4. Sicher ist dieses Beispiel etwas kon-
struiert, aber es soll ja auch nur das Prinzip zeigen.

4.4.3 Aussprechbare Namen

Wenn wir Code (oder Text5) lesen, neigen wir dazu, ihn im Kopf „vorzu-
lesen“. Deshalb ist eines unserer ersten Ziele, dass sich unser Satz so
einfach und ruhig wie möglich lesen lässt. Überraschungen und Dinge,
die das Vorlesen ins Stocken bringen, führen dazu, dass wir vom Über-
fliegen des Codes in die konzentrierte, Wort-Für-Wort Leseart wech-
seln, die natürlich deutlich langsamer ist. Selbst wenn wir uns das Aus-
formulieren im Kopf abgewöhnen, tritt das Problem trotzdem wieder zu
Tage, wenn wir mit anderen Entwicklern über den Code reden.

Einer dieser Stolpersteine sind Abkürzungen. Betrachten wir folgenden
Code:

int mxNoPts = …;

while (ptList.size() > mxNoPts) {

 Point rmvd = ptList.removeLast();

 sprList.add(rmvd);

}

Die Namen haben alle eine Bedeutung, und nach einem Moment ver-
stehen wir auch was der Code macht. Versuchen Sie einmal diesen
Code laut vorzulesen. Bei jeder der Abkürzungen werden Sie wahr-
scheinlich ins Stolpern geraten und schließlich die abgekürzten Variab-
len entweder durch ihren vollen Namen („Max Number of Points“, das
wäre die gute, aber unwahrscheinlichere Lösung), durch einen Aus-
spracheversuch („m‘xnopts“ als Wort) oder durch Buchstabieren („m‘x
no Peh Teh Es“) ersetzen. In jedem Fall muss Ihr Gehirn zusätzliche
Arbeit aufwenden.6

4 Beide Beispiele dieses Absatzes stammen aus „Clean Code“
5 Lassen wir Speed-Reading-Techniken mal außen vor.
6 Und das war noch ein relativ harmloses Beispiel. Betrachten Sie folgendes (echtes)

Beispiel: gaSuspSvcWOregLstnr() – falls Sie sich fragen: die Abkürzung steht für
„Gather (oder get?) all suspended Services without registered listeners“

4 Namen

4-16 © Integrata AG 1.0.0210 / 9033

Versuchen Sie das gleiche mit der korrigierten Fassung:

int maxNumberOfPoints = …;

while (pointList.size() > maxNumberOfPoints) {

 Point removed = pointList.removeLast();

 spareList.add(removed);

}

Regel 4-15: Namen sollten aussprechbar sein. Abkürzungen soll-
ten nur in Ausnahmefällen verwendet werden, und
auch dann nur sprechbare. (Lesb)

4.4.4 Typ- und Kontextbezeichner (encodings)

Früher war es allgemein üblich bzw. je nach Sprache sogar notwendig,
den Typ einer Variablen in den Namen mit aufzunehmen, entweder als
Präfix (die sogenannte Ungarische Notation: iLength, sName) oder
explizit (nameString, sizeInt).

In modernen, stark-getypten Sprachen ist diese Zusatzinformation nicht
mehr notwendig. Der Compiler fängt Zuweisungsfehler in der Regel
frühzeitig ab, damit werden diese Zusätze zu Textrauschen. Sie sind
sogar gefährlich, wenn sich der Typ nachträglich ändert, die Änderung
aber nicht auf den Namen ausgeweitet wird. So könnte eine Variable
den Namen phoneString besitzen, tatsächlich aber vom Typ Phone-
Number sein (Vergleiche hierzu auch 4.3.8 Missverständliche Na-
men).

Eine weitere, unnötige „Verzierung“ sind Kontextbezeichner, zum Bei-
spiel „f…“ für Felder, „p…“ für Parameter und kein Präfix für normale lo-
kale Variablen. Moderne IDEs besitzen die Fähigkeit, unsere Variablen
je nach Kontext anders darzustellen (andere Farben oder Schriftstile),
weshalb auch hier nur unnötig redundante Informationen transportiert
werden. Das im vorigen Absatz angesprochene Problem mit nachträgli-
chen Änderungen gilt hier im Übrigen analog. Wird durch Refactoring
ein Parameter in ein Feld umgewandelt (ein Vorgang, den die meisten
IDEs heute auch automatisieren), so kann dabei schnell vergessen
werden, den Name anzupassen.

Das Ergebnis ist leider oft: nach einer Weile stimmen die Encodings
sowieso nicht mehr und werden ignoriert. Ganz von der Tatsache ab-
gesehen, dass sie eben auch gegen die Regel der Aussprechbarkeit
verstoßen.

Regel 4-16: Encodings für Typen und Kontexte sollten nicht be-
nutzt werden. (Lesb)

Namen 4

1.0.0210 / 9033 © Integrata AG 4-17

4.4.5 Wortspiele und „Slang“

In gewachsenem Code findet man des Öfteren Methoden mit Name
wie: killThemAll(), bigBang() und call911()7. Diese Namen
scheinen auf den ersten Blick ja ganz witzig, aber was sagen sie über
unserer Professionalität aus?

Außerdem ist nicht gesagt, dass ein (gut englisch-sprechender) Mitar-
beiter notwendigerweise direkt erkennen kann, dass call911() eine
Fehlermeldung an den Administrator versenden soll.

Auch Mode-Sprachen wie Leetspeak sollte man dringend vermeiden
(insertB4() statt insertBefore()).

7 Alles tatsächliche Beispiele

4 Namen

4-18 © Integrata AG 1.0.0210 / 9033

4.5 Vorgehen

Ein häufiges Argument, das gegen die obigen Regeln angeführt wird,
ist, dass sie zu viel mehr Code (also Speicherplatz) und Tipparbeit füh-
ren würden.

Der zusätzliche Speicherbedarf ist nicht zu leugnen, allerdings fällt er
bei den heutigen Speichermedien nicht mehr wirklich ins Gewicht.

Und die zusätzliche Tipparbeit wird uns durch moderne IDEs fast voll-
ständig abgenommen. Man muss einen komplexen Namen in der Pra-
xis nur genau einmal tippen, und das zu dem Zeitpunkt, an dem man
sich ja sowieso überlegen sollte, wofür die Variable oder Methode ei-
gentlich gedacht ist.

Tatsächlich kann es durchaus sinnvoll sein, zwei bis drei Stunden in ei-
ne interne Schulung zur effizienten Nutzung der IDE zu investieren.

4.5.1 Ändern von Namen

Was ist zu tun, wenn ein Name nicht mehr passt? Formuliert man die
Frage so, ist die Antwort einfach: man ändert ihn. Leider zeigt die Pra-
xis, dass man hier nur sehr zögerlich voran geht.

Grundsätzlich hat das Ändern eines Namens zwei Konsequenzen: Zum
einen bedeutet das Ändern selbst Aufwand, um ihn an allen Stellen
richtig zu ändern, zum Anderen müssen sich die Nutzer dann wieder an
einen neuen Namen gewöhnen.

Beide Konsequenzen sind in der Praxis aber vernachlässigbar. Das
Umbenennen mit allen Nebeneffekten (ein Refactoring) erledigt die IDE
für uns, und die wenigsten Programmierer merken sich die tatsächli-
chen Namen. Stattdessen stützen sie sich vielfach auf Code-
Ergänzungen ihrer Entwicklungsumgebung ab, in dem sie sich einfach
alle anwendbaren Methoden als Auswahl anbieten lassen.

Eine Ausnahme gibt es allerdings (die wir in einem vorherigen Kapitel
schon erwähnt haben). Methoden einer öffentlichen Schnittstelle dürfen
natürlich nicht einfach umbenannt werden8. Deshalb ist bei der Wahl
der Namen einer Schnittstelle natürlich größere Sorgfalt angebracht.

Sollte es dennoch notwendig werden, eine Methode umzubenennen,
gibt es natürlich Werkzeuge. Damit werden wir uns später noch ausei-
nandersetzen.

8 Es sei denn, die Schnittstelle hat unsere Entwicklergruppe noch gar nicht verlassen,

dann ist sie nicht wirklich „öffentlich“.

Namen 4

1.0.0210 / 9033 © Integrata AG 4-19

4.5.2 Der Style-Guide

Entscheidend für sauberen, lesbaren Code ist eine Firmen- oder Pro-
jekt-interne Richtliniensammlung, die die Regeln, die für die Software-
erstellung gelten, zusammenfassen. Ein guter Anfang dazu sind die
Regeln dieser Unterlage.

4 Namen

4-20 © Integrata AG 1.0.0210 / 9033

4.6 Zusammenfassung

In diesem Kapitel haben wir uns mit einem der wichtigsten Grundsätze
von lesbarem (also professionellem) Code beschäftigt: den Namen. Es
gibt wenig Dinge, die einen Code so schnell unleserlich machen, wie
schlechte Namen.

Umgekehrt tragen gute Namen massiv zur Lesbarkeit eines Program-
mes bei.

1.0.0210 / 9033 © Integrata AG 5-1

Methoden

5.1 Einleitung.. 5-3

5.1.1 Was ist eine Methode? .. 5-3

5.2 Form... 5-4

5.2.1 Länge... 5-4

5.2.2 Blockgrößen... 5-11

5.2.3 Namen ... 5-13

5.3 Inhalt... 5-15

5.3.1 Eine Aufgabe ... 5-15

5.3.2 Die Vision... 5-16

5.3.3 Abstraktionsebenen ... 5-16

5.3.4 Die Stepdown-Regel .. 5-17

5.4 Argumente.. 5-18

5.4.1 Niladische Methoden ... 5-18

5.4.2 Monadische Methoden... 5-19

5.4.3 Dyadische Methoden ... 5-19

5.4.4 Triadische Methoden ... 5-20

5.4.5 Größere (Polyadische) Methoden.................................... 5-20

5.4.6 Flags .. 5-21

5.4.7 Ausgabe Parameter ... 5-22

5 Methoden

5-2 © Integrata AG 1.0.0210 / 9033

5.4.8 Argument-Objekte.. 5-23

5.5 Stil .. 5-24

5.5.1 Seiteneffekte.. 5-24

5.5.2 Befehl oder Abfrage (Command Query Separation) 5-24

5.5.3 Mehrere Exit-Punkte .. 5-25

5.5.4 Rekursionen... 5-25

5.6 Zusammenfassung... 5-27

Methoden 5

1.0.0210 / 9033 © Integrata AG 5-3

5 Methoden

5.1 Einleitung

In diesem Kapitel werden wir uns mit den Grundsätzen guter Methoden
beschäftigen. Wir werden dabei auf Form und Inhalt genauso eingehen
wie auf Strategien für Argumente und guten Stil.

Der Leser sei gewarnt, dass einiges in diesem Kapitel auf den ersten
Blick extrem erscheinen wird – oder zumindest gewöhnungsbedürftig.
Lässt man sich allerdings darauf ein, so wird man mit deutlich besser
lesbarem Code belohnt.

5.1.1 Was ist eine Methode?

Was eine Methode in der Objektorientierten Programmierung darstellt,
haben wir bereits im ersten Teil dieser Unterlage besprochen. Aller-
dings tauchen in der Literatur einige unterschiedliche Begriffe auf, die
wir zumindest ein wenig auseinander ziehen wollen. Leider widerspre-
chen sich die Definitionen teilweise, für unseren Fall verwenden wir die-
jenigen, die aus Sicht des Autors am meisten Sinn machen.

Operation stammt aus der UML-Spezifikation und beschreibt die
Schnittstelle, also das, was derjenige, der die Operation aufruft, davon
sieht.

Methode beschreibt die eigentliche Implementierung der entsprechen-
den Operation – also das, was im Quelltext tatsächlich steht.

Der Unterschied beider Begriffe wird deutlich, wenn man Polymorphie
hinzuzieht: Einer Oberklasse Parent besitzt eine Methode doIt(),
sowie drei Unterklassen, die alle die doIt() überschreiben. Dann gibt
es eine Operation doIt() und vier Methoden, die diese implementie-
ren.

Eine Funktion ist eine Methode, die einen Rückgabewert liefert. Je
nach Definition kann man auch noch verlangen, dass die Funktion
selbst Seiteneffektfrei ist.

Eine Prozedur ist dementsprechend eine Methode, die keinen Rückga-
bewert liefert, bzw. (in der schärferen Definition) einen Seiteneffekt hat.

Eine Routine schließlich ist ein Oberbegriff, der noch aus prä-OO Zei-
ten stammt.

Oftmals werden die Begriffe in der Praxis aber auch bunt durcheinander
gewürfelt. Wir werden in dieser Unterlage in Zukunft in der Regel von
Methoden sprechen und ggf. die Methodensignatur ansprechen. Gele-

5 Methoden

5-4 © Integrata AG 1.0.0210 / 9033

gentlich werden wir auch den Begriff Funktion bemühen, und zwar in
der schärferen Form (also keine Seiteneffekte).

5.2 Form

Zunächst wollen wir uns mit der äußeren Form von Methoden beschäf-
tigen, also Größen, Namen etc.

Damit wir das aber vernünftig tun können, müssen wir zumindest zwi-
schen zwei Arten von Funktionen unterscheiden:

Schnittstellen-Methoden sind Methoden, die in der öffentlichen
Schnittstelle definiert sind. Sie besitzen die Sichtbarkeiten public oder
protected, selten auch package.

Abstraktions-Methoden sind Methoden, die wir dazu nutzen unseren
Code besser lesbar zu machen. Sie sind Implementierungsdetails der
Schnittstellen-Methoden und haben daher die Sichtbarkeiten package
und private. Eine häufig zu findende Bezeichnung für diese Art von Me-
thode ist Hilfsmethode, wir werden diese Bezeichnung aber hier be-
wusst vermeiden, denn sie deutet auf eine Methode zweiter Klasse hin
– eine Interpretation, von der wir uns im folgenden noch deutlich distan-
zieren werden.

Warum unterscheiden wir nun überhaupt zwischen diesen beiden Ar-
ten? Nun, der Grundgedanke der Kapselung ist, dass wir unsere Imp-
lementierungen jederzeit austauschen können.

Das heißt, wir können unsere Abstraktions-Methoden nach Herzenslust
umbenennen, umformulieren oder auf andere Art anpassen. Das Glei-
che gilt für die Implementierungen der SchnittstellenMethoden. Beim
Verändern der Signatur der Schnittstellen-Methoden sollten wir aber
äußerst vorsichtig vorgehen, schließlich hat das Auswirkungen außer-
halb unseres Moduls.

5.2.1 Länge

Wir haben uns bei der Frage, wie groß eine Klasse sein soll, schon mit
Metriken für die Größe beschäftigt. Bei einer Klasse haben wir die Ver-
antwortlichkeiten gezählt, bei Methoden zählen wir stattdessen Zeilen
(LOC) oder Anweisungen (NCSS) – bei gutem Methodendesign sollten
beide Werte sowieso annähernd gleich sein.

Bei der Besprechung der Klassengrößen haben wir auch zwei Regeln
aufgestellt. Die gleichen Regeln wollen wir auch für Methoden anwen-
den:

Regel 5-1: Methoden sollten klein sein. (Lesb, Test)

Regel 5-2: Methoden sollten noch kleiner sein. (Lesb, Test)

Methoden 5

1.0.0210 / 9033 © Integrata AG 5-5

In der Literatur findet man sehr unterschiedliche Definitionen darüber,
was ausreichend klein ist. Auch in der Praxis finden wir sehr unter-
schiedliche Konventionen.

Tasten wir uns an den Begriff ein wenig näher heran.

200 Zeilen sind sicher zu viel. Ein alter Grundsatz war, das Methoden
(bzw. Prozeduren) nicht länger als eine Bildschirmseite seien sollten.
Das war in Zeiten, in denen Bildschirme eine feste Anzahl von Zeichen
aufnehmen konnten (z.B. 80x24), in der heutigen Zeit, mit immer größe-
ren Bildschirmen und immer höheren Auflösungen bekommt man aber
durchaus auch 100 Zeilen auf einem Bildschirm unter.

Trotzdem sind die 20 Zeilen der alten Terminals erst einmal ein guter
Wurf (ein paar Zeilen gehen ja für Editor-Funktionen, wie Zeilennum-
mern, Menüs etc. verloren).

5.2.1.1 Das Hrair-Limit

Gehen wir aber noch einen Schritt weiter. 20 Zeilen sind immer noch zu
lang (wenn auch nicht immer vermeidbar!). Eine besserer Ansatz sind
zwei bis vier1 (oder auch im Extremfall sieben) Zeilen. Das klingt natür-
lich extrem, und um diese Struktur überhaupt erreichen zu können,
müssen wir einige Grundsätze beherzigen, die wir im restlichen Kapitel
besprechen wollen.

Woher stammt nun aber diese Zahl? Zum einen aus der Praxis – fast
alles lässt sich auf diese Größe reduzieren (wie, werden wir noch se-
hen).

Eine andere Erklärung liefert uns die Psychologie – schließlich geht es
ja um Menschen, die unseren Code lesen und verstehen sollen. Das
Verständnis des Menschen für komplexe Modelle ist grundsätzlich be-
grenzt. 1956 hat der Psychologe George Miller einen Grundsatz formu-
liert, der besagt, dass ein Mensch nur in der Lage ist 7±2 Entitäten oder
Konzepte gleichzeitig zu verarbeiten. Zusätzliche Konzepte werden
dann gruppiert und mit anderen Konzepten in Beziehung gesetzt. Die
genaue Zahl ist von Mensch zu Mensch unterschiedlicher.

Versuchen Sie einmal, die Seiten eines normalen Würfels (also die
Lage der Punkte zu beschreiben).

Haben Sie irgendwann damit begonnen, Gruppen zu bilden (die vier
sind zwei mal zwei Punkte, die sechs besteht aus zwei Reihen mit je
drei Punkten)? Das ist ein erstes Zeichen (aber natürlich kein Be-
weis!).

1 2 – 4, das ist kein Schreibfehler

5 Methoden

5-6 © Integrata AG 1.0.0210 / 9033

Der Informatiker Grady Booch (einer der drei Urväter von UML) nannte
diese Grenze auch das Hrair Limit, ein Begriff, den wir in Zukunft auch
verwenden werden.2

Auf unsere Methodenlänge bezogen bedeutet das, dass eine Methode
mit mehr als 9 Zeilen (Rumpf, die Signatur lassen wir außen vor) von
einem Menschen nicht mehr vollständig erfasst werden muss – er muss
damit zusätzliche Energie (und Zeit) aufwenden, um die Methode zu
verstehen.

Regel 5-3: Methoden sollten dem Hrair-Limit genügen (nicht mehr
als 7 Zeilen) (Lesb, Test)

Bleibt natürlich der mögliche Einwand: Wenn wir statt weniger, großer
Methoden viele kleine Methoden verwenden, haben wir das Problem
damit nicht nur eine Ebene nach oben verschoben (also mehr Metho-
den geschaffen, als wir erfassen können)?

Die Antwort ist (hoffentlich nicht allzu überraschend) nein. Zum einen
liegen unsere Methoden in verschiedenen Abstraktionsebenen vor (sie-
he 5.3.3 Abstraktionsebenen, weiter unten), und wir betrachten immer
nur eine Ebene gleichzeitig (die oberste Ebene ist dabei die Schnittstel-
len-Ebene), zum anderen werden wir beim konkreten Lesen in der Re-
gel sowieso immer nur eine Methode einzeln betrachten.

Zu große Methoden haben wir behandelt. Aber was ist mit zu kleinen
Methoden?

5.2.1.2 1-zeilige Methoden

Machen Methoden mit nur einer Zeile Sinn? Schließlich ist hier der for-
male Anteil (Signaturen und Klammer bzw. Bock-Schlüsselwort3) genau
so groß oder sogar noch größer, als der eigentliche Code!

Eine einzeilige Methode kann sehr wohl Sinn machen, wenn sie der
Lesbarkeit dient. Häufig sind diese Einzeiler Berechnungen, die einen
besseren Namen bekommen oder Brücken zwischen fachlichem und
technischem Code (die fachliche Methode registerUser() führt in
ihrer Implementierung zur technischen Umsetzung user-
List.add(user)).

2 Hrair Limit oder Rule of Hrair bezieht sich auf den britischen Literatur-Bestseller (der

im englischsprachigen Raum häufig im Unterricht gelesen wird) „Watership Down“
(deutsch: „Unten am Fluss“). Die Hauptcharaktere sind dabei intelligente Hasen, die
allerdings nur bis vier zählen können, alles darüber hinaus ist einfach „Hrair“ (für
„viele“)

3 Z.B. BEGIN und END in Pascal

Methoden 5

1.0.0210 / 9033 © Integrata AG 5-7

5.2.1.3 Leere Methoden

Treiben wir das Ganze auf die Spitze. Machen leere Methoden Sinn?
Wenn keine Vererbung im Spiel ist, sicher nicht. Gerade leere Metho-
den, die einfach „im Vorgriff“ eingefügt werden, gefährden die Verständ-
lichkeit unseres Codes sehr deutlich (sie stellen außerdem einen Ver-
stoß gegen das Open-Closed-Principle dar). Entweder, wir brauchen
die Methode, oder wir brauchen sie nicht. Sollte aus irgendeinem (si-
cher nicht technischen Grund) eine Methode noch nicht implementiert
werden können, die aber in der Schnittstelle bereits festgelegt ist, so
sollte diese Methode niemals leer sein. Ähnlich schlimm ist es, sie nur
mit einem TODO-Kommentar zu versehen. Warum? In beiden Fällen
haben wir eine Diskrepanz zwischen dem, was die Methode behauptet
zu tun (also ihrem Namen), und dem, was sie tatsächlich tut (nämlich
nichts)4. Stattdessen legen wir ja eine Annahme fest: Diese Methode
wird derzeit noch nicht aufgerufen, sie ist nur da, damit der Compiler
zufrieden ist. So eine Behauptung sollten wir auch immer überprüfen,
und eine harte Fehlermeldung werfen, wenn die Behauptung widerlegt
wird. In unserem Fall sollte einfach die Methode eine Exception (oder
ähnliches, je nach Programmiersprache werfen).

Bringen wir also eine Vererbung ins Spiel. Hier gibt es zwei Möglichkei-
ten:

Die Methode der Oberklasse ist leer, die Unterklasse hat Inhalt:

In diesem Fall erfüllt die Methode die Aufgabe einer abstrakten Metho-
de, die nicht unbedingt überschrieben werden muss. Die Gefahr hierbei
ist natürlich, dass die Vererbungshierarchie dadurch unscharf wird, da
eine Oberklasse jetzt „unnötige“ Fähigkeiten besitzt.

Es gibt dafür zwei Standardanwendungsfälle, wobei beide naturgemäß
eher technischer Natur sind:

Lifecycle-Methoden sind Methoden, die zu einem bestimmten Zeit-
punkt im Leben eines Objektes aufgerufen werden, wobei die Objekte
dabei in der Regel keine fachlichen Objekte sind. So könnte in einem
offenen Framework beispielsweise eine (abstrakte) Klasse System-
Service definiert sein, von der mehrere unterschiedliche Kindklassen
erben (DataBaseAccess, PrinterAccess). SystemService besitzt
drei Methoden: init(), execute() und destroy(). init() und
destroy() sind dabei die Lifecycle-Methoden, die durch das Frame-
work aufgerufen werden, wenn der jeweilige Dienst instanziiert bzw.
beendet wird, also technische Methoden, execute() die Methode, die
die eigentliche fachliche Aufgabe ausführt5.

4 Zugegeben, sollte die Methode doNothing() oder noOp() heißen, hätten wir eine

andere Situation. Hier wäre schon die Schnittstelle unsinnig.
5 Und damit eine Übersetzung zwischen technischen und fachlichen Komponenten

darstellt.

5 Methoden

5-8 © Integrata AG 1.0.0210 / 9033

DataBaseAccess() könnte in init() eine Verbindung zur Daten-
bank herstellen. Benötigt PrinterAccess aber keine Initialisierung, so
kann er einfach die leere Implementierung erben. Das reduziert den
unnötigen Code in der Quelldatei.

Keinen Sinn macht es dagegen, die execute() Methode leer zu imp-
lementieren, da ein SystemService ohne fachlichen Auftrag wenig
Sinn machen würde.

Hook-Methoden folgen einem ähnlichen Prinzip, nur werden hier die
entsprechenden Methoden nicht von außen, sondern von der Klasse
selbst aufgerufen. Hier kommt das TEMPLATE-Pattern zur Anwendung,
ein Pattern, das garantiert, dass Methoden in der richtigen Reihenfolge
aufgerufen werden.

Ein Beispiel:

public abstract class Query {

 protected void openConnection() {

 // open the connection...

 }

 protected void closeConnection() {

 // close the connection...

 }

 public abstract Answer execute(String command);

}

Man könnte jetzt in die Dokumentation aufnehmen, dass die Methode
execute() zuerst openConnection() aufrufen muss, dann den
Fachcode ausführen und zum Schluss closeConnection() aufrufen.
Wie wir noch sehen werden, ist das Wort „muss“ in der Dokumentation
wenig wert, wenn die Umsetzung nicht irgendwo geprüft wird.

Methoden 5

1.0.0210 / 9033 © Integrata AG 5-9

Ein Programmierer, der vergisst, die Dokumentation zu lesen, wird erst
zur Laufzeit damit auf die Nase fallen.

public class NameQuery extends Query {

 @Override

 public Answer execute(String command) {

 // Hier fehlt openConnection()!!!

 Answer answer = connection.write("Hallo");

 postProcess(answer);

 closeConnection();

 return answer;

 }

 private String postProcess(String answer) {

 // ..post process

 }

}

Wie kann das TEMPLATE-Pattern uns hier helfen? Nun, zum einen muss
die Reihenfolge garantiert werden. „Muss garantiert werden“ deutet da-
rauf hin, dass es hier eine Methode gibt, die nicht überschrieben wer-
den darf – manche Programmiersprachen bieten dafür ein eigenes
Sprachelement an, z.B. final in Java. Kann die Methode nicht über-
schrieben werden, so ist das Verhalten garantiert.

5 Methoden

5-10 © Integrata AG 1.0.0210 / 9033

In diese Template-Methode (Schablone) hängen wir nun unser verän-
derbares Verhalten ein, entweder als abstrakte Methode, wenn die Me-
thode implementiert werden muss, oder als leere Methode, wenn es ein
zusätzliches, optionales Verhalten ist (wie in unserem Beispiel
postProcess()).

public abstract class Query2 {

 protected void openConnection() {

 // open the connection...

 }

 protected void closeConnection() {

 // close the connection...

 }

 public final Answer execute(String command) {

 openConnection();

 Answer answer = doExecute(command);

 postProcess(answer);

 closeConnection();

 return answer;

 }

 protected abstract Answer doExecute(String command);

 protected void postProcess(Answer answer) {

 // empty, hook only

 }

}

Methoden 5

1.0.0210 / 9033 © Integrata AG 5-11

public class NameQuery2 extends Query2 {

 @Override

 protected Answer doExecute(String command) {

 return connection.write("Hallo");

 }

 @Override

 protected void postProcess(String answer) {

 // ..post process

 }

}

Bleiben nur noch zwei Anmerkungen:

• Der Name doExecute() ist wieder eine Konvention, die natürlich in
den Programmierrichtlinien definiert sein sollte.

• Natürlich ist unsere postProcess() Methode im obigen Beispiel
nicht leer, sie enthält nur keinen Code. Eine gute Angewohnheit ist
es, vollständig leere Blöcke mit einem Kommentar zu versehen, wa-
rum sie leer sind.

Die Methode der Oberklasse hat Inhalt, die Unterklasse ist leer:

Diese Konstruktion ist äußerst gefährlich. Die Oberklasse besitzt eine
Fähigkeit, die die Unterklasse nach außen hin noch besitzt, die aber zu
keinem Verhalten führt. Das bringt uns gefährlich nahe an einen Ver-
stoß gegen das Liskovsche Substitutionsprinzip.

Grundsätzlich sollte man dieses Verhalten also vermeiden.

5.2.2 Blockgrößen

Die sinnvolle Länge von Methoden haben wir weiter oben schon be-
sprochen. Wenn unsere Methoden aber nur höchstens sieben Zeilen
haben dürfen, dann können auch unsere Blöcke nicht besonders groß
sein.

Wir gehen einen Schritt weiter und formulieren „nicht besonders groß“
noch schärfer:

Regel 5-4: Blöcke sollten einzeilig sein. (Lesb, Test)

Das heißt, dass jeder Block immer nur aus einer einzelnen Anweisung
bestehen sollte. Sind mehr als einen Anweisung nötig, so ist dafür eine
eigene Methode zu schreiben.

Eine Konsequenz davon ist, dass unsere Methoden nie tiefer als ein-
fach geschachtelt sind, was die Lesbarkeit und das Verständnis deutlich

5 Methoden

5-12 © Integrata AG 1.0.0210 / 9033

verbessert. Außerdem schreiben wir jetzt in den Block hinein, was darin
fachlich passiert, indem wir einen geeigneten Methoden-Namen wäh-
len – was uns ggf. einen weiteren Kommentar einspart (mit Kommenta-
ren werden wir uns im nächsten Kapitel noch ausführlich beschäftigen).

Schauen wir uns das Beispiel der Primzahlen aus dem letzten Kapitel
noch einmal an. Zunächst noch einmal die Ursprungsversion (allerdings
schon mit sprechenden Namen):

public void printPrimesUpTo(int maxNumber) {

 for (int possiblePrime = 1; possiblePrime < maxNumber;
possiblePrime++) {

 boolean isPrime = true;

 for (int possibleDivider = 2; possibleDivider < possiblePrime;
possibleDivider++) {

 if (possiblePrime % possibleDivider == 0) {

 isPrime = false;

 break;

 }

 }

 if (isPrime) {

 System.out.println(possiblePrime);

 }

 }

}

Und jetzt die nach der obigen Regel umgestellte Version:

public void printPrimesUpTo(int maxNumber) {

 for (int i = 1; i < maxNumber; i++)

 printIfPrime(i);

}

private void printIfPrime(int possiblePrime) {

 if (isPrime(possiblePrime))

 System.out.println(possiblePrime);

}

private boolean isPrime(int number) {

 for (int i = 2; i < number; i++)

 if (isDividerOf(i, number)) return false;

 return true;

}

private boolean isDividerOf (int i, int number) {

 return number % i == 0;

}

Die zweite Variante ist deutlich besser lesbar. Und die längste Methode
ist drei Zeilen lang!

Methoden 5

1.0.0210 / 9033 © Integrata AG 5-13

Auch hier bleiben zwei Dinge anzumerken:

• In der Methode isPrime() haben wir natürlich getrickst, den eigent-
lich ist die Anweisung if (isDividerOf (i, number)) re-
turn false mehr als eine Anweisung. Hier haben wir aber direkt
das erste Beispiel, in dem die Regel nicht bis zum äußersten anzu-
wenden ist – ein Exit-Punkt kann eben nicht in eine Methode ausge-
lagert werden.

• Die Forderung, jeden Block nur noch einzeilig aufzusetzen, erlaubt
uns sogar, die geschweiften Klammern wegzulassen, ein zugegebe-
nermaßen gewagter und gewöhnungsbedürftiger Schritt6.

Eine letzte Warnung ist allerdings angebracht:

Diese Art der Programmierung erzeugt sehr viele Methoden, damit sehr
viele Methodenaufrufe. Das kann zu deutlichen Performance-Einbußen
führen, wenn der Effekt nicht durch den Compiler (der hieraus einfach
wieder große Methoden erzeugt), oder zur Laufzeit durch einen Hot-
Spot-Compiler (wie zum Beispiel unter Java, der HotSpot-Compiler op-
timiert zur Laufzeit den Code, dabei bettet er unter anderem Methoden
wieder in andere ein) verhindert wird.

Andersherum: Mit einem optimierenden Compiler oder einem HotSpot-
Compiler ist das Laufzeitverhalten beider Versionen (beinahe) iden-
tisch!

5.2.3 Namen

Wir haben uns ja bereits im letzten Kapitel ausführlich mit Namen be-
schäftigt. Wir wollen natürlich nicht alles wiederholen, sondern nur noch
einmal den wichtigsten Grundsatz aufgreifen:

Namen von Methoden müssen beschreiben, was die Methode tut. Der
Name kann dabei ruhig etwas länger sein, wir tippen ihn ja schließlich
in der Regel nur einmal vollständig.

Ein guter Name für eine Funktion ist ein Verb oder ein Verb in Verbin-
dung mit einem Substantiv. Das Substantiv dabei kann uns helfen, zu
verstehen, was die Aufgabe des Arguments in der Methode ist.

public void store(Order order)

Dieser Methodenname scheint gut verständlich zu sein, kann aber
komplizierter werden, wenn der Name der übergebenen Variable nicht
ganz eindeutig ist:

backend.store(priority);

Natürlich könnte man argumentieren, dass der Name für die Priority
nicht besonders gut gewählt ist, aber was ist mit einer Routine, die eben

6 Von der Benutzung von Blöcken ohne Klammern wird ja in fast jedem Styleguide

abgeraten.

5 Methoden

5-14 © Integrata AG 1.0.0210 / 9033

nur zwei Bestellungen auf einmal bearbeitet, zum Beispiel eine reguläre
und eine priorisierte. Im Kontext dieser Methode sind die Namen „priori-
ty“ und „regular“ doch vollkommen ausreichend. Eine Alternative wäre:

backend.storeOrder(priority);

Jetzt ist vollkommen klar, dass priority eine Bestellung sein muss.
Man nennt diese Form des Methodennamens auch Keyword-Form.
Noch wichtiger wird die Keyword-Form, wenn wir mehr als ein Argu-
ment haben und nicht logisch aus dem Namen hervorgeht, welches Ar-
gument was bedeutet.

assertEquals(expected, actual) ist ein klassisches Beispiel. Es
handelt sich dabei um eine Methode aus dem JUnit-Framework, die für
einen Testfall überprüft, ob das erwartete Ergebnis dem tatsächlichen
entspricht. Die Reihenfolge der beiden Parameter wird aber in der Pra-
xis ständig durcheinander gebracht. Hätte man die Methode asser-
tExpectedEqualsActual() genannt, wäre die Reihenfolge voll-
kommen klar gewesen.

Regel 5-5: Der Name einer Methode muss zusammen mit seinen
Argumenten auf Client-Seite verständlich sein. (Lesb,
Test)

Auch bei Methodennamen können wir wieder die Holper-Regel anwen-
den. Finden wir nicht ohne allzu viel Mühe einen Namen, der unsere
Methode beschreibt, so ist das ein Anzeichen dafür, dass unsere Me-
thoden-Komposition noch nicht ganz zweckmäßig ist.

Methoden 5

1.0.0210 / 9033 © Integrata AG 5-15

5.3 Inhalt

Nachdem wir die äußere Form beleuchtet haben, legen wir als nächstes
unser Augenmerk auf den eigentlichen Inhalt unserer Methoden, also
was diese nun eigentlich tun sollen. Dafür werden wir einige Regeln de-
finieren, die uns unserem Ziel, gut lesbaren Code zu erstellen, noch
näher bringen werden.

5.3.1 Eine Aufgabe

Ein Grundsatz der Objektorientierung ist die Trennung von Verantwort-
lichkeiten (Separation of Concerns) – ein Grundsatz der auch Eingang
in das Prinzip der Kohäsion und das Single-Repsonsibility-Principle ge-
funden hat.

Wir wollen dieses Prinzip auch auf Methodenebenen anwenden und
formulieren dafür die nächste Regel:

Regel 5-6: Eine Methode sollte eine Sache tun. Diese sollten sie
gut tun. Diese sollten sie ausschließlich tun.7 (Lesb,
Test)

Schauen wir uns noch einmal unser Beispiel an.

Wie viele Dinge macht die folgende Funktion?

public void printPrimesUpTo(int maxNumber) {

 for (int i = 1; i < maxNumber; i++)

 printIfPrime(i);

}

Mögliche Antworten sind eins oder zwei. Wenn wir von zwei ausgehen,
wäre das:

1. Durchlaufe alle Zahlen von 1 bis maxNumber

2. Gebe jede Zahl aus, wenn sie eine Primzahl ist

Gefühlt wäre natürlich die Lösung mit nur einer Aufgabe die bessere,
denn sonst würde ja unsere (optisch doch eigentlich gute) Methode ja
gegen die Regel verstoßen.

Wäre es nur eine Aufgabe, hieße die:

1. Gebe alle Primzahlen bis maxNumber aus.

Klingt das besser? Zumindest nicht schlechter. Die zweite Version be-
schreibt, was die Methode tut, die erste dagegen, wie sie es tut. Das
sind zwei unterschiedliche Abstraktionsebenen.

7 Frei übersetzt von Robert C. Martin, das Prinzip dahinter ist natürlich schon deutlich

älter.

5 Methoden

5-16 © Integrata AG 1.0.0210 / 9033

Wir können beide Aufzählungen in einen „Um zu“-Satz bzw. Absatz un-
terbringen:

Um alle Primzahlen bis maxNumber auszugeben, durchlaufe alle
Zahlen von 1 bis maxNumber und gib dabei jede Zahl aus, wenn sie
eine Primzahl ist.

In Englisch haben wir dabei noch einen interessanten Effekt. Ein „Um
zu“-Satz wird dann zu einem TO-Satz/Absatz8:

To printPrimesUpTo maxNumber, count from 1 to maxNumber
and for each Number, printIfPrime.

Der Name der Methode wird zu einem Teil des Satzes, genauso wie die
einzelnen Anweisungen innerhalb der Methode.

Jetzt haben wir eine vollständige Beschreibung unserer Methode – oh-
ne, dass wir noch eine weitere Form von Dokumentation brauchen.

5.3.2 Die Vision

Das Visionsprinzip haben wir bereits kennengelernt. Es besagt, dass
sich ein Konzept in einem Satz ausdrücken lassen muss. Bisher haben
wir es ausschließlich für Klassen genutzt, wir können es aber auch ge-
nauso für unsere Methoden heranziehen.

Allerdings bringt es hier wenig Neues ein, schließlich wollen wir ja so-
wieso schon unsere Methode mit einem „Satz“ beschreiben, nämlich
dem Namen.

Weil die Vision ein echter Satz ist, kann sie uns aber helfen, unseren
Methodennamen zu finden. Wir formulieren also erst die Vision und prü-
fen dabei schon, ob wir zu viel in der Methode tun wollen. Dann entwi-
ckeln wir aus der Vision den Methodennamen.

5.3.3 Abstraktionsebenen

Wir haben weiter oben festgestellt, dass die zwei Arten printPrime-
sUpTo() zu beschreiben unterschiedlichen Abstraktionsebenen ent-
sprechen. Das ist das Prinzip jeder Methode. Sie stellt eine Anweisung
auf einer höheren Abstraktionsebene dar und bricht sie herunter auf
mehrere Anweisungen einer niedrigeren Ebene.

Dabei sind die oberen Ebenen in der Regel fachlich, die niedrigeren
Ebenen eher technisch (auf hoher Ebene haben wir beispielsweise eine
Methode findBooksByAuthor() die sicher auf niedrigerer Ebene ir-
gendwann in Aufrufe einer Listenklassen herunter gebrochen wird -oder
in Datenbankaufrufe etc…).

8 Interessanterweise werden Methoden in der Sprache LOGO mit dem Schlüsselwort

„TO“ definiert, was diese Art der Formulierung direkt in der Sprache motiviert.

Methoden 5

1.0.0210 / 9033 © Integrata AG 5-17

Ein Zeichen dafür, in welcher Abstraktionsebene wir uns befinden, sind
damit auch die Objekte, die wir benutzen, also auf höherer Ebene nur
fachliche Datenobjekte (Buch, Autor), auf niedrigerer Ebene die techni-
schen Entsprechungen (Objekt, Liste).

Definieren wir eine weitere Regel:

Regel 5-7: Jede Methode sollte nur auf einer Abstraktionsebene
agieren. (Lesb)

Ein Prüfstein dafür ist die Anwendung des „TO“-Satzes. Klingt dieser
nicht schlüssig, so sind wahrscheinlich mehr als eine Abstraktionsebe-
ne beteiligt.

5.3.4 Die Stepdown-Regel

Haben wir alle obigen Grundsätze befolgt, können wir jetzt unseren Co-
de fast wie einen Fließtext lesen, indem wir alle Methoden durch ihre
TO-Sätze beschreiben, und dabei immer weiter in den Code hineinge-
hen.

To printPrimesUpTo maxNumber, count from 1 to maxNumber
and for each Number, printIfPrime.

To printIfPrime, we check if the number isPrime and if so, print it
on the console.

To check if a number isPrime, we check for all numbers be-
tween 2 and the number it isDividerOf number. If so, it is no
Prime (false). Else, it isPrime.

Das liest sich mittlerweile recht verständlich. Probleme macht uns dabei
noch die Methode isDividerOf(), die uns Schwierigkeiten bei formu-
lieren macht. Diese Schwierigkeiten tauchen in der Regel dann auf,
wenn Methoden mehr als einen Parameter haben und eigentlich als
Operator fungieren (siehe dazu auch den nächsten Abschnitt). Lässt die
Programmiersprache eine Funktion als Infix-Operator zu, so lässt sich
diese natürlich eleganter formulieren.

Man könnte natürlich auch gut dafür argumentieren, die Methode is-
DividerOf() ganz wegzulassen, schließlich sollten der Ausdruck
number % i == 0 eigentlich verständlich genug sein.

Die Eleganz der Stepdown-Regel besteht dahin, dass der Leser beim
durchlesen des Codes jederzeit entscheiden kann, aufzuhören oder
noch tiefer hinein zu gehen, er aber immer einen sinnvollen Stand hat.

5 Methoden

5-18 © Integrata AG 1.0.0210 / 9033

5.4 Argumente

Als nächstes wollen wir uns mit einem wichtigen Teil der Methoden be-
schäftigen, den Argumenten. Zunächst eine hoffentlich klare Regel:

Regel 5-8: Methodenargumente sollten auf der gleichen Abstrakti-
onsebene liegen, wie die Funktion. (Lesb, Test)

Wir wollen Methoden im Folgenden anhand der Anzahl der Argumente
unterscheiden. Ein Problem mit Argumenten ist, dass eine Menge Kon-
zeptarbeit dahintersteckt. Je mehr Argumente, desto schwerer wird die
Methode zu verstehen.

Die verständlichsten Methoden sind also Methoden ohne Argumente,
dicht gefolgt von Methoden mit einem Argument. Zwei Argumente ma-
chen uns das Leben schon deutlich schwerer, drei Argumente sind
kaum noch überschaubar und sollten vermieden werden. Und für Me-
thoden mit mehr Argumenten bedarf es schon einer ausgezeichneten
Begründung.

Auch was die Testbarkeit angeht, erhöhen mehr Argumente den Auf-
wand immens. Eine Funktion ohne Argumente und eine Funktion mit
einem Argument erfordern nur wenige Tests, um alle Fälle abzudecken.
Bei Methoden mit zwei Argumenten müssten wir für eine volle Testab-
deckung alle möglichen Kombinationen der Werte abdecken. Bei drei
und mehr Argumenten läuft das schnell ins Uferlose.

5.4.1 Niladische Methoden

Niladische Methoden (Methoden ohne Argumente) sind aus Sicht der
Lesbarkeit ideal. Das Konzept der Methode steckt vollständig in ihrem
Namen, ohne dass man sich Gedanken über die Bedeutung der Argu-
mente machen muss.

Betrachten wir ein Beispiel:

printResultInto(writer);

Was stimmt mit dieser Methode nicht? Zunächst mischt sie Abstrakti-
onsebenen, den Writer ist wahrscheinlich eine technische Klasse, die
Methode aber eher fachlich. Außerdem wird der Writer bei anderen Me-
thoden derselben Klasse wahrscheinlich auch benötigt. Und meistens
exakt dasselbe Objekt sein.

Besser wäre sicher:

printResult();

Wie kann man dieses Ergebnis aber erreichen? Natürlich, indem man
die Argumente der Methode in Felder der besitzenden Klasse umwan-
delt bzw. eine Hüllklasse schreibt, die das Argument als Feld aufnimmt.

Methoden 5

1.0.0210 / 9033 © Integrata AG 5-19

Natürlich lässt sich das nicht immer so einfach anwenden. Wir sollten
trotzdem das Ziel vor Augen haben, wann immer möglich Niladische
Methoden zu verwenden.

5.4.2 Monadische Methoden

Monadische Methoden (also Methoden mit einem Argument) sollten die
häufigsten Methoden sein. Sie haben den Vorteil, dass sie in der Regel
ohne Mühe lesbar sind, das einzelne Methoden-Argument erfüllt in un-
serem beschreibenden Satz die Aufgabe des Objektes (im grammatika-
lischen Sinne!).

printIfPrime(myNumber) druckt myNumber, wenn es eine Prim-
zahl ist. InputStream openFile("data.txt") öffnet die Datei
mit dem Namen data.txt und liefert eine InputStream auf diese
Datei zurück.

Grundsätzlich gibt es zwei klassische Anwendungsfälle für Monaden:

• Abfragen liefern eine Information über das Argument zurück:
List.contains(Object o), String.indexOf(“Hallo”)

• Transformatoren wandeln das Argument in ein anderes um. In-
putStream openFile("data.txt"), List.get(15)

Aus dem Namen der Methode sollte deutlich hervorgehen, um welchen
Typ es sich handelt.

Eine dritte Form fehlt uns allerdings noch. Zu dieser gehören Beispiels-
weise die Setter-Methoden. Es handelt sich um Methoden ohne Rück-
gabewert, die lediglich den Zustand des Objektes / des Systems än-
dern. Diese Form nennen wir Event.

Regel 5-9: Eine monadische Methode sollte immer eine Abfrage,
ein Transformator oder ein Event sein. (Lesb, Vers)

Andere Formen erschweren die Lesbarkeit. Weiter oben haben wir be-
reits eine Möglichkeit gesehen, wie wir eine andere Form wie einen
Transformator erscheinen lassen können (mittels Dopplung als Rück-
gabewert).

5.4.3 Dyadische Methoden

Dyaden, also Methoden mit zwei Argumenten, sind schwieriger zu
handhaben als Monaden. Natürlich sind sie oftmals völlig verständlich,
benötigen aber dennoch einen Moment des Innehaltens.

printResultField(fileWriter, "name") ist komplizierter als
printResult("name"). Natürlich nicht dramatisch, aber mit der Zeit
wird der Leser lernen, den fileWriter einfach zu ignorieren. Und um
R.C. Martin zu zitieren: „Die Stellen, die wir ignorieren, sind die Stellen,
an denen sich die Bugs verstecken“.

5 Methoden

5-20 © Integrata AG 1.0.0210 / 9033

Die Anzahl der Argumente bezieht sich hier allerdings (wie bei den an-
deren auch) nicht notwendigerweise auf die echte, gezählte Anzahl,
sondern auf die logischen Argumente:

Point upperLeft = Point.FromCartesian(10, 20);

Point lowerRight = Point.FromPolar(10f, 20f);

In diesem Beispiel aus dem vorherigen Kapitel ist die erste Zeile eigent-
lich eine Monade! Die x und y Koordinate sind geordnete Element des-
selben Wertes (Wertepaares). Etwas schwieriger ist es in der zweiten
Zeile, da hier (wie wir ja schon besprochen haben), eine strikte Ord-
nung nicht vorliegt. Es empfiehlt sich deshalb, die zweite Methode als
Dyade zu betrachten.

Natürlich sind Dyaden in der Praxis nicht zu vermeiden – und sie stellen
auch nicht die Wurzel allen Übels dar9. Allerdings sollten sie mit Be-
dacht eingesetzt werden. Und man sollte immer prüfen, ob es nicht eine
bessere Alternative gibt.

5.4.4 Triadische Methoden

Triaden10, also Methoden mit drei Argumenten, sind äußerst gefährlich.
Zum einen sind sie sehr schwer zu überschauen, zum anderen sehr
schwer zu testen.

Insbesondere die Reihenfolge der Argumente wird uns immer wieder
dazu bringen, beim Lesen (und beim Schreiben) anzuhalten, und dar-
über nachzudenken. Und der Versuch, einen sinnvollen Namen ist von
vorneherein fast immer zum Scheitern verurteilt.

Natürlich werden wir gelegentlich Triaden verwenden müssen, müssen
dabei aber akzeptieren, dass diese fast immer Vorwissen des Lesers
voraussetzen – oder eben querlesen erfordern.

5.4.5 Größere (Polyadische) Methoden

Im Gegensatz zu Dyaden sind Polyaden tatsächlich die Wurzel allen
Übels. Sie führen zu Code, der kaum noch erfasst werden kann (ohne
ihn Anweisung für Anweisung auszuwerten), insbesondere wenn die
Anzahl der Argumente das Hrair-Limit übersteigt.

Eine der extremsten Beispiele aus den Java-Klassenbibliotheken ist
folgender Konstruktor:

GridBagConstraints(int gridx, int gridy, int gridwidth, int
gridheight, double weightx, double weighty, int anchor, int
fill, Insets insets, int ipadx, int ipady)

9 Den die ist ja gemäß D.Knuth die „voreilige Optimierung“
10 Kein Bezug zur chinesischen Mafia

Methoden 5

1.0.0210 / 9033 © Integrata AG 5-21

In der eigentlichen Anwendung sieht das dann so aus:

new GridBagConstraint(5, 10, 1, 1, 1.0, 2.0, CENTER, BOTH,
emptyInsets, 1, 1)

Selbst bei Kenntnis dieser Klasse ist dieses Konstruktor-Monster kaum
verständlich. Ein wenig entschärfen lässt sich das ganze durch Kom-
mentare und Formatierung (aber wehe, wenn die IDE den Code um-
formatiert!):

new GridBagConstraint(

 5, 10, // grid position

 1, 1, // cell size

 1.0, 2.0, // weight

 CENTER, // anchor

 BOTH, // fill

 emptyInsets,

 1, 1) padding

Die einzig sinnvolle Chance, dieses Monster zu bändigen, ist das Aus-
lagern der Argumente in ein Argument-Objekt, das einzelne Setzen der
Felder des leer erzeugten Objektes oder die Verwendung eines Pat-
terns.

Setter (bzw. Direktzugriffe auf die Attribute, der GridBagConstraint
ist in mehrerer Hinsicht ein Negativbeispiel) blähen unseren Client-
Code deutlich auf, sind aber machbar.

Ein Argument-Objekt entfällt, da die Klasse nicht unter unserer Kontrol-
le ist.

Bleibt noch das Pattern. Eine Möglichkeit wäre das schon erwähnte
BUILDER-Pattern:

GBCBuilder.create(10, 2).weight(1.0, 2.0)
.anchor(CENTER).insets(emptyInsets).build()

Immer noch ein Monster, aber immerhin verständlich (natürlich haben
wir in dem Beispiel von der Möglichkeit Gebrauch gemacht, default-
Werte nicht noch einmal zu setzen.

5.4.6 Flags

Sehr schwer zu lesen sind Methoden, deren einziger Parameter eine
bool‘sche Variable ist (mit Ausnahme von Settern natürlich). So eine
Methode lässt sich kaum so benennen, dass die Bedeutung auf Client-
Seite klar ist (in der Signatur mag es ja noch einigermaßen verständlich
sein, aber wir wollen ja gerade verhindern, dass der Leser unnötig hin
und her springen muss).

figure.paint(true)

5 Methoden

5-22 © Integrata AG 1.0.0210 / 9033

Was soll uns diese Methode suggerieren? In diesem konkreten Fall lau-
tete die Signatur dazu:

public void paint(boolean isSelected)

Was zumindest schon besser verständlich ist, aber eben nur, wenn der
Leser zwischen den Klassen hin und her wechselt. Besser wäre es ge-
wesen, einfach zwei Methoden zu schreiben:

public void paintAsSelected()

public void paintAsUnselected()

Die Unterscheidung, welche davon aufgerufen werden soll, wäre jetzt in
den Client-Code ausgelagert worden (der damit drei Zeilen länger, aber
dafür verständlicher geworden wäre).

Außerdem werden die beiden Methoden wahrscheinlich ein unter-
schiedliches Verhalten an den Tag legen, also würde unsere Methode
wahrscheinlich sogar mehr als eine Sache machen.

Das gleiche Problem kann natürlich auch bei Methoden mit mehr als ei-
nem Parameter auftauchen.

Regel 5-10: Flag-Methoden sollten vermieden werden, besonders
bei Monaden. (Lesb)

5.4.7 Ausgabe Parameter

Eine weitere Klasse von Methoden, die konzeptionell nur schwer zu er-
fassen sind, sind Methoden, die ihre Argumente verändern (sogenannte
Output-Argumente). Bei traditionellen Funktionen werden die Eingabe-
parameter nicht angefasst, sondern ein Ergebnis als Rückgabewert zu-
rückgeliefert. Weichen wir von diesem Grundsatz ab, so wird die Me-
thode schwerer zu erfassen.

Schauen wir uns folgendes Beispiel an:

…

DataBasket basket = …

Basket.addToList(orders);

…

Wo steckt hier das Problem? Die Frage ist, wer schreibt hier in welche
Datenstruktur. In dem obigen Beispiel schreibt der Datenkorb seine
vollständigen Bestellungen in eine Liste namens orders. Es könnte
aber auch genau umgekehrt sein, d.h. die Liste orders wird dem Wa-
renkorb hinzugefügt.

Methoden 5

1.0.0210 / 9033 © Integrata AG 5-23

Man hätte das Ganze entschärfen können, indem die Methode addTo-
List die modifizierte Liste noch einmal zurückgeliefert hätte:

…

DataBasket basket = …

orders = Basket.addToList(orders);

…

Die Zuweisung ist zwar codetechnisch völlig überflüssig, verbessert die
Lesbarkeit ungemein. Kompliziert wird es allerdings, wenn wir mehr als
ein Output-Argument haben. Das motiviert uns zu einer weiteren Regel:

Regel 5-11: Methoden sollten höchstens ein Output-Argument be-
sitzen, dieses sollte als Rückgabewert gedoppelt wer-
den. (Lesb)

5.4.8 Argument-Objekte

Betrachten wir zwei Konstruktoren:

public Rectangle(int left, int top, int right, int bottom);

public Rectangle(Point upperLeft, Point lowerRight);

Welche von beiden Varianten ist besser zu lesen? Die zweite hat zu-
mindest weniger Argumente, was ja laut den oberen Absätzen die bes-
sere Lösung ist. Aber stimmt das wirklich? Betrachten wir beide Varian-
ten als Aufruf:

new Rectangle(0, 0, 10, 10)

new Rectangle(new Point(0, 0), new Point(10, 10))

Haben wir wirklich etwas gewonnen (außer Schreibarbeit)? Natürlich
haben wir das, denn jetzt passen die Abstraktionsebene der Methode
und die Abstraktionsebene der Argumente wieder zusammen. Ein
Rechteck besteht eben konzeptionell nicht aus vier Koordinaten, son-
dern aus zwei Punkten, selbst wenn es technisch einfach vier Koordina-
ten-Felder hat.11

Werden die Punkte an einer anderen Stelle als direkt im Aufruf erstellt,
so ist der Aufruf auch wieder deutlich kompakter und lesbarer.

new Rectangle(origin, lowerRight)

Aus Lesbarkeitsgründen ist es also sinnvoll, zusammengehörige Argu-
mente in einem Transfer-Objekt zusammenzufassen.

Leider hat diese Technik einen gravierenden Nachteil. Es werden Un-
mengen an Wegwerf-Objekten erstellt, die das System deutlich aus-
bremsen können.

11 Aber das wären natürlich wieder Implementierungsdetails, die der Client ja gar nicht

sehen dürfte.

5 Methoden

5-24 © Integrata AG 1.0.0210 / 9033

5.5 Stil

In diesem letzten Abschnitt wollen wir uns noch ein wenig näher mit gu-
tem Stil für Methoden beschäftigen. Einige Punkte haben wir dazu
schon angesprochen oder impliziert, hier wollen wir das Ganze zu ei-
nem sauberen Abschluss bringen.

5.5.1 Seiteneffekte

Unter einem Seiten-Effekt verstehen wir die Veränderung eines Zu-
standes durch die Methode. Typische Seiteneffekte sind das Setzen
von Feldern oder das Ausgeben auf der Konsole.

Eine Seiteneffekt-freie Methode verändert dementsprechend den inne-
ren Zustand unseres Systems nicht. Das bedeutet, wenn wir nebenläu-
fige Zugriffe außen vor lassen, dass das wiederholte Aufrufen einer Me-
thode mit denselben Argumenten auch immer zum selben Ergebnis
führt.

Besonders gefährlich sind Seiteneffekte, wenn aus dem Namen der
Methode nicht hervorgeht, dass ein Seiteneffekt eintritt.

5.5.2 Befehl oder Abfrage (Command Query Separation)

Jede Methode sollte entweder eine Abfrage oder ein Befehl sein, d.h.
sie sollte entweder etwas tun, oder etwas zurückliefern, aber nicht bei-
des. Alles andere führt dazu, dass ein Entwickler mit der genutzten API
vertraut sein muss, um den aufrufenden Code zu verstehen. Betrachten
wir folgenden Aufruf.

if (knownNames.add("Peter")) ...

Was sagt die Antwort aus? Hier könnte man noch (richtig) vermuten,
dass der Aufruf der add()-Methode true zurückliefert, wenn das Hin-
zufügen erfolgreich war, in diesem Fall also, wenn knownNames noch
keinen Eintrag namens „Peter“ besessen hat.

Wie sieht es mit folgender Methode aus?

if (positions.set("teamleader", "Peter")) ...

Bedeutet eine positive Antwort, dass der momentane Teamleader Peter
heißt? Oder das der Teamleader erfolgreich auf Peter gesetzt wurde
(weil es tatsächlich eine Position namens „teamleader“ gibt)? Wir
können zwar versuchen, die Lesbarkeit durch einen besseren Namen
zu verbessern (checkIfExistsAndSet), aber das hilft auch nicht viel.

Die einzig sinnvolle Lösung, die uns bleibt, ist den Befehl (setze den
Wert) von der Abfrage zu trennen:

if (positions.entryExists("teamleader")) {

 positions.set("teamleader", "Peter"));

 ...

Methoden 5

1.0.0210 / 9033 © Integrata AG 5-25

Regel 5-12: Methoden sollten wenn möglich entweder Abfragen
oder Befehle sein. (Lesb)

Allerdings gibt es natürlich gute Gründe, gegen diese Regel zu versto-
ßen, insbesondere in der nebenläufigen Programmierung müssen wir
uns abstützen, dass Methoden sowohl Abfragen als auch Befehle sind.
Das sollte dann aber aus dem Namen zweifelsfrei hervorgehen.

5.5.3 Mehrere Exit-Punkte

Ein alter Programmiergrundsatz lautet, dass jede Routine (also auch
jede Methode) nur genau einen Eingang und einen Ausgang haben soll.
Wir werden diesen Grundsatz allerdings nicht anwenden. Dafür gibt es
zwei Gründe:

• Unsere Methoden sollen schließlich kurz gehalten werden. Das
künstliche Zusammenfassen von Exit-Punkten resultiert aber in der
Regel in einer zusätzlichen lokalen Variable, und damit in mehr Code

• Das Argument der Unübersichtlichkeit ist nicht wirklich schwerwie-
gend, wenn unsere Methoden nur wenige Zeilen lang sind, zumal
moderne IDEs in der Lage sind, uns Exit-Punkte unseres Codes ge-
sondert zu markieren.

Wir werden also sehr wohl mehr als einen Exit-Punkt verwenden, wenn
sich das anbietet (belegt durch einen vernünftigen „To“-Satz natürlich.

5.5.4 Rekursionen

Eine rekursive Funktion (nur für Funktionen macht das überhaupt Sinn)
ist eine Funktion, die sich selber aufruft (entweder direkt, oder über eine
oder mehrere andere Funktionen hinweg. Das Ziel dabei ist, dass ein
Problem in Teile zerlegt wird, und diese Teile dann wiederum durch die
gleiche Funktion behandelt werden.

Auf diese Art und Weise sind relativ elegante Lösungen möglich, die
insbesondere in der funktionalen Programmierung genutzt werden. Die
Formulierung einer rekursiven Funktion ist damit dicht an einer mathe-
matischen Funktion.

Eine rekursive Funktion besteht aus zwei Bestandteilen: den Abbruch-
bedingungen (auch Spezialfall genannt) und dem rekursiven Anteil
(auch allgemeiner Teil genannt).

Ein Beispiel:

Die Summe einer Liste von Zahlen wird folgendermaßen berechnet:

• Für eine leere Liste ist sie 0

• Für eine nicht-leere Liste ist sie das erste Element + die Summe
der Restliste

5 Methoden

5-26 © Integrata AG 1.0.0210 / 9033

Im Code sieht das folgendermaßen aus (head() und tail() sind
dabei Methoden, die das erste Element, bzw. eine Restliste zurücklie-
fern):

public int sum(List elements) {

 if (elements.isEmpty()) return 0;

 return elements.head() + sum(elements.tail());

}

Diese Lösung ist kurz und elegant – und leider ziemlich ineffizient und
unnötig. Bevor wir uns aber darüber Gedanken machen, prüfen wir, ob
die Methode gegen Regeln verstößt.

Die Methode ist kurz, sie macht nur eine Sache und sie hat nur ein Ar-
gument (sie ist also eine Abfrage). Sie hat auch keine Nebeneffekte.
Wie sieht es mit der Stepdown-Regel aus?

To sum all elements, either return 0, if there is no element or add the
head element to the sum of the tail.

Das sieht zumindest nicht verkehrt aus. Das einzige, was man anmer-
ken könnte wäre, dass wir natürlich nicht bei jedem Aufruf eine Abstrak-
tionsebene tiefer gehen. Das ist allerdings nicht weiter dramatisch, zu-
mindest gehen wir die Ebenen nicht wieder hinauf.

Wo liegt jetzt der Nachteil? Zunächst erfordern Rekursionen immer ei-
nen Moment des Nachdenkens (wenn man nicht gerade Vollzeit-
Mathematiker ist), und genau das wollen wir ja eigentlich vermeiden.

Weiterhin gibt es ja genau für das Problem (der Summe der Elemente
einer Liste) ja eine sehr einfache Möglichkeit: das Durchiterieren der
Liste und Aufsummieren der Werte.

Drittens ist eine Rekursion ziemlich Ressourcen-hungrig, wenn der
Compiler dafür nicht spezielle Unterstützung bietet.

Für einfache Beispiele (wie sie leider oft in Informatik-Büchern stehen)
ist Rekursion also eher nicht geeignet – das gilt insbesondere für die
beiden Standardbeispiele, Fibonacci-Zahlen und Fakultät!

Trotzdem hat Rekursion natürlich ihre Anwendungsgebiete: Fachcode,
der von Mathematikern gepflegt wird und die fachlichen Berechnungen
der Software implementiert, oder wenn die Anforderungen bereits re-
kursiv formuliert sind.

Es geht also nicht darum, Rekursionen absolut zu vermeiden, sondern
darum, sie nicht einfach der Eleganz wegen zu verwenden. Was wir
aber unbedingt vermeiden sollten, sind zyklische Rekursionen (A ruft B
auf und B wieder A). Diese sind schwer nachzuvollziehen und versto-
ßen auch mit ziemlicher Sicherheit gegen die Stepdown-Regel.

Methoden 5

1.0.0210 / 9033 © Integrata AG 5-27

5.6 Zusammenfassung

In diesem Kapitel haben wir eine Reihe von Regeln und Verfahren be-
sprochen, die im ersten Moment äußerst extrem erscheinen. Insbeson-
dere das Reduzieren unserer Methoden auf eine Handvoll Zeilen erfor-
dert ein deutliches Umdenken.

Der Aufwand lohnt sich allerdings. Indem wir unsere Methoden auf die-
se Art und Weise zusammenbauen, lässt sich unser Code wie eine Ge-
schichte lesen.

Natürlich sind unsere Methoden im ersten Wurf in der Regel nicht so
strukturiert und sauber wie in diesem Kapitel gefordert. Zunächst imp-
lementieren wir unsere Funktionalität. Aber danach sollten wir uns eben
die Zeit nehmen, unseren Code lesbar zu machen.

5 Methoden

5-28 © Integrata AG 1.0.0210 / 9033

1.0.0210 / 9033 © Integrata AG 6-1

Kommentare und Dokumentation

6.1 Einleitung.. 6-3

6.1.1 Lesbarer Code ... 6-3

6.2 Gute Kommentare .. 6-5

6.2.1 Rechtliche Hinweise... 6-5

6.2.2 Klarstellungen .. 6-5

6.2.3 Absichtserklärungen .. 6-6

6.2.4 Design Patterns ... 6-6

6.2.5 Regelverstöße ... 6-6

6.2.6 Unterstreichungen ... 6-7

6.2.7 Formale Kommentare .. 6-7

6.3 Schlechte Kommentare .. 6-9

6.3.1 Unverständliche Kommentare.. 6-9

6.3.2 Redundanzen .. 6-9

6.3.3 Forcierte Kommentare ... 6-10

6.3.4 Codehistorien... 6-10

6.3.5 Klammer-Kommentare... 6-11

6.3.6 Auskommentierter Code .. 6-11

6.3.7 Informationsüberfluss... 6-12

6.3.8 TODOs... 6-12

6 Kommentare und Dokumentation

6-2 © Integrata AG 1.0.0210 / 9033

6.3.9 Nicht-öffentliche formale Kommentare............................. 6-12

6.4 Testfälle als Dokumentation ... 6-13

6.5 Zusammenfassung... 6-14

Kommentare und Dokumentation 6

1.0.0210 / 9033 © Integrata AG 6-3

6 Kommentare und Dokumentation

6.1 Einleitung

In diesem Kapitel werden wir uns mit Kommentaren und Dokumentation
beschäftigen. Mit Dokumentation meinen wir dabei formale Kommenta-
re im Quellecode, aus denen später eine API-Beschreibung generiert
werden kann (mit Javadoc oder Doxygen). Nutzerdokumentation o.Ä.
ist damit natürlich nicht gemeint!

Eine Erkenntnis die das Kapitel hoffentlich zeigen wird, ist das insbe-
sondere Kommentare (nicht Dokumentation) häufig nicht nur unnötig,
sondern kontraproduktiv sind.

Warum wird hier so vehement gegen Kommentare argumentiert? Weil
Kommentare ein großes Problem mit sich bringen: Sie werden in der
Regel nicht weitergepflegt. Das bedeutet, dass ein Kommentar zum
Zeitpunkt, an dem er geschrieben wurde sinnvoll gewesen sein mag,
aber wurde der kommentierte Code seitdem geändert, ist nicht sicher-
gestellt, dass auch der Kommentar angepasst wurde.

Ein Beispiel:

/**

 * Add a new Action to the manager. Returns true if the action

 * is already existant. If the action is already registered,

 * it is NOT replaced.

 * @param action the action to add

 * @return True if an action with the same name has

 * already been added, false otherwise.

 */

public void addAction(JaspiraAction action)

Ein weiteres Problem von Kommentaren ist ihre mangelnde Überprüf-
barkeit. Alles, was nicht automatisiert geprüft werden kann (i.d.R. im
Buildprozess), muss entweder manuell geprüft werden, oder verworfen!

6.1.1 Lesbarer Code

Kommentare sind deshalb hoffentlich selten notwendig, weil uns ja un-
ser bisheriges Bemühen, insbesondere die beiden letzten Kapitel an ei-
ne Stelle gebracht haben sollte, an denen unser Code so gut verständ-
lich ist, dass wir eigentlich keine Kommentare brauchen.

Häufig, wenn auch nicht immer, kann der Kommentar durch eine ent-
sprechende Methode oder Variable ersetzt werden. Vergleichen Sie
folgende Abfrage

6 Kommentare und Dokumentation

6-4 © Integrata AG 1.0.0210 / 9033

// is order eligible for free shipping

if (order.getValue() > FREE_SHIPPING_LIMIT

 || isPremiumMember(order.getCustomer()))

mit ihrer Variante ohne Kommentar:

if (isEligibleForFreeShipping(order))

Abgesehen davon, dass die zweite Variante deutlich kürzer ist, kann die
Erklärung dabei auch nie vom eigentlichen Code getrennt werden, wie
es hier passiert ist:

// is order eligible for free shipping

Customer customer = order.getCustomer();

customer.addToOrderHistory(order);

if (order.getValue() > FREE_SHIPPING_LIMIT

 || isPremiumMember(order.getCustomer()))

Und beide Varianten haben natürlich den gleichen Aufwand. Bei der
kommentierten Version schreiben wir erst den Kommentar, um auszu-
drücken, was wir vorhaben (oder überlegen es uns zumindest), bei der
zweiten Version schreiben wir das, was wir vorhaben, einfach als Me-
thodenaufruf nieder. Und erst dann erstellen wir die neue Methode (was
mit einer modernen IDE wieder nur einige Tastendrücke erfordert).

Wenn wir einen Kommentar (Ausnahmen gibt es natürlich, s.u.) in un-
serem Code verwenden, sagen wir eigentlich damit aus: Wir sind nicht
in der Lage, uns alleine mit unserem Code auszudrücken.

Gerade bei komplexerem Code gibt es eine Tendenz, diesen (mehr
oder weniger sinnvoll) zu kommentieren. Das ist aber der falsche An-
satz! Ist der Code zu komplex, sollte er vereinfacht werden. Kommenta-
re sind kein Freischein für schlechten Code.

Regel 6-1: Bevor ein Kommentar gesetzt wird, um Code zu erklä-
ren, sollte immer erst versucht werden, den Code
selbst verständlicher zu gestalten. (Lesb)

Kommentare und Dokumentation 6

1.0.0210 / 9033 © Integrata AG 6-5

6.2 Gute Kommentare

Natürlich sind nicht alle Kommentare schlecht. Wir werden im Folgen-
den eine Reihe von Kommentartypen besprechen, die notwendig, sinn-
voll oder zumindest unvermeidbar sind.

6.2.1 Rechtliche Hinweise

Diese Art von Kommentar interessiert uns als Entwickler in der Regel
recht wenig. Sie ist formalisiert, sieht für ein Projekt immer gleich aus,
wird durch die IDE normalerweise ausgeblendet, und die gleiche IDE
legt sie beim Erstellen einer neuen Datei auch mit an.

Trotzdem sind sie natürlich wichtig!

/*

 * (c) 2009, 2010 by Integrata AG, all rights reserved

 * Release under Apache License 1.0

 */

Das einzige, worauf wir hier achten sollten ist, dass ein derartiger
Kommentar eben nicht einen vollständigen Lizenztext beinhalten sollte,
sonder in der Regel nur den Namen und die Version der Lizenz aufzählt
(wenn es sich um einen Standard-Lizenz handelt) oder auf ein externes
Dokument verweist.

6.2.2 Klarstellungen

Klarstellungen dienen dazu, einen Code, der inherent unleserlich oder
schwer verständlich ist (was nicht immer zu vermeiden ist, gerade,
wenn externe Bibliotheken genutzt werden). Ein häufiges Beispiel dafür
sind Reguläre Ausdrücke:

Pattern dateTimePattern = Pattern.compile(

 // 31 . 08 . 2004 16 : 28 +1

 // 1 . 4 . 04 4 : 15

 "\\d{1,2}.\\d{1,2}.((\\d{4})|(\\d{2}) \\d{1,2}:\\d{2} (+\\d)?")

6 Kommentare und Dokumentation

6-6 © Integrata AG 1.0.0210 / 9033

6.2.3 Absichtserklärungen

Eine Absichtserklärung dient dazu, deutlich zu machen, was die Intenti-
on des Programmierers war, um ein bestimmtes Stück Code genau so
zu schreiben.

@Override

public boolean equals(Object other) {

 if (other == null) return false;

 if (this == other) return true;

 if (other.getClass() == this.getClass()) {

 //...

 }

 // Value Objects can be equal to actual objects

 else if (other.getClass() == PersonValue.class) {

 return toValueObject().equals(other);

 }

}

6.2.4 Design Patterns

Wird in einem Stück Code ein Design-Pattern umgesetzt und ist das
nicht sofort ersichtlich, sollte in einem Kommentar darauf hingewiesen
werden. Besser ist allerdings, die Namen der beteiligten Klassen ent-
sprechend zu wählen.

6.2.5 Regelverstöße

Aus Sicht des Autors die wichtigste Art von Kommentar. In Program-
men wird es immer wieder notwendig sein, gegen Konventionen, Regel
oder sogar Contracts zu verstoßen. Derartige Verstöße müssen unbe-
dingt kommentiert werden1, sonst könnte es passieren, dass ein ande-
rer Programmierer den vermeintlichen Fehler korrigiert.

Regel 6-2: Regelverstöße müssen durch einen Kommentar mar-
kiert und begründet werden. (Lesb, Vers)

1 Und zwar mit einer Begründung!

Kommentare und Dokumentation 6

1.0.0210 / 9033 © Integrata AG 6-7

6.2.6 Unterstreichungen

Unterstreichungen sind Hervorhebungen von Code, der sonst überle-
sen würde. Also ein eigentlich trivialer Schritt, der hier aber eine beson-
dere Bedeutung hat.

6.2.7 Formale Kommentare

Formale Kommentare sind das, was wir eingangs als Dokumentation
bezeichnet haben. Es sind Kommentare, aus denen später eine API-
Dokumentation generiert wird.

Diese Kommentare für die öffentliche2 API (und nur für diese) können
ausführlich und detailliert die Benutzung der Routinen beschreiben und
sind damit eine wertvolle Hilfe für jeden Programmierer, der auf unsere
Module zugreifen will.

Regel 6-3: Formale Kommentare sollten dem Visions-Prinzip fol-
gen. (Lesb, Vers)

Das bedeutet in diesem Fall, dass der erste Satz der Klassen oder Me-
thoden-Beschreibung für sich alleine verständlich sein sollte. Der restli-
che Kommentar dient zur Klarstellung, für Details und ggf. für Anwen-
dungsbeispiele.

Der erste Satz ist der, der auch in Übersichten in der generierten Do-
kumentation auftaucht (der erste Satz der Klassen in der Beschreibung
des Pakets, der erste Satz der Methoden in der Beschreibung der Klas-
se).

Regel 6-4: Formale Kommentare sollten im Quellcode lesbar sein.
(Lesb)

Die meiste Zeit über wird ein Entwickler nicht auf die generierte Doku-
mentation, sondern direkt in den Quelltext schauen. Deshalb ist es un-
gemein wichtig, dass die Dokumentation auch im Quelltext verständlich
ist.

2 Die öffentliche API setzt sich dabei aus public Elementen und protected Elementen

zusammen, letztere aber nur, wenn die Klasse zur Vererbung gedacht ist.

6 Kommentare und Dokumentation

6-8 © Integrata AG 1.0.0210 / 9033

Leider verwenden viele Systeme HTML, um ihre formalen Kommentare
zu formatieren, mit dem Ergebnis, dass der Kommentar im schlimmsten
Fall im Sourcecode unverständlich ist:

/**

 * Returns an XML-Representation of this MemberList.

 * Generated Code has the following format:

 *

 * <members>

 * <person>

 * <firstname>Dieter</firstname>

 * <lastname>Maier</lastname>

 * <birthday>1973-15-21</birthday>

 * </person>

 * </members>

 */

public void toXML() {

Kommentare und Dokumentation 6

1.0.0210 / 9033 © Integrata AG 6-9

6.3 Schlechte Kommentare

Neben guten Kommentaren gibt es natürlich eine ganze Reihe von
schlechten Kommentaren, also Kommentare, die nichts zur Lesbarkeit
beitragen oder diese sogar noch verschlechtern. Die häufigsten wollen
wir hier aufzählen.

6.3.1 Unverständliche Kommentare

Unverständliche Kommentare sind Kommentare, die in der Hitze des
Gefechts unlesbar herausgekommen sind. Gründe dafür mögen die
Uhrzeit oder Termindruck sein.

Fest steht aber, dass ein unverständlicher Kommentar schlechter als
gar kein Kommentar ist.

6.3.2 Redundanzen

Redundante Kommentare sind Kommentare, die eigentlich nur wieder-
holen, was bereits im Code steht. Darunter fallen zum einen Aufrufe,
zum anderen aber auch formale Kommentare:

// Register implementations in the service registry

initServices(services);

// Initialize the persistence layer

initPersistence();

// Reads all models

initModels();

// Initializes advanced of the system

initServices(services2);

// Register a shutdown hook that allows correct database
shutdown

registerShutdownHook();

// Initializes the remote services (if necessary).

initRemoting();

/**

 * Initializes the persistence layer.

 */

protected void initPersistence()

/**

 * Shuts down the persistence layer.

 */

protected void shutdownPersistence()

6 Kommentare und Dokumentation

6-10 © Integrata AG 1.0.0210 / 9033

6.3.3 Forcierte Kommentare

Diese Kommentare gehen in eine ähnliche Richtung. Häufig findet man
in den internen Programmierrichtlinien (so diese denn existieren) die
Forderung, jede öffentliche Methode mit einem Kommentar zu verse-
hen.

Der Effekt davon ist, dass die Programmierer Zeit damit verbringen, den
sinnvollen Namen, den sie ihrer Methode gegeben haben im Kommen-
tar zu doppeln oder mit einer alternativen Beschreibung, die exakt das
gleiche aussagt zu versehen (siehe initPersistence() und shut-
downPersistence() im obigen Beispiel)

Ein gutes Beispiel sind Getter und Setter. Diese mit Kommentaren zu
versehen, ist schlicht und ergreifend Code-Müll!

6.3.4 Codehistorien

In einigen (gerade älteren) Projekten findet sich im Kopf, seltener am
Ende einer Datei eine Beschreibung, wer was wann geändert hat, also
eine Historie der Datei.

/*

 * Demo.java

 *

 * 18.03.03 sp Initial Version

 * 15.04.03 sp added Lifecyclemethods

 * 18.04.03 jf implemented Comparable

 * 30.05.03 sp general Refactoring

 */

Das ist bisher nur die harmlose Fassung, die nur größere Änderungen
aufzählt. Gelegentlich sieht man aber auch die Variante, dass jede Än-
derung dort verzeichnet sein soll. Mit dem Ergebnis, dass diese Kom-
mentare über mehrere Bildschirmseiten gehen.

Welchen Nutzen haben diese Kommentare (außer Platz zu verschwen-
den)? Unsere IDE blendet sie normalerweise sowieso aus.

Benötigen wir die Informationen über die Änderungen, so bekommen
wir diese auch ohne weiteres von unserer Sourcecode-Verwaltung
und/oder unserem Ticketsystem.

Kommentare und Dokumentation 6

1.0.0210 / 9033 © Integrata AG 6-11

6.3.5 Klammer-Kommentare

Eine weitere Praxis, die früher recht geläufig war, ist das Markieren von
schließenden Klammern:

for (int i = 0; i < max; i++) {

 try {

 …

 } // try

 catch (IOException e) {

 …

 } // catch

} // for

Diese Technik hätte nur dann Sinn, wenn unsere Methoden deutlich
größer und verschachtelter wären, als wir erreichen wollen.

6.3.6 Auskommentierter Code

Auskommentierter Code hat die Tendenz, der langlebigste Teil unseres
Codes zu werden. Keiner traut sich daran, ihn zu löschen, keiner weiß
mehr, warum er auskommentiert wurde. Betrachten wir folgendes Bei-
spiel aus der JCommons-Library:

this.bytePos = writeBytes(pngIdBytes, 0);

//hdrPos = bytePos;

writeHeader();

writeResolution();

//dataPos = bytePos;

if (writeImageData()) {

 writeEnd();

 this.pngBytes = resizeByteArray(this.pngBytes, this.maxPos);

}

else {

 this.pngBytes = null;

}

return this.pngBytes;

Warum wurden diese Zeilen auskommentiert? Wurde vielleicht verges-
sen, sie wieder ein zu kommentieren?

Wenn schon Code auskommentiert wird, dann sollte auch dabei stehen,
warum. Aber besser ist es, ganz darauf zu verzichten (natürlich spricht
überhaupt nichts dagegen, für einen Testlauf Code aus zu kommentie-
ren – aber dieser Code darf dann natürlich niemals wieder eingecheckt
werden!)

6 Kommentare und Dokumentation

6-12 © Integrata AG 1.0.0210 / 9033

6.3.7 Informationsüberfluss

Information, die nichts mit dem Code zu tun hat, gehört auch nicht in
den Code. Von wem ein Algorithmus entwickelt wurde und wie er sich
im Laufe der Zeit gewandelt hat, ist für denjenigen, der den Code lesen
soll, unerheblich.3

6.3.8 TODOs

Kommentare die man häufig in Code findet, sind TODO Kommentare.
Dabei handelt es sich um Markierungen, mit denen ein Programmierer
deutlich macht, dass an dieser Stelle noch etwas getan werden muss,
aber aus irgendeinem Grund noch nicht getan werden kann.

Der Vorteil von TODO-Kommentaren ist, dass moderne IDEs in der La-
ge sind, alle TODOs aus einem Projekt übersichtlich zu präsentieren.

Der gravierende Nachteil ist aber, dass dabei die Gefahr besteht, ein
„zweites Ticket-System“ neben dem eigentlichen Projekt-System aufzu-
stellen. Notwendige Arbeitsschritte am Code sollten alle an einer Stelle
zusammengefasst sein.

Kann man die Sourcecode-Verwaltung so konfigurieren, dass das Ein-
checken eines neuen TODO-Kommentares automatisch ein Ticket an-
legt, kann man dieses Problem aber elegant umgehen.

6.3.9 Nicht-öffentliche formale Kommentare

Code aus dem keine API-Dokumentation erzeugt wird (also nicht-
öffentlicher Code) benötigt auch keine formalen Kommentare. Natürlich
kann und wird aus dieser Code dokumentiert werden, aber eben nicht
formal.

Wo liegt der Unterschied? Formale Kommentare drängen uns noch
deutlich mehr formal Zwänge auf, die aber für den Quellcode unerheb-
lich sind. D.h. wir verbrauchen Zeit und Platz für Formalismen, die dazu
dienen eine Dokumentation generieren zu können, die niemals ge-
braucht wird.

Regel 6-5: Nur die öffentliche API sollte formal beschrieben wer-
den. (Lesb)

3 Allenfalls eine URL mit weiterführenden Informationen ist hinnehmbar

Kommentare und Dokumentation 6

1.0.0210 / 9033 © Integrata AG 6-13

6.4 Testfälle als Dokumentation

Eine sinnvolle Form der Dokumentation sind Testfälle (siehe dazu auch
das Kapitel über Tests). Um die Benutzung einer API zur verstehen,
bietet es sich an, ein großes Augenmerk auf die Testfälle zu werfen,
denn diese müssen zwangsläufig angepasst werden, wenn der Code
verändert wird. Bei Kommentaren kann das ja versäumt werden.

Testfälle sind damit in der Regel aktueller als Kommentare. Es ist eine
gute Praxis, Testfälle auch mit diesem Hintergrund zu schreiben. Eine
Reihe guter Testfälle erspart damit auch Beispiele und zusätzliche Er-
klärungen in den Kommentaren.

Noch besser wäre es, wenn die Testfälle selbst Teil der Dokumentation
wären, damit hätten wir ein wichtiges Problem gelöst: die Testbarkeit
unserer Dokumentation.4

4 Ein interessantes Projekt unter Java, das dieses Ziel verfolgt sind die Java-

Eunnotations (http://www.eucodos.de/eunnotations/doctract)

6 Kommentare und Dokumentation

6-14 © Integrata AG 1.0.0210 / 9033

6.5 Zusammenfassung

Wir haben uns in diesem Kapitel mit Grundsätzen für gute Kommentare
auseinander gesetzt. Die wichtigsten Punkte dabei waren:

• Kommentare sind keine Rechtfertigung für schlechten Code

• Ein Kommentar, der nur geschrieben wird, weil das die Konvention
verlangt, ist unnötig – hier sollte die Konvention geändert werden

• Bei Kommentare gilt ganz klar: weniger ist mehr.

1.0.0210 / 9033 © Integrata AG 7-1

Code-Formatierung

7.1 Einleitung.. 7-3

7.2 Warum Formatierung.. 7-3

7.2.1 Automatisierte Formatierung.. 7-3

7.2.2 Sourcecode als Kommunikation .. 7-5

7.3 Die Zeitungsmetapher .. 7-6

7.3.1 Schlagzeile .. 7-6

7.3.2 Untertitel .. 7-6

7.3.3 Der Einstieg / Lead .. 7-6

7.3.4 Absätze.. 7-6

7.3.5 Reihenfolgen.. 7-9

7.3.6 Die Rubrik .. 7-10

7.4 Weitere Formatierungsregeln ... 7-10

7.4.1 Breite und Höhe... 7-10

7.4.2 Einrückungen... 7-11

7.4.3 Ausnahmen.. 7-11

7.5 Team Rules! ... 7-12

7.6 Zusammenfassung ... 7-13

7 Code-Formatierung

7-2 © Integrata AG 1.0.0210 / 9033

Code-Formatierung 7

1.0.0210 / 9033 © Integrata AG 7-3

7 Code-Formatierung

7.1 Einleitung

In diesem (recht kurzen) Kapitel werden wir den Überblick über formale
Code-Richtlinien abschließen. Wir werden auf einige Grundsätze ein-
gehen, wie auf die Frage, warum Formatierung heutzutage überhaupt
noch ein Thema ist, und einige gute Ansätze für einen sauberen Code
betrachteten.

Wir werden uns in diesem Kapitel weniger damit beschäftigen, wo
Klammern und wo Leerzeichen hinsollen oder nicht, sondern uns mehr
auf das große Bild konzentrieren.

7.2 Warum Formatierung

Warum der Code formatiert werden sollte, dürfte hoffentlich klar sein.
Die Frage ist, warum müssen wir uns im Zeitalter automatische Code-
Formatierung damit auseinandersetzen?

Nun, zum Einen decken Formatieren nicht alles ab, was wir hier be-
sprechen, zum Anderen, muss ja irgendjemand auch den Formatter
konfigurieren.

7.2.1 Automatisierte Formatierung

Gerade mit automatischer Formatierung ist es umso wichtiger, dass alle
Entwickler die gleichen Formatierungen verwenden. Nicht nur, wie im-
mer als erstes genannt wird, damit der Code aus einem Guss wirkt
(was trotzdem wichtig ist), sondern vor allem auch wegen der Zusam-
menarbeit mit der Sourcecode-Verwaltung.

Die meisten Sourcecode-Verwaltungen arbeiten zeilenorientiert, d.h. bei
einem eincheck-Vorgang wird unterschieden zwischen Zeilen, in denen
sich etwas geändert hat und Zeilen, die gleich geblieben sind.

Betrachten wir folgendes Beispiel:

Entwickler A verwendet die Einstellung, dass die öffnenden, ge-
schweiften Klammern in der Zeile der Anweisung stehen sollen (der
sogenannte K&R-Stil1), Entwickler B die Einstellung, dass sie immer
in einer eigenen Zeile stehen müssen.

1 Nach Brian Wilson Kernighan und Dennis Ritchie: Ritchie ist der Schöpfer von C, mit

Kernighan zusammen hat er außerdem ein fundamentales Buch zur C-
Programmierung geschrieben, in dem eben dieser Klammer-Stil empfohlen wird.

7 Code-Formatierung

7-4 © Integrata AG 1.0.0210 / 9033

B checkt nun den folgenden, zuletzt von A veränderten Code aus,
fügt die markierte Zeile ein und benennt die Methode um:

public class ServiceRegistry {

 private Set<Service> registeredServices;

 void registerAndInitializeService(Service service) {

 if (registeredServices.contains(service)) {

 throw new IllegalStateException);

 }

 registeredServices.add(service);

 service.initialize();

 }

 void doSomething() {

 if (checkSomething()) {

 doSomethingElse();

 }

 }

 //…

}

Beim Abspeichern tritt nun die automatische Formatierung in Aktion.
Checkt er die geänderte Klasse dann wieder ein, so erkennt die
Sourcecode-Verwaltung alle markierten Zeilen als Änderungen:

public class ServiceRegistry

{

 private Set<Service> registeredServices;

 void registerService(Service service)

 {

 if (registeredServices.contains(service))

 {

 throw new IllegalStateException);

 }

 registeredServices.add(service);

 service.initialize();

 }

 void doSomething()

 {

 if (checkSomething())

 {

 doSomethingElse();

 }

 }

}

Will nun Entwickler A überprüfen, was sich am Code getan hat, so
bekommt er von der Sourcecode-Verwaltung die Information, dass
sich unter anderem die Methode doSomething() geändert hat, die
aber tatsächlich von niemandem angerührt wurde.

Code-Formatierung 7

1.0.0210 / 9033 © Integrata AG 7-5

Schlimmstenfalls gehen die wichtigen Änderungen im Rauschen der
geänderten Formatierungen vollständig unter und werden übersehen.

7.2.2 Sourcecode als Kommunikation

Unser Quellcode ist eine Art zu kommunizieren. Mit anderen Program-
mierern und mit uns selbst. Dementsprechend ist unsere Formatierung
die äußere Form unserer Kommunikation.

Was wird wohl eher gelesen und ernstgenommen? Einige hastig hinge-
schmierte Punkte auf einer Serviette oder die gleichen Punkte sauber
gedruckt auf einem Blatt Papier?

Wenn wir unseren Quellcode als Medium betrachten, können wir dar-
aus einige Ansätze für die Formatierung herausholen.

Die Formatierung, Anordnung unsere Methoden und selbst die Platzie-
rung der Leerzeilen ist eine Information! Auf diese Informationen sollte
sich ein Leser verlassen können, ohne sich in jeder Klasse auf einen
neuen Stil einstellen zu müssen.

7 Code-Formatierung

7-6 © Integrata AG 1.0.0210 / 9033

7.3 Die Zeitungsmetapher

Eine gute Klasse wollen wir im Folgenden mit einem Zeitungsartikel
vergleichen. Dieser beginnt mit einer Schlagzeile, gefolgt von einem
Untertitel und einer Zusammenfassung. Dann folgt der eigentliche Text
vom Allgemeinen zum Speziellen. Auf diese Art und Weise wollen wir
unseren Code auch aufbauen.

7.3.1 Schlagzeile

Die Schlagzeile, also der Klassenname liefert uns einen prägnanten
Überblick über das allgemeine Thema der Klasse. Sie muss aussage-
kräftig genug sein, dass ein Blick ausreicht, um zu erkennen, ob der In-
halt für den Leser relevant ist, oder nicht.

Insbesondere muss die Schlagzeile sich soweit von anderen Schlagzei-
len abheben, dass der Leser diese auf einen Blick unterscheiden kann.

Einen Unterschied zur Schlagzeile in der Zeitung gibt es allerdings.
Schlagzeilen sind häufig reißerisch oder provozierend gewählt, um ein
erstes Interesse zu wecken. Das wollen wir hier natürlich so nicht um-
setzen.

7.3.2 Untertitel

Der Untertitel eines Artikels präzisiert den Inhalt näher – aber immer
noch in einem Satz. Er wird dazu genutzt, Informationen unterzubrin-
gen, die den Titel überfrachten würden.

Die Entsprechung des Untertitels in unserem Code ist natürlich die Vi-
sion. Sie ist der zweite Platz, auf den unser Blick fällt, wenn wir anhand
des Klassennamens entschieden haben, dass die Klasse näher be-
trachtet werden soll.

7.3.3 Der Einstieg / Lead

Als Einstieg oder Lead bezeichnet man in einem Zeitungsartikel den fett
gedruckten ersten Teil, der einen Überblick über den Inhalt gibt. Die
wichtigsten Stichpunkte werden hier zusammengefasst.

In unserem Code ist der Lead der formale Kommentar unserer Klasse.
Er sollte beschreiben, was wir von der Klasse zu erwarten haben und
wie wir damit umgehen sollen. Wichtige Punkte im Code selbst werden
hier bereits hervorgehoben.

7.3.4 Absätze

Ein Absatz stellt eine Reihe von logisch zusammenhängenden Sätzen
dar. In unserem Code: eine Methode! Absätze sind von einander op-
tisch getrennt – mit einer halben oder einer ganzen Leerzeile.

Code-Formatierung 7

1.0.0210 / 9033 © Integrata AG 7-7

Diese Praxis sollten wir unbedingt für unseren Code übernehmen:

Regel 7-1: Methoden sollten von einander durch eine Leerzeile ge-
trennt werden. (Lesb)

Zeigen wir das an einem Beispiel:
 private void initServices(List<Service> services) {

 for (Service next : services)

 registerAndInitService(service);

 }

 private void registerAndInitService(Service service) {

 if (service instanceof LifecycleSupport)

 ((LifecycleSupport) next).initialize();

 serviceRegistry.register(o);

 }

 private void shutdownServices(List<Service> services) {

 for (Service next : services)

 shutdownService(service);

 }

 private void shutdownService(Service service) {

 if (service instanceof LifecycleSupport)

 ((LifecycleSupport) service).shutdown();

 }

 protected void initPersistence() {

 PersistenceContextProvider provider = getPersistenceContextProvider()

 if (provider != null)

 provider.initialize();

 }

 protected void shutdownPersistence() {

 PersistenceContextProvider provider = getPersistenceContextProvider()

 if (provider != null)

 provider.shutdown();

 }

 private void initRemoting() {

 try {

 doInitRemoting();

 } catch (Exception e) {

 throw new EngineException("Initialization", "Error initializing
services.", e);

 }

 }

 private void doInitRemoting() {

 loadConnectionInfo();

 if (connectionInfo.isEnabled())

 initRemoteServer();

 }

 private void initRemoteConnectorServer() {

 remoteConnectorServer = new RemoteConnectorServer();

7 Code-Formatierung

7-8 © Integrata AG 1.0.0210 / 9033

 remoteConnectorServer.setServiceRegistry(getServiceRegistry());

 remoteConnectorServer.setConnectionInfo(connectionInfo);

 remoteConnectorServer.bindToRegistry();

 }

Und jetzt ohne Leerzeilen und mit hochgezogener schließender Klam-
mer:
 private void initServices(List<Service> services) {

 for (Service next : services)

 registerAndInitService(service); }

 private void registerAndInitService(Service service) {

 if (service instanceof LifecycleSupport)

 ((LifecycleSupport) next).initialize();

 serviceRegistry.register(o); }

 private void shutdownServices(List<Service> services) {

 for (Service next : services)

 shutdownService(service); }

 private void shutdownService(Service service) {

 if (service instanceof LifecycleSupport)

 ((LifecycleSupport) service).shutdown(); }

 protected void initPersistence() {

 PersistenceContextProvider provider = getPersistenceContextProvider()

 if (provider != null)

 provider.initialize(); }

 protected void shutdownPersistence() {

 PersistenceContextProvider provider = getPersistenceContextProvider()

 if (provider != null)

 provider.shutdown(); }

 private void initRemoting() {

 try {

 doInitRemoting();

 } catch (Exception e) {

 throw new EngineException("Initialization", "Error initializing
services.", e);

 }}

 private void doInitRemoting() {

 loadConnectionInfo();

 if (connectionInfo.isEnabled())

 initRemoteServer(); }

 private void initRemoteConnectorServer() {

 remoteConnectorServer = new RemoteConnectorServer();

 remoteConnectorServer.setServiceRegistry(getServiceRegistry());

 remoteConnectorServer.setConnectionInfo(connectionInfo);

 remoteConnectorServer.bindToRegistry(); }

Der Effekt sollte deutlich sein. Versuchen Sie trotzdem einmal, ihre Au-
gen unfokussiert über beide Versionen gleiten zu lassen, um den Effekt
noch zu verstärken.

Die umgekehrte Aussage gilt genauso: Was zusammen gehört, sollte
auch möglichst nicht voneinander getrennt werden, sei es durch Leer-
zeilen oder Kommentare. Relevant ist das insbesondere für Felder ei-
ner Klasse. Was wir im vorherigen Kapitel zu unnötigen Kommentaren
gesagt haben, bekommt hier noch eine andere Begründung.

Code-Formatierung 7

1.0.0210 / 9033 © Integrata AG 7-9

Die Kommentare zwischen den Feld-Definitionen reißen diese optisch
auseinander. Das Ergebnis ist, dass sie nicht mehr als ein „Absatz“
aufgefasst werden, sondern als eigenständige Konzepte – was selten
gewünscht sein dürfte.

7.3.5 Reihenfolgen

Auch bei der Reihenfolge orientieren wir uns an der Zeitungsmetapher:

Der allgemeine Teil sollte oben stehen, dann der speziellere Teil da-
nach folgen. Auf Methoden bezogen bedeutet das:

Regel 7-2: Abstraktere Methoden stehen vor spezielleren Metho-
den. (Lesb)

Die Abstraktesten Methoden sind dabei natürlich die öffentlichen Me-
thoden.

Regel 7-3: Abhängige Methoden sollten dicht zusammen stehen,
dabei der Aufrufer (der abstraktere) über dem Aufgeru-
fenen. (Lesb)

Schwierig wird das, wenn mehrere abstraktere Methoden sich spezielle
Methoden teilen. Dann sollte die speziellere Methode unter beiden abs-
trakteren Methoden stehen.

Regel 7-4: Konzeptionell zusammengehörige Methoden sollten
dicht beieinander stehen. (Lesb)

Besitzt unsere Klasse die Methode add(), insert() und add-
First(), so sollten diese drei Methoden auch dicht beieinander defi-
niert werden. Ein Sonderfall sind dabei die die Getter/Setter-Methoden,
die alle zusammengehören und als Cluster an das Ende der Klasse ge-
schrieben werden sollten

Eine letzte Regel lässt sich nicht auf die Zeitungsmetapher zurückfüh-
ren, sondern eher auf ein Theaterstück:

Regel 7-5: Felder sollten vor Methoden definiert werde, Konstan-
ten vor Feldern. (Lesb)

Fügen wir all diese Regeln zusammen, so haben wir ein Raster für den
Aufbau unserer Klasse:

• Konstanten

• Felder

• Die zu Clustern zusammengefassten Schnittstellen-Methoden

• Die nicht öffentlichen Methoden in der Reihenfolge ihres Gebrauchs

• Getter/Setter

7 Code-Formatierung

7-10 © Integrata AG 1.0.0210 / 9033

7.3.6 Die Rubrik

Um unsere Metapher noch ein wenig weiter zu treiben: Nachrichtenarti-
kel sind in der Regel nach Rubriken sortiert. Diese Aufgabe überneh-
men bei uns die Pakete (oder Namensräume, oder Komponenten).

Wichtig dabei ist, dass natürlich auch die Rubrik einen vernünftigen
Namen bekommt.

7.4 Weitere Formatierungsregeln

Nachdem wir oben die wichtigsten Regeln bereits definiert haben, wen-
den wir uns im Folgenden noch einigen weiteren Gesichtspunkten zu.

7.4.1 Breite und Höhe

Es gibt viele Meinungen und Thesen zur richtigen Länge einer Klasse
und zur maximalen Breite ihrer Zeilen.

Statt uns in den Kampf einzumischen, bleiben wir lieber bei einigen
Grundsätzen:

Da unsere Methoden kurz und unsere Klasse konzeptionell kurz sind,
werden unsere Klassen i.d.R. nicht in eine Größenordnung kommen,
bei der wir anfangen müssen, uns Gedanken zu machen. Wer trotzdem
Zahlen möchte: das extremste Erlebnis des Autors war eine Klasse mit
12.000 Zeilen Code – extrem schlechter Code noch dazu: Dass das zu
lang ist, sollte jedem klar sein.

In der Praxis hat sich ein Wert von 100-200 Zeilen als sinnvolle größere
herausgestellt, wobei einige Klassen sicher noch ein ganzes Stück grö-
ßer werden. 500 Zeilen sollten aber nur in Ausnahmefällen überschrit-
ten werden.

Was die Breite angeht: der alte Grundsatz mit der Bildschirmbreite hat
auch heutzutage noch seine Berechtigung. Damit ist aber der alte Wert
gemeint, also 80 Zeichen.

Ein Vorteil dieser Größenordnung ist, dass man den Code noch ver-
nünftig ausdrucken kann, wenn es denn notwendig wird. Viel nützlicher
ist aber die Tatsache, dass man damit zwei Dateien auf einem größe-
ren Monitor bequem nebeneinander darstellen kann. Das erleichtert
zum einen die Arbeit mit der Sourcecode-Verwaltung (Vergleiche zwi-
schen Versionen), zum anderen aber auch das Nachverfolgen von Aus-
führungspfaden, die über mehr als eine Klasse gehen.

Die 80 Zeichen sind dabei keine harte Regel, sondern eine Richt-
schnurr, die durchaus auch überschritten werden kann.

Code-Formatierung 7

1.0.0210 / 9033 © Integrata AG 7-11

7.4.2 Einrückungen

Das Einrückungen Code deutlich lesbarer machen, sollte keine Überra-
schung mehr sein. Interessanterweise kann man viel Zeit damit verbrin-
gen, sich darüber zu streiten, wie groß diese sein sollten und ob Leer-
zeichen oder Tabulatoren verwendet werden sollten.

Eigentlich sind diese beiden Fragen ziemlich müßig, wichtig ist nur,
dass man einer Konvention folgt.

7.4.3 Ausnahmen

Jede Regel sollte Ausnahmen zulassen. Die Gefahr bei Ausnahmen ist
aber, dass Code-Formatter, sollten sie denn eingesetzt werden, diese
in der Regel nicht kennen und prompt wieder zurückformatieren.

Eine Ausnahme, die sich aus Sicht des Autors bewährt hat und auch
von den meisten Formattern unterstützt wird ist folgende:

Ist die Handlung einer if/else Anweisung ein Exit-Punkt der Methode
oder des Blockes, so kann diese in die gleiche Zeile geschrieben wer-
den:

if (a > maxSize) return;

if (left == right) return 0;

else return -1;

if (number % j == 0) break;

7 Code-Formatierung

7-12 © Integrata AG 1.0.0210 / 9033

7.5 Team Rules!

Wer ein wenig im Internet herumstöbert, wird ziemlich bald auf harte
Fronten und schwere Grabenkriege zwischen Verfechtern unterschied-
licher Ansichten über Formatierungen stoßen.

Ganze Meetings sind schon an der Frage zerbrochen, ob nach der öff-
nenden Klammer einer Funktion ein Leerzeichen stehen soll, oder nicht.

Noch dramatischer sind die unterschiedlichen Ansichten über die Posi-
tion der öffnenden geschweiften Klammern.2

Anstatt hier zu sehr ins Detail zu gehen und einen Style-Guide zu ent-
werfen, wollen wir direkt den einzig wahren Formatierungsstil definie-
ren:

Regel 7-5: Der einzig wahre Formatierungsstil ist der, den das
Team festgelegt hat. (Lesb, Vers, Wart)

Das bedeutet: Existieren keine Richtlinien, so ist es die Aufgabe des
Teams, diese festzulegen und in Regeln für die IDE zu gießen. Das
kann schon innerhalb von einer Viertelstunde passiert sein (also das
Einigen – nicht das in die IDE einbringen).

2 Stil-Name wie 1TBS für „The One True Brace Style” (der einzig wahre Klammer Stil)

deuten schon darauf hin, dass die Diskussion teilweise quasi-religiöse Formen an-
genommen hat – wobei die Bezeichnung 1TBS eher mit einem Augenzwinkern und
als Kritik an der Diskussion an sich zu sehen ist.

Der geneigte Leser mag unter http://en.wikipedia.org/wiki/Indent_style einen Überblick
bekommen

Code-Formatierung 7

1.0.0210 / 9033 © Integrata AG 7-13

7.6 Zusammenfassung

In diesem Kapitel haben wir Grundsätze für die Formatierung von Sour-
cecode festgelegt. Wir haben eine Klasse mit einem Zeitungsartikel
verglichen und daraus die wichtigsten Merkmal einer guten Struktur
heraus gearbeitet.

Zum Schluss haben wir uns mit der Frage nach der Wichtigkeit einiger
gängiger Regeln beschäftigt.

Noch einmal:

Regel 7-6: Wichtig ist nicht, welche Formatierungsregeln im Ein-
zelnen verwendet werden, sondern dass diese Regeln
existieren und von allen genutzt werden. (Lesb, Vers,
Wart)

7 Code-Formatierung

7-14 © Integrata AG 1.0.0210 / 9033

1.0.0210 / 9033 © Integrata AG 8-1

Metriken

8.1 Einleitung.. 8-3

8.1.1 Code Entropy... 8-3

8.1.2 Die Zeitachse... 8-3

8.2 Basis Metriken.. 8-4

8.2.1 Cyclomatic Complexity (CC) .. 8-4

8.2.2 Lines of Code (LOC).. 8-5

8.2.3 Non Commenting Source Statements (NCSS) 8-6

8.3 Objektorientierte Metriken .. 8-7

8.3.1 Weighted Methods per Class (WMC)................................. 8-7

8.3.2 Depth of Inheritance Tree (DIT) ... 8-7

8.3.3 Number of Children (NOC) .. 8-7

8.3.4 Coupling between Object Classes (CBO) 8-7

8.3.5 Response for a Class (RFC).. 8-8

8.3.6 Lack of Cohesion in Methods (LCOM)............................... 8-8

8.3.7 Bewertung.. 8-9

8.4 Statische Analyse Tools (Bug Finder) .. 8-10

8.5 Laufzeit Metriken .. 8-11

8.5.1 Testabdeckung .. 8-11

8.5.2 Builddauer.. 8-11

8 Metriken

8-2 © Integrata AG 1.0.0210 / 9033

8.6 Zusammenfassung... 8-12

Metriken 8

1.0.0210 / 9033 © Integrata AG 8-3

8 Metriken

8.1 Einleitung

In diesem Kapitel beschäftigen wir uns mit einigen Metriken, um die
Qualität unsere Software zu messen. Metriken sind gleichzeitig ein
Fluch und ein Segen.

Korrekt angewendet können uns Metriken frühzeitig vor auftretenden
Problemen warnen und uns die Möglichkeit geben, zu reagieren, bevor
der Code zu weit degeneriert.

Uninterpretiertes Auswerten der Metriken führt dagegen zum „Coding
against Metrics“-Phänomen, bei dem nicht mehr das Ziel des saubers-
ten Codes, sondern der saubersten Metriken an oberster Stelle steht.

8.1.1 Code Entropy

Es ist ein Fakt, dass Code mit der Zeit degeneriert. So klar die ur-
sprüngliche Architektur und das Design auch sein mögen, kleinere Än-
derungen an Anforderungen und nachträgliche Korrekturen führen da-
zu, dass der Code aus Sicht der intrinsischen Qualitätsmerkmale immer
schlechter wird.

Dieses Entfernen von der Ideallinie bezeichnen wir als Code Entropy.

8.1.2 Die Zeitachse

Metriken stehen nie für sich alleine. Tatsächlich bekommen Sie erst
dann eine wirkliche Aussagekraft, wenn man sie über einen Zeitraum
betrachtet. Das bedeutet, die Ergebnisse müssen in ein Diagramm ein-
getragen werden, und zwar idealerweise in regelmäßigen Abständen
(jede Nacht) und automatisiert.

Ergibt sich in so einem Diagramm eine Kurve, die immer weiter steigt,
so können wir daran erkennen, dass unsere Qualität langsam degene-
riert - dann wird es Zeit, durch gezielte, Qualitätsfördernde Maßnahmen
gegen das Problem vorzugehen, z.B. durch eine Refactoring-Runde.

8 Metriken

8-4 © Integrata AG 1.0.0210 / 9033

8.2 Basis Metriken

Zunächst wenden wir uns einigen Metriken zu, die sich nicht gezielt auf
Objektorientierte Programme beziehen, sondern auch in der prozedura-
len Programmierung Sinn machen (können).

8.2.1 Cyclomatic Complexity (CC)

Die Cyclomatic Complexity (zyklomatische Zahl nach McCabe) be-
schreibt, wie komplex eine Routine ist. Grob gesagt zählt sie, wie viele
unabhängige Pfade es durch die Routine gibt.

Man bestimmt die CC für eine Methode in der Praxis, indem man von 1
ausgeht und dann für jeden Entscheidungspunkt die Zahl um eins er-
höht.

Entscheidungspunkte sind dabei Verzweigungen (if), Schleifen (for und
while) und Pfade in Entscheidungstabellen (switch). In einer switch An-
weisung erhöht also jeder case-Pfad den CC um eins, was dazu führt,
dass Methoden, die dieses Konstrukt verwenden, in der Regel recht
hohe CCs besitzen.

Beispiel:

public void countCC() {

 if (c1())

 f1();

 else

 f2();

 if (c2())

 f3();

 else

 f4();

}

Diese Methode besitzt einen CC von 3 (1 + jeweils 1 für die beiden if-
Abfragen).

Diese Zählweise gilt allerdings nur für Methoden mit genau einem Ein-
gangs- und einem Ausgangspunkt. Existiert mehr als ein Ausgangs-
punkt, so wird folgende Formel angewandt:

CC = π – s + 2

Metriken 8

1.0.0210 / 9033 © Integrata AG 8-5

Wobei π die Anzahl der Entscheidungspunkte und s die Anzahl der
Ausgangspunkte ist.

public int countCC2(int x, int y) {

 if (x == y) return 0;

 int z = 0;

 while (x > y) {

 z++;

 x -= y;

 }

 if (x == 0) throw new IllegalStateException();

 return z;

}

Der Code hat drei Entscheidungs- und zwei Exit-Punkte, dementspre-
chend ist der CC dieser Methode 3 - 2 + 2 = 3.

Der Erweiterte CC (CC‘) geht noch einen Schritt weiter in dem er auch
das Vorhandensein der Short-Circuit-Operatoren || und && als Ent-
scheidungspunkte wertet.

Der CC ist eine relative nützliche Metrik. Zunächst gibt er uns eine Aus-
sage darüber, wie viele Testfälle mindestens nötig sind, um die Metho-
de abdecken zu können. Weiterhin gibt er uns einen guten Überblick
über den Zustand unseres Codes an sich, allerdings nur, wenn man ihn
auch sinnvoll verwendet.

Eine sinnvolle Anwendung, die Praxis-relevante Ergebnisse liefert, ist
den gemittelten CC über die 10 längsten Methoden im Code zu liefern –
bzw. einfach die 10 höchsten CCs zu mitteln.

Gängige Konventionen sind, dass der CC in der Regel unter 10, in
Ausnahmefällen auch bis 20 gehen darf.

Halten wir uns an den in dieser Unterlage propagierten Code-Stil, wird
der CC allerdings deutlich niedriger, in höchstens 7 Codezeilen wird es
ziemlich schwierig einen CC über 5 unterzubringen.

Trotzdem sollte der CC natürlich im Auge behalten werden. Sinnvolle
Maßnahmen, die man ergreifen kann, wenn der CC zu hoch wird, sind
natürlich das Zerlegen der Methode in Einzelmethoden.

8.2.2 Lines of Code (LOC)

Eine gefährliche Metrik ist Lines of Code. Grundsätzlich bedeutet es, al-
le Zeilen zu zählen und aufzuaddieren. Das Ergebnis ist ein Wert für ei-
ne Klasse, eine Paket oder ein komplettes Projekt. Je nach tatsächli-
cher Zählweise werden Leerzeilen dabei entweder voll, teilweise oder
gar nicht gezählt.

Die Aussagekraft von LOC ist leider sehr gering, da insbesondere auch
Kommentare mitgezählt werden. Es dient eigentlich nur dazu, im Auge

8 Metriken

8-6 © Integrata AG 1.0.0210 / 9033

zu behalten, wie schnell oder wie stark der Code wächst – und dient als
interner Meilenstein („wir haben die 100.000 Zeilen geknackt!“)

Nützlich kann LOC auch sein, sehr grob Projekte mit einander zu ver-
gleichen (ein LOC 10.000 ist sicher deutlich einfacher als ein LOC
100.000), wobei die Werte sich schon um Größenordnungen unter-
scheiden müssen, damit der Vergleich etwas bringt.

Der einzige nennenswerte Vorteil, den LOC bringt, ist, dass er extrem
einfach zu bestimmen und zu verstehen ist.

Der Nachteil und die große Gefahr bestehen dabei darin, dass das Ma-
nagement ggf. auf die Idee kommen könnte, diese Metrik zur Bewer-
tung von Leistungen zu nutzen.

8.2.3 Non Commenting Source Statements (NCSS)

Eine etwas bessere Alternative zu LOC sind die Non Commenting
Source Statements, eine Metrik die nur die tatsächlichen Anweisungen
zählt, also keine Leerzeilen oder Kommentare. Dabei wird der Zähler
für jedes Statement einfach um eins erhöht. Unter Java wären das bei-
spielsweise folgende Code-Elemente:

 Beispiel Kommentar
Paket Deklaration package java.lang;
Import declaration import java.awt.*;

Class declaration
- public class Foo {

- public class Foo extends Bla {

Interface declaration public interface Able {

Field declaration
- int a;

- int a, b, c = 5, d = 6;

Method declaration
- public void cry();

- public void gib() throws Dea-
dException {

Constructor declaration public Foo() {

Constructor invocation
- this();

- super();

Statement

- i = 0;

- if (ok)

- if (exit) {

- if (3 == 4);

- if (4 == 4) { ; }

- } else {

expression, if, else,
while, do, for,
switch, break, con-
tinue, return, throw,
synchronized,
catch, finally

Label fine :

normal, case, de-
fault

NCSS liefert als Metrik schon relative brauchbare Ergebnisse. Hat eine
Methode einen doppelt so hohen NCSS wie eine andere, so ist sie in
der Regel auch gefühlt doppelt so komplex.

In der Praxis verwenden wir den NCSS genau wie schon den CC ge-
wichtet, dass heißt bspw. den Durchschnitt der 10 Klassen mit den
höchsten NCSS-Werten.

Metriken 8

1.0.0210 / 9033 © Integrata AG 8-7

8.3 Objektorientierte Metriken

Objektorientierte Metriken sind, wie der Name schon vermuten lässt,
Metriken über Objektorientierte Konzepte, Vererbung, Felder etc. Sie
bieten uns in der Regel eine relativ gute Einschätzung über die intrinsi-
sche Qualität unseres Codes.

8.3.1 Weighted Methods per Class (WMC)

Die gewichteten Methoden pro Klasse sind eine Aufsummierung der
Komplexitäten aller Methoden einer Klasse. Als Komplexität nehmen
wir der Einfachheit halber die Zyklomatische Zahl, obwohl hier auch an-
dere Kenngrößen denkbar wären.

WMC bietet uns Rückschlüsse über die Wartbarkeit einer Klasse, denn
sowohl mit vielen kleinen Methoden als auch mit wenigen großen Me-
thoden steigt der WMC spürbar an.

Sinnvolle Betrachtungen für die Zeitachse sind die Durchschnittswerte
über alle Klassen.

8.3.2 Depth of Inheritance Tree (DIT)

Die Tiefe des Vererbungsbaumes gibt an, aus wie viele Vorfahren eine
Klasse hat. In Java ist das immer mindestens 1 (java.lang.Object), unter
C++ kann es auch 0 sein.

Der DIT liefert eine Aussage über die Komplexität einer Klasse und
damit auch über deren Wiederverwendbarkeit. Je mehr Oberklassen
eine Klasse hat, desto mehr Methoden erbt sie. Damit wird sie zugleich
auch spezieller weniger Wiederverwendbar.

Gute Werte liegen zwischen 1 und 3.

8.3.3 Number of Children (NOC)

Die Anzahl der Kinder eines Objektes ist die Anzahl der direkten und
indirekten Unterklassen dieser Klasse.

Diese Metrik ist ein direktes Maß für die Wichtigkeit der Klasse.

8.3.4 Coupling between Object Classes (CBO)

Der CBO-Wert einer Klasse gibt an, mit wie vielen anderen Klassen
diese Klasse gekoppelt ist. Kopplung heißt in diesem Fall, die Klasse
greift auf Methoden oder Instanzvariablen der anderen Klasse zu.

Der CBO wirkt sich direkt auf den Wiederverwendbarkeitswert einer
Klasse aus. Je höher er liegt, desto mehr zusätzliche Abhängigkeiten
bringt diese Klasse mit ein.

8 Metriken

8-8 © Integrata AG 1.0.0210 / 9033

8.3.5 Response for a Class (RFC)

RFC gibt an, wie viele Methoden von einer Klasse aus erreicht werden
können. Er setzt sich zusammen aus der Anzahl der Methoden der
Klasse, plus aller Methoden, die diese Methoden aufrufen usw., also im
Endeffekt alle transitiven Methodenaufrufe, die von dieser Klasse aus-
gehen können.

Diese Metrik macht eine direkte Aussage über die Komplexität der
Klasse.

8.3.6 Lack of Cohesion in Methods (LCOM)

Eine sehr nützliche Metrik ist LCOM. Sie überprüft die Kohäsion der
Methoden einer Klasse anhand der gemeinsamen Nutzung von Fel-
dern. Dazu wird von jeder Methode jedes Feld bestimmt, auf das die
Methode zugreift. Danach werden Paare über alle vorhandenen Metho-
den gebildet.

Die Anzahl der Methodenpaare, die keine Gemeinsamkeit haben wird
von der Anzahl der Paare, die eine haben, abgezogen, wobei negative
Werte als 0 gezählt werden.

Betrachten wir dazu ein Beispiel:

public class LCOM {

 private int a;

 private int b;

 private int c;

 public void calc1() {

 c = a + 1;

 }

 public void calc2() {

 c = b + 5;

 }

 public void calc3() {

 a = 5;

 }

 public int getA() {

 return a;

 }

 public int getB() {

 return b;

 }

 public int getC() {

 return c;

 }

}

Metriken 8

1.0.0210 / 9033 © Integrata AG 8-9

Um den LCOM zu berechnen, erstellen wir jetzt eine Matrix mit den Me-
thoden in Zeilen und Spalten:

 calc2 calc3 getA getB getC

calc1 + + + - +

calc2 - - + +

calc3 + - -

getA - -

getB -

Jedes + gibt dabei Methoden an, die gemeinsame Felder nutzen, jedes
– disjunkte Methoden. Der LCOM dieser Methode liegt also bei 8 – 7 =
1.

Wird der LCOM zu hoch, sollte man darüber nachdenken, die Klasse
aufzusplitten.

8.3.7 Bewertung

Objektorientierte Metriken sind ein gutes Mittel, um einen Überblick
über die Qualität des Codes zu bekommen.

Grundsätzlich interessieren uns bei diesen Metriken eher die Tenden-
zen, also wie sich der Code im Laufe der Zeit entwickelt hat. Es kann
aber auch sinnvoll sein, einige (eher großzügig bemessene) Grenzen
zu definieren, die eine Klasse als ungenügend deklarieren können.

Diese Grenzen sollten ggf. von Projekt zu Projekt variiert werden kön-
nen.

Ein Vorschlag für derartige Grenzen ist es, sich nicht auf eine Metrik
abzustützen, sondern eine Reihe von Grenzwerten zu definieren und
das Überschreiten von zwei (oder mehr) dieser Grenzen als Verstoß zu
werten.

Ein Beispiel:1

(Eine weitere Metrik wird hier verwendet: Number of Methods (NOM))

• WMC > 100

• CBO > 5

• RFC > 100

• NOM > 40

• RFC > 5 x NOM

1 Vgl. Linda Rosenberg, Ruth Stapko and Al Gallo, Applying object-oriented metrics,

November 1999, http://www.software.org/metrics99/rosenberg.ppt

8 Metriken

8-10 © Integrata AG 1.0.0210 / 9033

Wir könnten die Anzahl der Verstöße gegen den obigen Regelsatz auch
wieder als Metrik betrachten (Violations of Metrics Limits – VML). Damit
wissen wir in einem Refactoring-Zyklus genau, welche Klassen wir als
erstes angehen sollten.

8.4 Statische Analyse Tools (Bug Finder)

Eine weitere Metrik, die wir in unseren Projekten einsetzen sollten, ist
die Anzahl von Regelverstößen (Number of Rule Violations – NRV). Um
sie zu bestimmen, gibt es eine Reihe von statischen Code-Analyse
Tools, die den Code gegen eine Anzahl von Regeln prüfen - angefan-
gen von Formatierungen und Dokumentation, über gefährliche Kon-
strukte (if (b = a)) bis hin zu unzweckmäßiger Verwendung von Biblio-
theken.

Beispiele für Tools sind FindBugs, PMD, Checkstyle und Cppcheck.

Metriken 8

1.0.0210 / 9033 © Integrata AG 8-11

8.5 Laufzeit Metriken

Die bisher vorgestellten Metriken sind alle durch statische Analyse be-
stimmbar, d.h. das Programm muss nicht laufen, sondern lediglich der
Sourcecode wird zur Erstellung herangezogen.

Im Folgenden wollen wir einige Metriken betrachten, die erst zur Lauf-
zeit bestimmt werden können.

8.5.1 Testabdeckung

Die Testabdeckung gibt an, die wie viel Code durch unsere Tests tat-
sächlich durchlaufen wurde, also wie gut unser Code getestet wurde.
Die Ergebnisse werden von Paket auf Klassen bis zur Methoden Ebe-
nen aufgeschlüsselt.

Man unterscheidet hier zwischen Pfad- und Zeilenabdeckung.

Testabdeckungs-Metriken liefern uns ein Gefühl dafür, wie gut und um-
fangreich unser Code getestet wird. Während eine hohe Testabde-
ckung noch kein Garant für Fehlerfreiheit sein kann, ist eine niedrige
Abdeckung ein Zeichen für Fehleranfälligkeit.

Eine sinnvolle Größenordnung ist 80%.

8.5.2 Builddauer

Eine weitere Metrik, die frühzeitig auf Probleme aufmerksam machen
kann, ist die Builddauer. Naturgemäß wird diese im Laufe der Zeit im-
mer weiter steigen, da regelmäßig Klassen und Tests dazu kommen.

Auch die Berechnung anderer Metriken kostet natürlich Zeit, die im bes-
ten Fall proportional, häufig aber überproportional zur Größe des Pro-
jektes ist.

Um diese Problem in den Griff zu bekommen, wird der Build-Prozess
geteilt, in einen Basis-Buildprozess, den die Entwickler und der automa-
tische Build nutzen, und einen erweiterten Build, der alle Tests und Met-
riken vollständig abarbeitet, aber dafür nur nachts läuft.

8 Metriken

8-12 © Integrata AG 1.0.0210 / 9033

8.6 Zusammenfassung

Wir haben in diesem Kapitel eine sinnvolle Metriken kennengelernt, mit
der wir eine Einschätzung über die Qualität unseres Codes bekommen
können.

Der Nachteil dieser Metriken ist, dass sie den Buildprozess verlangsa-
men, deshalb sollten sie auch nur mit Bedacht eingesetzt werden.
Grundsätzlich gilt, dass Metriken nicht nur der bunten Grafiken wegen
eingesetzt werden dürfen, sondern immer auch verstanden und ausge-
wertet werden müssen.

Regel 8-1: Eingesetzte Metriken müssen verstanden sein und re-
gelmäßig ausgewertet werden.

1.0.0210 / 9033 © Integrata AG 9-1

Nebenläufigkeit

9.1 Einleitung.. 9-3

9.1.1 Warum brauchen wir Nebenläufigkeit? 9-3

9.1.2 Mythen und Missverständnisse.. 9-4

9.1.3 Wahrheiten .. 9-5

9.1.4 Die Herausforderung.. 9-5

9.2 Nebenläufige Prinzipien.. 9-7

9.2.1 Nebenläufig oder nicht ... 9-7

9.2.2 Atomare Zugriffe .. 9-7

9.2.3 Das Single-Responsiblity-Principle 9-8

9.2.4 Begrenzte Schreibzugriffe.. 9-8

9.2.5 Daten-Kopien... 9-8

9.2.6 Unabhängige Threads ... 9-9

9.3 Begriffe ... 9-10

9.4 Ablaufmodelle... 9-11

9.4.1 Producer-Consumer... 9-11

9.4.2 Reader-Writer .. 9-11

9.4.3 Dining Philosophers ... 9-12

9.5 Bibliotheken.. 9-13

9.6 Tests... 9-13

9 Nebenläufigkeit

9-2 © Integrata AG 1.0.0210 / 9033

9.6.1 Monte Carlo ... 9-13

9.6.2 Unerwartete Situationen sind potentielle Threading-Probleme
... 9-13

9.6.3 Threading und nicht-Threading Tests trennen 9-13

9.6.4 Variable Threadpools... 9-13

9.7 Zusammenfassung... 9-14

Nebenläufigkeit 9

1.0.0210 / 9033 © Integrata AG 9-3

9 Nebenläufigkeit

9.1 Einleitung

Dieses Kapitel beschäftigt sich mit den Grundzügen der nebenläufigen
Programmierung. Dabei ist unser Ziel nicht die Programmierung in einer
bestimmten Sprache, sondern die grundsätzlichen Konzepte, die ne-
benläufige Programmierung ausmachen.

9.1.1 Warum brauchen wir Nebenläufigkeit?

Nebenläufigkeit bedeutet, dass mehrere Routine quasi-gleichzeitig, wei-
testgehend voneinander getrennt, ablaufen. Welche Vorteile hat das für
uns?

• Verbesserung von Struktur und Design

Hängen die einzelnen Aufgaben nicht wirklich zusammen, so können
sie vollständig voneinander getrennt werden. Jede Aufgabe verhält
sich damit, als würde sie vollständig für sich alleine ausgeführt wer-
den.

Ein Spezialfall dieser Begründung sind Server-Anwendungen, die ei-
ne Anzahl an Nutzern gleichzeitig bedienen, ohne dass sich die ein-
zelnen Nutzer in die Quere kommen.

• Nutzen von Wartezeiten

Ein Programm, das in irgendeiner Form I/O betreibt, verbringt einen
Großteil seiner Laufzeit in einem wartenden Zustand. In einer Single-
Thread-Applikation ist diese Zeit verloren. In einer Nebenläufigen
Anwendung kann stattdessen während der Wartezeit ein anderer
Thread weiterarbeiten. Das kann einen immensen Performancege-
winn bedeuten.

• Ausnutzung der Hardware

Bis vor wenigen Jahren bedeutete Weiterentwicklung der Hardware
hauptsächlich eine vertikale Skalierung, dass heißt die Transistoren
wurden immer kleiner, ihre Dichte immer höher, und damit Prozesso-
ren immer schneller.1

Seit einigen Jahren ist allerdings eine Richtungsänderung zu erken-
nen. Statt immer mehr Transistoren in einem Prozessor unterzubrin-

1
 Moore’s Law, der Versuch, die Weiterentwicklung der Leistungsfähigkeit von Pro-

zessoren vorauszusagen, besagt, dass sich die Anzahl der Transistoren alle zwei
Jahre ungefähr verdoppelt. Seit seiner Formulierung (1965!) hat sich die Vorhersa-
ge bewahrheitet.

9 Nebenläufigkeit

9-4 © Integrata AG 1.0.0210 / 9033

gen, bestehen die Prozessoren aus einzelnen Kernen (vier Kerne
sind für neue Standard-PCs schon nicht ungewöhnlich), die in der
Lage sind, Code echt nebenläufig auszuführen.

Das hat einen fundamentalen Einfluss auf unsere Programme. Sind
diese nämlich nicht auf Nebenläufigkeit ausgelegt, so nutzen sie
auch nur einen einzigen Prozessorkern!

• Nutzerfeedback

Wenn ein Nutzer in einer Oberfläche eine Aktion initiiert, dann erwar-
tet er auch zeitnah eine Reaktion. Dauert die Aktion aber länger, so
sollte der Nutzer zumindest darüber informiert werden, dass das Sys-
tem beschäftigt ist (durch die Sanduhr als Mauszeiger oder einen
Fortschrittsbalken). Diese Benachrichtigung wir in einem separaten
Thread stattfinden.

9.1.2 Mythen und Missverständnisse

Es existieren einige Mythen und Missverständnisse zur Nebenläufigkeit,
die immer wieder auftauchen:

• Nebenläufigkeit verbessert grundsätzlich die Performance

Natürlich kann Nebenläufigkeit die Performance verbessern, damit
beschäftigen sich ja auch 2 von 4 Begründungen in der Einleitung.
Aber zum Einen gibt es ja noch die anderen beiden Begründungen,
zum Anderen muss das Problem auch aufteilbar sein. Selbst dann
bedeutet Nebenläufigkeit immer auch zusätzlichen Verwaltungsauf-
wand, so dass im schlimmsten Fall eine Verlangsamung eintritt.

• Das Design ändert sich nicht durch die Nebenläufigkeit

Tatsächlich ist das Design oftmals sehr unterschiedlich im Vergleich
zu einer Single-Threaded Applikation – aber nicht notwendigerweise
komplizierter.

• Durch den Einsatz eines Frameworks erspart man sich das Ausei-
nandersetzen mit Nebenläufigen Prinzipien

Leider ein Mythos, der sich hartnäckig hält. Was uns das Framework
abnimmt, ist das Arbeiten in der Schlammzone, das Erstellen von
Threads etc. Trotzdem sind wir dafür verantwortlich, dass unsere
Klassen auch miteinander zurechtkommen.

Nebenläufigkeit 9

1.0.0210 / 9033 © Integrata AG 9-5

9.1.3 Wahrheiten

Im Gegensatz dazu folgen nun ein paar Wahrheiten:

• Nebenläufigkeit bedeutet immer zusätzlichen Aufwand

Sowohl in der Leistung, durch zusätzliche Verwaltung, als auch in
der Programmierung

• Korrekte Nebenläufigkeit ist komplex

Und zwar auch, wenn es das eigentliche Problem nicht ist.

• Nebenläufige Bugs sind nicht oder nur kaum reproduzierbar

Mit dem Ergebnis, dass sie häufig als Kuriositäten („Sonnenflecken“)
abgetan und ignoriert werden.

• Nebenläufigkeit erfordert häufig eine fundamentale Änderung der
Design Strategie.

9.1.4 Die Herausforderung

Betrachten wir folgendes, kleines Programm:

public class Raiser {

 private int lastValue;

 public int getNextValue() {

 return ++lastValue;

 }

}

Wir erzeugen eine Instanz dieser Klasse mit dem Anfangswert 0 und
lassen sie zeitgleich von zwei Threads jeweils einmal benutzen. Zum
Schluss haben wir drei Mögliche Ergebnisse:

• Thread 1 bekommt den Wert 1, Thread 2 den Wert 2, lastValue hat
den Wert 2

• Thread 1 bekommt den Wert 2, Thread 2 den Wert 1, lastValue hat
den Wert 2

• Thread 1 bekommt den Wert 1, Thread 2 den Wert 1, lastValue hat
den Wert 1

Die beiden ersten Ergebnisse sind natürlich die, die wir erwartet haben,
aber das dritte Ergebnis ist ungewöhnlich – bzw. sogar gefährlich, wenn
in unserem Programm jeder Thread eine eindeutige ID haben muss!

9 Nebenläufigkeit

9-6 © Integrata AG 1.0.0210 / 9033

Wo liegt hier das Problem? Natürlich im Ausdruck ++lastValue. Aus-

geschrieben (und mit einer temporären Variable besser lesbar ge-
macht) steht dort:

public int getNextValue() {

 int temp = lastValue;

 lastValue = temp + 1;

 return lastValue;

}

Was kann hier nun schiefgehen? Betrachten wir die beiden Threads mit
einander verschränkt. Beide besitzen eine voneinander unabhängige
Variable temp:

lastValue: 0

int temp_1 = lastValue; -> temp_1: 0;

Threadwechsel

int temp_2 = lastValue; -> temp_2: 0;

lastValue = temp_2 + 1 -> lastValue: 0 + 1 = 1

return lastValue -> Rückgabe: 1 (für Thread 2)

Threadwechsel

lastValue = temp_1 + 1 -> lastValue: 0 + 1 = 1

return lastValue -> Rückgabe: 1 (für Thread 1)

Das Problem ist, dass der Threadwechsel zwischen dem Auslesen und
dem Zurückschreiben von lastValue passieren kann.

Dieses Problem nennen wir Read-Write-Problem. Ein Wert wird ausge-
lesen und abhängig von dem gelesenen Wert wird ein anderer (oder
derselbe) gesetzt. Es kann nur dadurch gelöst werden, dass verhindert
wird, dass während des Read-Write Vorganges ein anderer Thread den
selben Code auf der selben Instanz ausführt – mit anderen Worten, der
Read-Write-Zugriff muss atomar erfolgen.

Nebenläufigkeit 9

1.0.0210 / 9033 © Integrata AG 9-7

9.2 Nebenläufige Prinzipien

Wir beginnen mit einigen Prinzipien, die für nebenläufige Programmie-
rung gelten:

9.2.1 Nebenläufig oder nicht

Wenn wir eine Klasse schreiben, sollten wir uns von vorne herein Ge-
danken darüber machen, wie sie sich in einem nebenläufigen Szenario
verhält. Diese Gedanken müssen dokumentiert werden!

Einige Grundsätze:

Unveränderliche Objekte sind Thread-Sicher. Ein Objekt ist dann un-
veränderlich, wenn es keine Möglichkeit mehr gibt, nach seiner Erstel-
lung seinen Zustand zu verändern (und idealerweise sind alle Attribute
als final deklariert, wenn die Sprache ein derartiges Konstrukt kennt).

Ist unsere Klasse veränderbar, so müssen wir uns entscheiden: Wie
wahrscheinlich ist es, dass eine Instanz dieses Objektes zwischen
Threads ausgetauscht wird? Ist das eine realistische Situation, so müs-
sen wir dafür sorgen, dass das Objekt Thread-sicher wird. Kommt die
Situation nicht in Frage, so können wir die Klasse Thread-unsicher las-
sen, müssen das aber deutlich dokumentieren.

Regel 9-1: In jeder Klasse muss beschrieben sein, ob diese
Thread-sicher ist oder nicht. Unveränderliche Objekte
sind immer Thread-sicher. (Lesb, Vers)

9.2.2 Atomare Zugriffe

Um unseren Code Thread-sicher zu machen, müssen wir also bestimm-
te Bereiche nur atomar ausführbar machen lassen. Wie wir das be-
werkstelligen, ist von Sprache zu Sprache äußerst unterschiedlich,
deshalb verweisen wir auf die jeweilige Dokumentation der Sprache. In
Java (und damit in den Beispielen in diesem Kapitel) wird ein Block
durch das Schlüsselwort synchronized atomar zusammengefasst.

Es gibt zwei Situationen, in denen wir synchronisieren müssen:

9.2.2.1 Read-Write-Zugriffe

Das Beispiel hatten wir ja bereits weiter oben. Ist ein Schreibzugriff von
einem vorherigen Lesezugriff abhängig, so sind beide Zugriff atomar
zusammenzufassen.

9.2.2.2 Dependent-Writes

Wird mehr als ein Feld geschrieben und stehen beide Felder unterein-
ander in Abhängigkeit (zum Beispiel durch eine Invariante), so müssen
alle gemeinsam, also atomar, gesetzt werden.

9 Nebenläufigkeit

9-8 © Integrata AG 1.0.0210 / 9033

Als Beispiel betrachten wir eine triviale Listenimplementierung. Die Da-
ten werden in einem Array fester Größe gehalten, ein int-Wert size

gibt an, wie weit das Array tatsächlich gefüllt ist. size und das Array

stehen in einer Beziehung zueinander, das heißt, sie müssen beide
gleichzeitig gesetzt werden.

Ein häufig ignorierter Sonderfall sind 64bit Werte (long, double). Je
nach Prozessor und Betriebssystem kann es durchaus sein, dass das
Setzen eines 64bit Wertes tatsächlich als zwei Operationen (low und
high) ausgeführt wird.

Regel 9-2: Read-Write-Zugriffe und Dependent-Writes müssen ato-
mar ausgeführt werden.

Regel 9-3: Felder die einmal geschützt werden, müssen immer ge-
schützt werden.

Das heißt, auch die Lesezugriffe müssen geschützt werden!

9.2.3 Das Single-Responsiblity-Principle

Dieses Prinzip haben wir ja schon ausführlich behandelt. Es besagt,
dass es nur einen Grund geben darf, um eine Klasse oder Methode zu
ändern.

Nebenläufigkeit ist eindeutig einer dieser Gründe. Das bedeutet für uns:

Regel 9-4: Code, der sich mit Nebenläufigkeit beschäftigt, sollte
von anderem Code getrennt gehalten werden. (Lesb,
Vers)

Insbesondere ist unser Nebenläufigkeitscode ja technischer Code, und
den wollen wir ja sowieso von unserem fachlichen Code trennen.

9.2.4 Begrenzte Schreibzugriffe

Regel 9-5: Müssen wir den Zugriff auf ein oder mehr Felder schüt-
zen, so sollte der Zugriff auf diese Felder an so wenig
Stellen wie möglich erfolgen.

Je häufiger wir auf die Felder zugreifen, desto größer ist die Chance,
dass wir die Synchronisation vergessen.

9.2.5 Daten-Kopien

Oftmals ist der einfachste Weg, mit geteilten Daten umzugehen, sie gar
nicht erst zu teilen. Anstatt ein gemeinsames Objekt zu verteilen, be-
kommt jeder Thread seine eigene Kopie, die dann ggf. zum Ende der
Threads wieder vereint werden müssen.

Das ist auch das Konzept funktionaler Programmierung. Datenstruktu-
ren werden nicht verändert. Wird einer Liste ein Element hinzugefügt,
wird stattdessen eine neue Liste mit den Elementen der alten plus dem
neuen Element erzeugt.

Nebenläufigkeit 9

1.0.0210 / 9033 © Integrata AG 9-9

9.2.6 Unabhängige Threads

Threads sollten so unabhängig wie möglich sein. Eine Möglichkeit das
zu erreichen, ist den Objekten, die mehrfach genutzt werden, überhaupt
keinen Zustand zu geben. Stattdessen werden alle Informationen als
Parameter übergeben (was natürlich eine genaue Umkehr unserer De-
finition von guten Methoden ist).

Damit sind alle Variablen nur lokal, und somit auch nur im aktuellen
Thread überhaupt nutzbar.

Diese Form ist für Server-Anwendungen (z.B. Webserver) sehr gut ge-
eignet.

9 Nebenläufigkeit

9-10 © Integrata AG 1.0.0210 / 9033

9.3 Begriffe

Für den weiteren Ablauf sollten wir einige Begriffe definieren:

• Gebundene Ressourcen sind Ressourcen, die nur in begrenzter
Anzahl vorhanden sind und zwischen einzelnen Threads geteilt wer-
den (z.B. Datenbankverbindungen)

• Gegenseitiger Ausschluss (Mutual Exclusion): Nur ein Thread
kann gemeinsame Daten oder Ressourcen gleichzeitig ansprechen.

• Verhungern (Thread starvation) bedeutet, dass ein Thread für lan-
ge Zeit an der Ausführung gehindert wird, beispielsweise weil hoch-
priorisierte Threads immer Vorrang bekommen.

• Ein Deadlock entsteht, wenn zwei oder mehr Threads sich gegen-
seitig blockieren, weil beispielsweise beide zwei Ressourcen benöti-
gen und jeder schon einen reserviert hat.

• Ein Livelock ist eine Form des Deadlock, in der nicht das Betriebs-
system den wartenden Thread vollständig auf Eis legt, sondern der
Thread auf Applikationsebene immer wieder überprüft, ob die Res-
source verfügbar ist. Ein Livelock kann also aufgelöst werden.

• Eine Race Condition ist eine Situation, deren Ausgang davon ab-
hängt, welcher Thread in welcher Reihenfolge handelt – also prinzi-
piell vom Zufall. Das Eingangsbeispiel ist eine solche Race-
Condition.

Nebenläufigkeit 9

1.0.0210 / 9033 © Integrata AG 9-11

9.4 Ablaufmodelle

Mit diesen Begriffen bewaffnet, können wir uns jetzt den drei typischen
Szenarien zuwenden, mit denen wir es in der Nebenläufigkeit zu tun
bekommen.

9.4.1 Producer-Consumer

Zwei Arten von Threads arbeiten in diesem Modell mit einander. Die ei-
ne legt Objekte in eine gemeinsame Datenstruktur (eine Warteschlan-
ge, eine gebundene Ressource gem. der obigen Definition), die andere
nimmt sie dort heraus, um sie weiterzuverarbeiten.

Versucht der Producer, ein Objekt abzulegen, während die Warte-
schlange voll ist, so blockiert er so lange, bis wieder Platz darin ist.

Versucht umgekehrt der Consumer ein Objekt aus einer leeren Schlan-
ge zu lesen, so blockiert er ebenfalls so lange, bis wieder ein Objekt
vorhanden ist.

Dieses Prinzip ist eine äußerst mächtige Möglichkeit, um Objekte zu
entkoppeln (sowohl bezogen auf Abhängigkeiten als auch zeitlich).

9.4.2 Reader-Writer

In diesem Szenario haben wir eine gemeinsame Ressource (z.B. eine
Hashtable), die hauptsächlich lesend genutzt wird. Nur gelegentlich
werden Daten in diese Struktur herein geschrieben.

Bei der klassischen Synchronisation würden aber dennoch auch alle
Lesevorgänge sich gegenseitig ausbremsen.

Die klassische Lösung für dieses Problem ist, ein Read-Write-Lock zu
verwenden, also einen zweiteiligen Synchronisations-Mechanismus. Es
können beliebig viele Lesezugriffe gleichzeitig erfolgen. Ein Schreib-
zugriff muss allerdings warten, bis der letzte Lesezugriff abgeschlossen
ist und lässt, während er läuft, auch keine neuen Lesezugriffe zu.

Eine zweite Möglichkeit ist der Copy-On-Modify-Mechanismus. Die Da-
tenstruktur ist prinzipiell unveränderlich, das heißt, dass Lesezugriffe
überhaupt nicht synchronisiert werden müssen. Schreibzugriffe blockie-
ren sich natürlich weiterhin gegenseitig. Ein Schreibzugriff erfolgt dabei
auf einer Kopie der Daten und erst nach dessen Abschluss wird die alte
Datenstruktur durch die Kopie ersetzt.

9 Nebenläufigkeit

9-12 © Integrata AG 1.0.0210 / 9033

9.4.3 Dining Philosophers

Die Dining Philosophers sind eine klassisches Beispiel für einen Dead-
lock. Eine Reihe von Philosophen sitzt an einem runden Tisch, zwi-
schen sich jeweils eine Gabel. Damit ein Philosoph essen kann, benö-
tigt er zwei Gabeln. Er greift also die erste, dann die zweite. Ist die
zweite aber bereits in Benutzung, so wartet er solange, bis diese wieder
frei ist.

Ein Grundsatz zur Verwendung multipler Ressourcen sagt aus, dass al-
le Module die Ressourcen in der gleichen Reihenfolge reservieren sol-
len, um einen Deadlock zu vermeiden. Das ist hier aber nicht so ein-
fach. Die einfachste Lösung wäre, ein Philosoph nimmt immer zuerst
die linke Gabel, was genau zu der Situation führen könnte, dass alle ei-
ne Gabel in der Hand halten und auf die andere warten. Ein Deadlock!

Man könnte auch definieren, dass jeder zweite Philosoph zunächst die
rechte statt der linken Gabel versucht. Das würde aber die Philoso-
phenklasse weiter verkomplizieren.

Eine weitere Möglichkeit ist das Monte-Carlo-Prinzip: Jeder Philosoph
wählt zufällig eine Gabel aus und wartet einen zufälligen Zeitabschnitt
auf die zweite Gabel. Bekommt er sie nicht, so legt er die erste wieder
zurück und wartet danach wieder einen zufälligen Zeitabschnitt, bevor
er es erneut versucht.

Nebenläufigkeit 9

1.0.0210 / 9033 © Integrata AG 9-13

9.5 Bibliotheken

Nebenläufiger Code ist kompliziert und die dahinterstehenden Konzepte
sind es auch. Deshalb sollte man so oft wie möglich gut getestete Bib-
liotheken verwenden, die die Nebenläufigkeiten kapseln.

9.6 Tests

Nebenläufigen Code zu testen ist schwierig. Im schlimmsten Fall kann
es vorkommen, dass der Code auf dem Testsystem immer funktioniert,
aber auf dem Produktivsystem wegen minimaler Unterschiede einen
Fehler provoziert – eine Race Condition.

Eine perfekte Lösung gibt es für dieses Problem leider nicht. Die fol-
genden Punkte helfen uns aber zumindest auf den Weg:

9.6.1 Monte Carlo

Je häufiger ein Test läuft, desto größer ist die Chance auf einen Fehler,
den wir schließlich provozieren wollen. Nutzt der Produktivcode 5
Threads, sollte der Test-Code 10000 Durchläufe mit 50 Threads ver-
wenden.

9.6.2 Unerwartete Situationen sind potentielle Threading-Probleme

Tauchen Situationen auf, die „eigentlich gar nicht auftauchen können“,
so sind diese häufig auf Race-Conditions zurückzuführen. Ignorieren
Sie diese keinesfalls!

9.6.3 Threading und nicht-Threading Tests trennen

Testen Sie also zuerst die innere Funktionalität, also den Code in einer
Single-Thread Umgebung. Erst wenn diese Tests erfolgreich sind, tes-
ten Sie auch die Thread-Bestandteile.

9.6.4 Variable Threadpools

Die Menge der gleichzeitig genutzten Threads sollte möglichst nicht
hart kodiert, sondern veränderbar sein.

9 Nebenläufigkeit

9-14 © Integrata AG 1.0.0210 / 9033

9.7 Zusammenfassung

Threads sind kompliziert. Und dieses Kapitel ist keinesfalls ein Ersatz
für eine umfassende Beschäftigung mit dem Thema. Aber es ist ein ers-
ter Ansatz, der uns auf die eigentliche Arbeit mit Threads zumindest
vorbereitet.

1.0.0210 / 9033 © Integrata AG 10-1

Optimierung

10.1 Einleitung.. 10-3

10.1.1 Was ist Performance?.. 10-3

10.1.2 Gefühlte Performance.. 10-4

10.1.3 Wann sollte optimiert werden?... 10-4

10.2 Das Optimierungsdreieck ... 10-5

10.3 Optimierungsprozess.. 10-9

10.4 Zusammenfassung ... 10-12

10 Optimierung

10-2 © Integrata AG 1.0.0210 / 9033

Optimierung 10

1.0.0210 / 9033 © Integrata AG 10-3

10 Optimierung

10.1 Einleitung

In diesem Kapitel wollen wir einen kurzen Überblick über die Grundsät-
ze des Optimierens gewinnen. Wir beschäftigen uns zunächst mit dem
Begriff der Performance um anschließend einen allgemeinen Prozess
für die Optimierung zu definieren.

10.1.1 Was ist Performance?

Die Performance eines Softwaresystems oder einer Softwarekompo-
nente wird von Connie U. Smith und Loyd G. Williams1 wie folgt defi-
niert.

„Performance is an Indicator of how well a software system or compo-
nent meets its requirements for timeliness.“

Als Messgrößen für diese „Rechtzeitigkeit“ werden oft die Antwortzeit
bzw. der Durchsatz eines Softwaresystems benutzt. Die Antwortzeit ist
die Zeit, die aus Sicht des Benutzers der Software vergeht, bis eine be-
stimmte Anfrage oder Aufgabe bearbeitet wurde. Der Durchsatz gibt an,
wie viele Aufgaben (Transaktionen, Datensätze, Daten etc.) von der
Software in einem bestimmten Zeitraum verarbeitet werden können.

Eng verbunden mit der Antwortzeit bzw. dem Durchsatz eines Soft-
waresystems ist seine Skalierbarkeit, d.h. wie verhalten sich diese zeit-
lichen Werte, wenn die Last, die das System zu bewältigen hat, an-
steigt. Prinzipiell ist kein Softwaresystem beliebig skalierbar. Ab einem
bestimmten Punkt wird eine minimale Erhöhung der Last eine exponen-
tielle Auswirkung auf Antwortzeit und Durchsatz haben. Entscheidend
dabei ist, ob dieser Punkt bereits durch Lasten erreicht wird, die laut
Anforderungen noch im Bereich der zu erwartenden Lasten für das rea-
le System liegen oder außerhalb. Im ersten Fall hat das System seine
Performanceanforderungen nicht erfüllt und damit ein Performance-
problem.

Performanceprobleme resultieren meist daraus, dass eine oder mehre-
re benötigte Ressourcen, wie z.B. Prozessoren, Speicher, Netzwerk-
bandbreite usw., nicht bzw. nicht in ausreichender Anzahl oder Menge
zur Verfügung stehen. Eine Möglichkeit diesen Performanceproblemen
zu begegnen ist es, der Anwendung zusätzliche oder bessere Ressour-
cen zur Verfügung zu stellen. Die andere Möglichkeit besteht darin, die

1 Connie U. Smith, Loyd G. Williams – Performance Solutions – A practical Guide to

Creating Responsive, Scalable Software

10 Optimierung

10-4 © Integrata AG 1.0.0210 / 9033

Nutzung der vorhandenen Ressourcen zu optimieren, um die Perfor-
mance eines Softwaresystems zu verbessern. Dieses Vorgehen be-
zeichnet man als Performancetuning.

10.1.2 Gefühlte Performance

Neben der über Antwortzeiten bzw. den Durchsatz messbaren Perfor-
mance eines Softwaresystems gibt es im Bereich der Software, die
durch Benutzer bedient wird, noch den Begriff der gefühlten Performan-
ce. Diese subjektive Wahrnehmung des Benutzers kann dazu führen,
dass eine Anwendung, welche eine höhere Antwortzeit als eine ver-
gleichbare andere Anwendung hat, trotzdem als die performantere Va-
riante wahrgenommen wird.

Damit ein Benutzer diese subjektive Empfindung einer performanten
Anwendung bekommt, ist es notwendig, die Oberflächen entsprechend
reaktiv zu gestalten. Dazu gehören die Darstellung des Arbeitsfort-
schritts durch Fortschrittsbalken oder ähnliches bzw. die Präsentation
von Teilergebnissen, aber auch die Möglichkeit noch nicht beendete
Operationen jederzeit abbrechen zu können. Operationen mit langer
Laufzeit werden am besten in den Hintergrund verlegt, damit der Be-
nutzer in dieser Zeit bereits andere Aufgaben wahrnehmen kann. Dem
Benutzer muss ein Gefühl der Kontrolle über die Anwendung vermittelt
werden.

10.1.3 Wann sollte optimiert werden?

Die größte Gefahr bei der Optimierung geht von einem vorschnellen
Handeln aus. Viel Zeit geht in der Regel darauf verloren, dass Entwick-
ler vermeintliche Flaschenhälse optimieren, die in der Praxis überhaupt
keine Auswirkungen auf die Performance haben.

Optimiert wird dann, wenn es konkrete Forderungen dazu gibt. Entwe-
der als Teil des Pflichtenheftes oder als Fehlerticket.

Bevor man als Entwickler also selbst den Quellcode „optimiert“, muss
man sicherstellen, dass überhaupt ein Performanceproblem existiert
und dass die gewählte Codeoptimierung auch passend für das Problem
ist. Die Optimierung ist natürlich entsprechend zu dokumentieren und
zu testen, d.h. werden die Performancekriterien auch nach der Optimie-
rung erfüllt oder haben sich neue Problemfelder ergeben.

Prinzipiell sollte man deshalb bei Codeoptimierungen vorsichtig sein
und die Regeln von Michael A. Jackson berücksichtigen:

• First Rule of Program Optimization – Don’t do it.

• Second Rule of Program Optimization (for experts only!) –
Don’t do it yet.

Optimierung 10

1.0.0210 / 9033 © Integrata AG 10-5

10.2 Das Optimierungsdreieck

Jede Anwendung stützt sich im Grundprinzip auf die drei Kenngrößen
I/O-, CPU- und Speicherauslastung. Diese bilden die Achsen eines
Dreiecks, dessen Fläche den Ressourcenverbrauch der Anwendung
repräsentiert.

Abb. 10-1: Optimierungsdreieck

Der durchschnittliche Maximalwert der drei Auslastungen sollte dabei
80% nicht übersteigen. So bleibt noch Spielraum für eventuell auftre-
tende Spitzen. Die Fläche des Optimierungsdreiecks bleibt bei fast allen
Optimierungen – sieht man einmal von Trivialoptimierungen ab – nahe-
zu konstant. Das bedeutet, dass fast alle Optimierungen sogenannte
Trade-Off Optimierungen sind. Die Verbesserung von einem Wert führt
zu einer entsprechenden Verschlechterung bei einem oder beiden der
anderen Werte.

Im folgenden Beispiel befindet sich die durchschnittliche I/O-Auslastung
einer Anwendung im kritischen Bereich (> 80%).

10 Optimierung

10-6 © Integrata AG 1.0.0210 / 9033

Abb. 10-2: Kritische I/O Auslastung

Um die I/O Auslastung zu senken müssen entweder die Anzahl der I/O
Aufrufe oder die zu übertragenden Daten reduziert werden. Eine ge-
bräuchliche Methode für die Reduzierung von I/O Aufrufen ist das Ca-
ching. Dabei werden Daten für den mehrmaligen Gebrauch zwischen-
gespeichert, anstatt sie immer wieder neu über I/O Aufrufe abzufragen.
Caching reduziert die I/O-Auslastung hat allerdings einen höheren
Speicherbedarf, da die Daten im Regelfall im Speicher gehalten wer-
den. Das Dreieck verschiebt sich also wie folgt.

Abb. 10-3: Caching

Um die zu übertragenden Daten zu reduzieren, wird oft eine Kompres-
sion der Daten durchgeführt. Die Kompressionsalgorithmen bedingen
allerdings eine höhere CPU-Auslastung.

Optimierung 10

1.0.0210 / 9033 © Integrata AG 10-7

Abb. 10-4: Kompression

Befinden sich alle drei Auslastungen nahe am bzw. bereits im kritischen
Bereich, wird eine normale Optimierung nicht mehr helfen. In diesem
Fall müssen der Anwendung zusätzliche Ressourcen zur Verfügung
gestellt werden und die Achsen somit wieder „verlängert“ werden.

Abb. 10-5: Entlastung durch Ressourcenerhöhung

Eine Erweiterung des Optimierungsdreiecks stellt die Optimierungspy-
ramide dar. Dabei wird als vierte Größe die Wartbarkeit einer Anwen-
dung betrachtet. Durch die Pyramide wird der Einfluss von Optimierun-
gen auf die Lesbarkeit des Quellcodes und damit auf die Kosten für die
zukünftige Pflege und Erweiterung der Anwendung visualisiert. Gerade
Trivialoptimierungen, die im normalen Optimierungsdreieck die Fläche
verkleinern, zeichnen sich oft durch sehr unübersichtlichen und schwer
zu verstehenden Quellcode aus, der im Endeffekt zu erhöhten Pflege-
aufwand und damit verbundenen Kosten führt.

10 Optimierung

10-8 © Integrata AG 1.0.0210 / 9033

Abb. 10-6: Optimierungspyramide (links vor, rechts nach einer Trivialoptimierung)

Optimierung 10

1.0.0210 / 9033 © Integrata AG 10-9

10.3 Optimierungsprozess

Der hier vorgestellte Optimierungsprozess ist ein Vorschlag für eine
sinnvolle Vorgehensweise bei Performanceproblemen in Anwendun-
gen.

Abb. 10-7: Optimierungsprozess

Wie aus dem Schaubild ersichtlich ist, besteht der Prozess aus sechs
Hauptschritten.

1) Verdacht – Als erstes muss ein konkreter Verdacht für ein Perfor-
manceproblem bestehen. Ein normalerweise recht sicherer Indikator
für Performanceprobleme sind Beschwerden oder Fehlermeldungen
der Nutzer. Aber auch das Monitoring von Anwendungen kann Indi-
zien für ein Performanceproblem liefern. Im Gegensatz zu den Beo-
bachtungen der Nutzer können das Monitoring einer Anwendung
Probleme teilweise bereits identifiziert werden, bevor sie akut in Er-
scheinung treten. Dadurch kann eine Problembehebung erfolgen,
ohne dass der Nutzer davon etwas mitbekommt. Die aus dem Moni-
toring gewonnenen Statistiken können dabei in den folgenden
Schritten gut zur Problemeingrenzung und Identifizierung benutzt
werden.

10 Optimierung

10-10 © Integrata AG 1.0.0210 / 9033

2) Indiz – Nachdem der Verdacht eines Performanceproblems besteht
sollte man als erstes prüfen, ob der Verdacht auch berechtigt ist.
Dazu gehören einfache Prüfungen in denen die beschriebene Situa-
tion nachgestellt wird und die gefühlte Laufzeit ermittelt wird. In die-
ser Phase kommen noch keine ausgefeilten Tools wie z.B. Profiler
etc. zum Einsatz sondern es wird aus „Nutzersicht“ durch einen
Entwickler etc. geprüft, ob sich ein Performanceproblem bestätigen
lässt. Dazu können auch einfache Überwachungstools für die Spei-
cherauslastung etc. benutzt werden. Finden sich spontan keine
Hinweise auf ein Problem, ist ein Langzeitmonitoring der Anwen-
dung sinnvoll. Dazu können z.B. eventuell vorhandene JMX-Beans
oder auch die normale Systemüberwachung benutzt werden.

3) These – Stellt man in Schritt 2 fest, dass „irgendetwas nicht stimmt“
befindet man sich relativ schnell bei Schritt 3. Hier wird eine These
aufgestellt, welcher Art das Problem (I/O-, CPU- oder Speicheraus-
lastung) ist und der ungefähre Entstehungsort bestimmt. Hierzu
werden weitere Tools der Systemüberwachung eingesetzt.

4) Test – Aus der aufgestellten These wird nun ein möglichst automa-
tisierter Test für das in der These formulierte Problem erzeugt, der
die jeweiligen Kenndaten (Laufzeit, IO- und Speicherauslastung)
gegenüber einem Grenzwert vergleicht. Gerade dieser Schritt ist
besonders wichtig und wird leider oft übergangen. Durch das
Schreiben eines Tests wird man gezwungen, das Performanceprob-
lem zu operationalisieren und Aussagen wie „Die Anwendung ist zu
langsam“ in konkrete Grenzwerte für klar festgelegte Bereiche um-
zuwandeln. Außerdem manifestieren die Tests das grundlegende
Performanceproblem und bilden so die Grundlage für die eigentliche
Optimierung in Schritt 5.

Ein weiterer wichtiger Punkt ist die Wahl der Testumgebung. Anders
als bei normalen Unit-Tests, welche die Funktionsweise einer An-
wendung testen, müssen Performancetests auf einem System aus-
geführt werden, das dem operativen System der Anwendung ent-
spricht oder zumindest möglichst nahe kommt. Dazu zählen neben
möglichste identischer Hardware- und Softwareausstattung auch ei-
ne dem operativen System entsprechende Last.

5) Optimierung – In diesem Schritt erfolgt die eigentliche Optimierung
der Anwendung. Grundlage dafür sind die in Schritt 4 erstellten
Testfälle. Die Anwendung soll so optimiert werden, dass die Tests
erfüllt werden – nicht weniger aber auch nicht mehr. Die Optimie-
rung ist ein eigener Unterprozess mit vier Schritten

a) Als erstes werden ca. 3 – 5 der HotSpots und Bottlenecks der
Anwendung bestimmt. Dazu werden Tools wie z.B. Profiler ein-
gesetzt. Es geht hier darum die größten Hotspots und Bottle-
necks zu finden und nicht alle.

b) Aus den gefunden Hotspots wird der aus Sicht des Entwicklers
am leichtesten und schnellsten zu optimierende ausgewählt.

Optimierung 10

1.0.0210 / 9033 © Integrata AG 10-11

c) Jetzt erfolgt die Optimierung des ausgewählten Hotspots. Wobei
immer nur ein Hotspot bearbeitet wird und nicht mehrere gleich-
zeitig.

d) Nachdem der Hotspot optimiert wurde, wird der in Schritt 4 defi-
nierte Test durchgeführt. Ist der Test erfolgreich ist die Optimie-
rung abgeschlossen und wird beendet, auch wenn in der in a)
gefundenen Liste noch weitere Hotspots stehen.

Schlägt der Test fehl, fängt man wieder neu bei a) an. Das be-
deutet, dass die Liste der Hotspots und Bottlenecks wieder neu
bestimmt wird. Da durch die bisherige Optimierung alte Hotspots
weggefallen und neue Hotspots hinzugekommen sein könnten,
darf die zuvor erstellte Liste nicht mehr benutzt werden. Wieder-
holt sich diese Schleife sehr oft, d.h. man erfüllt den Test nicht,
obwohl man schon eine Menge von Optimierungen durchgeführt
hat, liegt die Vermutung nahe, dass die These über die Ursache
des Problems falsch ist. Der Optimierungsprozess geht in die-
sem Fall wieder zurück zu Schritt 3 und es wird eine neue These
aufgestellt.

6) Verifikation – Wurde der Schritt der Optimierung erfolgreich abge-
schlossen und der Test erfüllt bedeutet das nicht automatisch, dass
das Performanceproblem gelöst ist. Eventuell war die in Schritt 3
aufgestellte These falsch. Zur endgültigen Verifikation wird jetzt
nochmals Schritt 2 ausgeführt. Die Anwendung wird auch durch den
Nutzer getestet. Stellt sich in der Verifikation heraus, dass das Per-
formanceproblem nicht gelöst wurde, muss eine neue These formu-
liert werden und der Prozess startet wieder bei 3). Dabei fließen na-
türlich die bisher gewonnen Informationen in die Problemfindung mit
ein.

10 Optimierung

10-12 © Integrata AG 1.0.0210 / 9033

10.4 Zusammenfassung

Optimierung ist ein weites Feld. Wir haben uns hier bewusst nicht auf
konkrete Optimierungstechniken bezogen sondern uns stattdessen mit
dem allgemeinen Optimierungsprozess beschäftigt.

Die einzige Regel für dieses Kapitel steht daher am Schluss:

Regel 10-1: Bevor optimiert wird muss es ein quantifizierbares
Ziel und einen dazu passenden, identifizierten Eng-
pass geben.

1.0.0210 / 9033 © Integrata AG 11-1

Meisterschaft

11 Meisterschaft

11-2 © Integrata AG 1.0.0210 / 9033

Meisterschaft 11

1.0.0210 / 9033 © Integrata AG 11-3

11 Meisterschaft

Wir haben in den letzten Kapiteln viele Themen besprochen und viele
Regeln aufgestellt. Folgt man den aufgestellten Regeln, so erreicht man
mit ein wenig Übung eine gute Basis für hochwertigen Code.

Dass das regelmäßige Zurückkehren zu den Regeln eine gewisse
Selbstdisziplin erfordert, muss wohl nicht erwähnt werden.

Aber es lohnt sich!

Uns bleibt zum Schluss noch eine einzige Regel, die Meisterregel1:

Regel 11-1: (Meisterregel) Der Meister darf die Form zerbrechen.

1 Frei nach Friedrich Schillers „Die Glocke“

11 Meisterschaft

11-4 © Integrata AG 1.0.0210 / 9033

1.0.0210 / 9033 © Integrata AG 12-1

Anhang – Regeln

12.1 Kapitel 1 – Was ist Qualität .. 12-3

12.2 Kapitel 2 – Objektorientierte Programmierung.............................. 12-3

12.3 Kapitel 3 – Professionelle Klassen und Objekte 12-4

12.4 Kapitel 4 – Namen.. 12-5

12.5 Kapitel 5 – Methoden.. 12-7

12.6 Kapitel 6 – Kommentare und Dokumentation 12-8

12.7 Kapitel 7 – Code-Formatierungen... 12-8

12.8 Kapitel 8 – Metriken.. 12-9

12.9 Kapitel 9 – Nebenläufigkeit ... 12-9

12.10 Kapitel 10 – Optimierung .. 12-9

12.11 Kapitel 11 – Meisterschaft .. 12-9

12 Anhang – Regeln

12-2 © Integrata AG 1.0.0210 / 9033

Anhang – Regeln 12

1.0.0210 / 9033 © Integrata AG 12-3

12 Anhang – Regeln

12.1 Kapitel 1 – Was ist Qualität

Regel 1-1: eine maximale, externe Qualität ist nicht erreichbar, Schwer-
punkte müssen anhand klarer Anforderungen gestellt wer-
den.

Regel 1-2: Verbesserungen der Benutzerfreundlichkeit sollten wohl

überlegt sind und nur bei begründeten Fällen (Nutzerforde-
rung!) über ein übliches Maß hinaus gehen.

Regel 1-3: Eine Betonung eines externen Merkmal muss durch Nicht-

funktionale Anforderungen (NFAs) begründet sein.

Regel 1-4: Wartungsfreundlichkeit, Wiederverwendbarkeit, Lesbarkeit
und Testbarkeit sollten, solange der Aufwand vertretbar ist,
so hoch wie möglich sein.

Regel 1-5: Flexibilität und Effizienz sollten in der Entwicklung eine ge-

ringe Priorität haben.

12.2 Kapitel 2 – Objektorientierte Programmierung

Regel 2-1: (1. Holper-Regel) Klingt eine Sprechweise für ein objektori-
entiertes Konzept holprig, so ist das Konzept nicht korrekt
angewendet. (Vers)

Regel 2-2: Die Signatur und das Verhalten von Schnittstellen-Methoden

sollte nachträglich nur noch in Ausnahmefällen geändert
werden (Wart, Wied).

Regel 2-3: Neue Methoden sollten der Schnittstelle nur dann hinzuge-

fügt werden, wenn es dafür einen konkreten Anwendungsfall
gibt (Wart).

Regel 2-4: Felder sollten standardmäßig private, Hilfsmethoden stan-

dardmäßig package-visible sein. (Wart, Test)

Regel 2-5: Felder sollten immer gekapselt werden, der Zugriff darauf
darf nur über Getter und Setter möglich sein. (Wart, Wied)

12 Anhang – Regeln

12-4 © Integrata AG 1.0.0210 / 9033

Regel 2-6: Jede Klasse sollte mit einem entsprechenden Interface ge-
kapselt sein. Client-Code sollte ausschließlich über das Inter-
face auf die Klasse zugreifen. (Wart, Wied, Test)

Regel 2-7: Klassen sollten eine starke Kohäsion besitzen (Wied, Lesb,

Vers)

12.3 Kapitel 3 – Professionelle Klassen und Objekte

Regel 3-1: Vererbung sollte nur dazu benutzt werden, tatsächliche Spe-
zialisierungen zu beschreiben. (Vers)

Regel 3-2: (LSP) Unterklassen müssen an die Stelle ihrer Oberklassen
treten können. (Test, Vers)

Regel 3-3: (2. Holper-Regel) Lässt sich für die Anwendung einer ob-
jektorientierten Technik kein vernünftiger (nicht-holpriger)
Name finden, so ist die Technik nicht korrekt angewendet.
(Vers)

Regel 3-4: Mehrfachvererbung ist zu vermeiden. (Lesb, Vers)

Regel 3-5: Eine Klasse sollte immer nur entweder von einer Oberklasse

ableiten oder eine Hierarchieschnittstelle implementieren.
(Vers)

Regel 3-6: Der Name des Konstruktes (Klasse, Schnittstelle), der im

Code am häufigsten verwendet wird, sollte der „schönste“
sein. (Lesb)

Regel 3-7: Querschnittliche Fähigkeiten werden über Fähigkeitsschnitt-

stellen realisiert. (Wied, Vers, Test)

Regel 3-8: Fachliche Vererbungen sollten als Parallele Hierarchien ab-
gebildet werden. (Wied, Test)

Regel 3-9: Clients sollten nicht gezwungen sein, sich auf Schnittstellen

abzustützen, die sie nicht benutzen. (Test, Vers, Wied)

Regel 3-10: Das Interface-Segregation-Principle sollte mit Hilfe des
Adapter-Patterns umgesetzt werden. (Lesb, Vers, Wied)

Regel 3-11: Klassen sollten klein sein. (Lesb, Vers, Test)

Anhang – Regeln 12

1.0.0210 / 9033 © Integrata AG 12-5

Regel 3-12: Klassen sollten noch kleiner sein. (Lesb, Vers, Test)

Regel 3-13: (Visions-Prinzip) Jedes Konzept (Pakete, Klassen, Metho-
den) muss sich verständlich in einem Hauptsatz (der Vision)
beschreiben lassen. (Vers, Wied)

Regel 3-14: (SRP) Für jede Klasse sollte es nur einen einzigen Grund

geben, sie zu ändern. (Vers, Wied)

Regel 3-15: (OCP) Klassen sollten offen für Erweiterungen, aber gesperrt
für Veränderungen sein. (Wied, Wart)

Regel 3-16: Potentielle Oberklassen sollten verhindern, dass ihre Kind-

Klassen jemals das Liskovsche Substitutionsprinzip (siehe
Regel 3-2) verletzen können. (Wied, Wart)

Regel 3-17: (DIP) Hochlevlige Module sollten nicht von niedrig-levligen

Modulen abhängen. Beide sollten nur von Abstraktionen ab-
hängen (Wied, Wart, Test).

Regel 3-18: (DIP) Abstraktionen sollten nicht von Details abhängen. De-

tails sollten von Abstraktionen abhängen. (Wied, Wart, Test)

12.4 Kapitel 4 – Namen

Regel 4-1: Variablen sollten Namen haben, die ihre Bedeutung wieder-
spiegeln. (Lesb)

Regel 4-2: Klassen und Abstraktionen tragen die Namen von (ggf. zu-

sammengesetzten) Substantiven. (Vers)

Regel 4-3: Abstrakte Klassen als Implementierungshilfen sollten mit
dem Präfix „Abstract“ versehen werden. (Lesb, Vers)

Regel 4-4: Fähigkeits-Interfaces und Mixins tragen Adjektive als Namen.

(Vers)

Regel 4-5: Methoden sollten Verben oder aus Verben abgeleitete Be-
zeichnungen als Namen tragen. (Lesb, Vers)

Regel 4-6: Zugriffsmethoden sollten mit get, set oder is anfangen.

Andere Methoden sollten diese Präfixe nicht benutzen.
(Lesb)

12 Anhang – Regeln

12-6 © Integrata AG 1.0.0210 / 9033

Regel 4-7: Unklare Konstruktoren sollten durch Factory-Methoden „be-
nannt“ werden. Der Konstruktor selbst sollte dann nicht mehr
sichtbar sein. (Lesb, Vers)

Regel 4-8: Eine Handvoll definierter Standardnamen erleichtert die

Übersichtlichkeit, wenn sie allen Entwicklern bekannt sind.
(Lesb)

Regel 4-9: Variablen, die das Ergebnis einer Methode aufnehmen, soll-

ten den Namen dieser Methode tragen. Gibt es Verwechs-
lungsgefahr, so sind dem Namen die Argumente des Aufrufs
beizufügen. (Lesb)

Regel 4-10: Die Unterschiede zwischen zwei gewählten Namen müssen

so gewählt werden, dass der Leser sie inhaltlich versteht.
(Lesb, Vers)

Regel 4-11: Fachliche Konzepte sollten in Domänen-Sprache, technische

Details in der Lösungssprache formuliert werden. (Lesb,
Vers)

Regel 4-12: Gleiche Konzepte sollten durch das gleiche Wort beschrie-

ben werden, unterschiedliche Konzepte durch unterschiedli-
che Wörter. (Lesb, Vers)

Regel 4-13: Verwandte Konzepte sollten auch mit verwandten Begriffen

beschrieben werden. (Lesb, Vers)

Regel 4-14: Namen sollten sich optisch so weit unterscheiden, dass man
sie auf einen Blick auseinanderhalten kann. (Lesb)

Regel 4-15: Namen sollten aussprechbar sein. Abkürzungen sollten nur

in Ausnahmefällen verwendet werden, und auch dann nur
sprechbare. (Lesb)

Regel 4-16: Encodings für Typen und Kontexte sollten nicht benutzt wer-

den. (Lesb)

Anhang – Regeln 12

1.0.0210 / 9033 © Integrata AG 12-7

12.5 Kapitel 5 – Methoden

Regel 5-1: Methoden sollten klein sein. (Lesb, Test)

Regel 5-2: Methoden sollten noch kleiner sein. (Lesb, Test)

Regel 5-3: Methoden sollten dem Hrair-Limit genügen (nicht mehr als 7
Zeilen) (Lesb, Test)

Regel 5-4: Blöcke sollten einzeilig sein. (Lesb, Test)

Regel 5-5: Der Name einer Methode muss zusammen mit seinen Argu-

menten auf Client-Seite verständlich sein. (Lesb, Test)

Regel 5-6: Eine Methode sollte eine Sache tun. Diese sollten sie gut
tun. Diese sollten sie ausschließlich tun. (Lesb, Test)

Regel 5-7: Jede Methode sollte nur auf einer Abstraktionsebene agie-

ren. (Lesb)

Regel 5-8: Methodenargumente sollten auf der gleichen Abstraktions-
ebene liegen, wie die Funktion. (Lesb, Test)

Regel 5-9: Eine monadische Methode sollte immer eine Abfrage, ein

Transformator oder ein Event sein. (Lesb, Vers)

Regel 5-10: Flag-Methoden sollten vermieden werden, besonders bei
Monaden. (Lesb)

Regel 5-11: Methoden sollten höchstens ein Output-Argument besitzen,

dieses sollte als Rückgabewert gedoppelt werden. (Lesb)

Regel 5-12: Methoden sollten wenn möglich entweder Abfragen oder Be-
fehle sein. (Lesb)

12 Anhang – Regeln

12-8 © Integrata AG 1.0.0210 / 9033

12.6 Kapitel 6 – Kommentare und Dokumentation

Regel 6-1: Bevor ein Kommentar gesetzt wird, um Code zu erklären,
sollte immer erst versucht werden, den Code selbst ver-
ständlicher zu gestalten. (Lesb)

Regel 6-2: Regelverstöße müssen durch einen Kommentar markiert und
begründet werden. (Lesb, Vers)

Regel 6-3: Formale Kommentare sollten dem Visions-Prinzip folgen.

(Lesb, Vers)

Regel 6-4: Formale Kommentare sollten im Quellcode lesbar sein.
(Lesb)

Regel 6-5: Nur die öffentliche API sollte formal beschrieben werden.

(Lesb)

12.7 Kapitel 7 – Code-Formatierungen

Regel 7-1: Methoden sollten von einander durch eine Leerzeile getrennt
werden. (Lesb)

Regel 7-2: Abstraktere Methoden stehen vor spezielleren Methoden.

(Lesb)

Regel 7-3: Abhängige Methoden sollten dicht zusammen stehen, dabei
der Aufrufer (der abstraktere) über dem Aufgerufenen.
(Lesb)

Regel 7-4: Konzeptionell zusammengehörige Methoden sollten dicht

beieinander stehen. (Lesb)

Regel 7-5: Felder sollten vor Methoden definiert werde, Konstanten vor
Feldern. (Lesb)

Regel 7-6: Der einzig wahre Formatierungsstil ist der, den das Team

festgelegt hat. (Lesb, Vers, Wart)

Regel 7-7: Wichtig ist nicht, welche Formatierungsregeln im Einzelnen
verwendet werden, sondern dass diese Regeln existieren
und von allen genutzt werden. (Lesb, Vers, Wart)

Anhang – Regeln 12

1.0.0210 / 9033 © Integrata AG 12-9

12.8 Kapitel 8 – Metriken

Regel 8-1: Eingesetzte Metriken müssen verstanden sein und regel-
mäßig ausgewertet werden.

12.9 Kapitel 9 – Nebenläufigkeit

Regel 9-1: In jeder Klasse muss beschrieben sein, ob diese Thread-
sicher ist oder nicht. Unveränderliche Objekte sind immer
Thread-sicher. (Lesb, Vers)

Regel 9-2: Read-Write-Zugriffe und Dependent-Writes müssen atomar
ausgeführt werden.

Regel 9-3: Felder die einmal geschützt werden, müssen immer ge-
schützt werden.

Regel 9-4: Code, der sich mit Nebenläufigkeit beschäftigt, sollte von an-
derem Code getrennt gehalten werden. (Lesb, Vers)

Regel 9-5: Müssen wir den Zugriff auf ein oder mehr Felder schützen,
so sollte der Zugriff auf diese Felder an so wenig Stellen wie
möglich erfolgen.

12.10 Kapitel 10 – Optimierung

Regel 10-1: Bevor optimiert wird muss es ein quantifizierbares Ziel und
einen dazu passenden, identifizierten Engpass geben.

12.11 Kapitel 11 – Meisterschaft

Regel 11-1: (Meisterregel) Der Meister darf die Form zerbrechen.

12 Anhang – Regeln

12-10 © Integrata AG 1.0.0210 / 9033

1.0.0210 / 9033 © Integrata AG 13-1

Literaturempfehlungen

13 Literaturempfehlungen

13-2 © Integrata AG 1.0.0210 / 9033

Literaturempfehlungen 13

1.0.0210 / 9033 © Integrata AG 13-3

13 Literaturempfehlungen

Martin Fowler: Refactoring: Wie Sie das Design vorhandener Software
verbessern, München: Addison-Wesley, 2000

Erich Gamma, Richard Helm, Ralph Johnson und John Vlissides: De-
sign Patterns: Elements of Reusable Object-Oriented Software, Read-
ing: Addison-Wesley, 1995

Andrew Hunt und David Thomas: The Pragmatic Programmer. Boston:
Addision-Wesley, 2000

Robert C. Martin: Agile Software Development: Principles, Patterns,
Practices, Boston: Pearson Education, Inc, 2003

Robert C. Martin: Clean Code: A Handbook of Agile Software Crafts-
manship, Boston: Pearson Education, Inc, 2008

Steve McConnell: Code Complete, Second Edition, Redmond: Microsoft
Press, 2004

Diomidis Spinellis: Code Quality: The Open Source Perspective, Bos-
ton: Pearson Education, Inc, 2006

13 Literaturempfehlungen

13-4 © Integrata AG 1.0.0210 / 9033

1.0.0210 / 9033 © Integrata AG IDX-1

Gesamtindex

A

Abfrage 5-19

Absätze 7-6

Absichtserklärungen 6-6

Abstrakte Klassen 4-5

Abstraktion 2-7

Abstraktionsebene 5-16

Abstraktions-Methode 5-4

Adapter Pattern 3-18

Aggregation 2-8

Ä

Änderungsgrund 3-23

A

Anpassungsfähigkeit 1-4

Antwortzeit 10-3

Argument-Objekte 5-23

Assoziation 2-10

atomar 9-6

Atomar 9-7

Attribut 2-9

Auftraggeber-Sicht 1-6

Ausgabe Parameter 5-22

auskommentieren 6-11

Aussprechbare Namen 4-15

B

Basisklasse 2-12

Bedeutungsvolle Namen 4-4

Benutzerfreundlichkeit 1-3

betriebswirtschaftliche Sicht 1-6

Bindung 2-24

Black-Box-Tests 2-18

Blockgröße 5-11

Boilerplate-Code 2-21

Builddauer 8-11

Builder-Pattern 4-7, 5-21

Buildprozess 6-3, 8-11

C

CamelCase 4-14

CBO Siehe Coupling between Object
Classes

Code Entropy 8-3

Code Smells 1-10

Codehistorien 6-10

Codeoptimierung 10-4

Coding against Metrics 8-3

cohesion Siehe Kohäsion

Command Query Separation 5-24

Comparable 3-11, 3-25

Contract 2-17

coupling Siehe Kopplung

Coupling between Object Classes 8-7

Cyclomatic Complexity 8-4

D

Daten-Kopien 9-8

Datenkopplung 2-23

Deadlock 9-10

Dependency Injection Pattern 2-23

Dependency-Inversion-Principle 3-26

Dependent-Writes 9-7

Depth of Inheritance Tree 8-7

Design Patterns 6-6

Diamant-Problem 3-6

Dining Philosophers 9-12

DIP Siehe Dependency-Inversion-Principle

DIT Siehe Depth of Inheritance Tree

Dokumentation 6-3

Domänen-Sprache 4-12

IDX Gesamtindex

IDX-2 © Integrata AG 1.0.0210 / 9033

Doxygen 6-3

Dyadische Methoden 5-19

E

Effizienz 1-3

encapsulation Siehe Kapselung

encoding 4-16

enge Kopplung 2-21

Event 5-19

Exit-Punkt 5-13, 5-25, 8-5

Expertensysteme 2-5

F

Factory-Methode 4-7

Factory-Pattern 2-22

Flags 5-21

Flaschenhals 10-4

Flexibilität 1-5

Forcierte Kommentare 6-10

Formale Kommentare 6-7

Formatierung 3-20, 7-3

Formatter 7-3, 7-11

freie Kopplung 2-23

fünf Prinzipien 3-3

Funktion 5-3

Funktionale Programmierung 2-3

G

Gebundene Ressource 9-10

Gefühlte Performance 10-4

Genauigkeit 1-4

Getter 2-18

Großschreibung 4-14

H

Hacker-Sicht 1-4

Hilfsmethode 5-4

Holper-Regel 2-6, 3-5, 5-14

Hook-Methode 5-8

HotSpot-Compiler 5-13

Hrair-Limit 5-5, 5-20

I

Inhaltskopplung 2-21

innere Kapselung 2-17

Integrität 1-4

Interface 3-7, 4-6

Interfaces 2-8

Interface-Segragation-Principle 3-22

Interface-Segregation-Principle 3-15

Invariante 2-18

Inversion of Control 2-23

ISP Siehe Interface-Segregation-Principle

Iterator 4-9

J

Javadoc 6-3

K

K

die drei 2-16

Kapselung 2-16, 5-4

Kardinalität 2-9

Keyword-Form 5-14

Klammer-Kommentare 6-11

Klarstellungen 6-5

Klassen 2-7

Klassengröße 3-20

Klassenhierarchien 3-3

Kleinschreibung 4-14

Kohäsion 2-24, 3-20, 3-23

Kommentar 6-3

Kommunikation 7-5

Komponente 2-11

Komposition 2-8

Konstruktor 4-7, 5-20

Kontext 4-8

Konzept 4-12

Kopplung 2-21, 3-27

Korrektheit 1-3

Kreis-Ellipse-Problem 3-4

künstliche Intelligenz 2-5

Gesamtindex IDX

1.0.0210 / 9033 © Integrata AG IDX-3

L

Lack of Cohesion in Methods 8-8

LCOM Siehe Lack of Cohesion in Methods

Lead 7-6

Leetspeak 4-17

Lesbarer Code 6-3

Lesbarkeit 1-5

Lifecycle-Methode 5-7

Lines of Code 3-20, 8-5

Liskovsches Substitutionsprinzip 3-5, 5-11

Livelock 9-10

Logische Programmierung 2-4

lose Kopplung 2-22

Lösung-Sprache 4-12

LSP Siehe Liskovsches
Substitutionsprinzip

M

Mehrfachvererbungen 3-6

Meisterregel 11-3, 12-9

Meisterschaft 11-3

Merkmale

extrinsisch 1-9

intrinsisch 1-9

Methode 5-3

Methodenargumente 5-18

Metrik 8-3

Missverständliche Namen 4-10

Mix-In 3-11, 4-6

Monade 5-19

Monadische Methoden 5-19

Monte Carlo 9-13

Moore’s Law 9-3

Muttersprache 4-3

Mutual Exclusion 9-10

N

Nachrichten 2-15

Name 4-3

Nebenläufigkeit 9-3

Nicht-Funktionalen Anforderungen 1-4

Niladische Methoden 5-18

NOC Siehe Number of Children

Non commenting source statements 3-20

Non Commenting Source Statements 8-6

NRV Siehe Number of Rule Violations

Number of Children 8-7

Number of Rule Violations 8-10

Nutzer-Sicht 1-3

O

Oberklasse 2-12

Objektorientierte Analyse 2-3

Objektorientierte Programmierung 2-5

Objektorientiertes Design 2-3

Objektorientierung 2-3

Observer 4-12

OCP Siehe Open-Closed-Principle

OOA Siehe Objektorientierte Analyse

OOD Siehe Objektorientiertes Design

Open-Closed-Principle 3-24, 5-7

Operation 5-3

Operationen 2-8

Optimierung 10-3

Optimierungsdreieck 10-5

Optimierungsprozess 10-9

Optimierungspyramide 10-7

Optische Verwechslung 4-14

P

Package 2-14

Parallele Schnittstellen-Hierarchien 3-14

Performance 9-4, 10-3

Persistenz 2-15

Polyade 5-20

Polyadische Methoden 5-20

Polymorphie 2-12, 2-13, 3-4, 4-5, 5-3

Portierbarkeit 1-5

Prefix 4-9

Private 2-14

Producer-Consumer 9-11

Produkt-Qualität Siehe Softwarequalität,
extern

Professioneller Code 1-3

Programmierer-Sicht 1-5

IDX Gesamtindex

IDX-4 © Integrata AG 1.0.0210 / 9033

Programmierrichtlinien 4-14

Projektrichtlinien 4-4

Protected 2-14

Prototypen 2-7

Prozedur 5-3

Prozedurale Programmierung 2-3

Public 2-14

Q

Qualität 1-3

R

Race Condition 9-10

Reader-Writer 9-11

Read-Write-Problem 9-6

Read-Write-Zugriffe 9-7

Rechtliche Hinweise 6-5

Rechtzeitigkeit 10-3

Redundanzen 6-9

Refactoring 8-3, 8-10

Regelverstöße 6-6

Rekursion 5-25

Response for a Class 8-8

RFC Siehe Response for a Class

Robustheit 1-4

Routine 5-3

Rubrik 7-10

Rückgabewert 4-8

S

Schlagzeile 7-6

Schlammzone 3-27

Schleifenzähler 4-8

Schnittstelle 3-8

Fähigkeits- 3-10

Hierarchie - 3-8

Querschnitt 3-10

Schnittstellen

Client- 3-15

Hierarchie- 4-5

Schnittstellenkopplung 2-22

Schnittstellen-Methode 5-4

Schreibfehler 4-11

Seiteneffekt 5-3, 5-24

Separation of Concerns 5-15

Setter 2-18

Short-Circuit-Operator 8-5

Sichtbarkeiten 2-14, 2-16

Signatur 5-4

Single-Repsonsibility-Principle 5-15

Single-Responsibility-Principle 3-23, 4-5

Single-Responsiblity-Principle 9-8

Skalierbarkeit 10-3

Slang 4-17

Softwarequalität

extern 1-4

intern 1-5

SOLID 3-28

Sonnenflecken 9-5

Sourcecode-Qualität Siehe
Softwarequalität, intern

Sourcecode-Verwaltung 7-3, 7-10

Spezialisierung Siehe Vererbung

SRP Siehe Single-Responsibility-Principle

Starre 1-10

Statische Analyse Tools 8-10

Stepdown-Regel 5-17, 5-26

Strategy-Pattern 3-25

Style-Guide 4-19

Suffix 4-9

T

Template-Methode 5-10

Template-Pattern 5-8

Testabdeckung 8-11

Testbarkeit 1-5

Testfälle 6-13

Textrauschen 4-11

Thread starvation 9-10

TODO 5-7, 6-12

TO-Satz 5-16

Trade-Off Optimierung 10-5

Trait 3-13

Transformator 5-19

Triade 5-20

Triadische Methoden 5-20

Gesamtindex IDX

1.0.0210 / 9033 © Integrata AG IDX-5

U

UML Siehe 2.3.1 Unified Modeling
Language

UML-Sicht

Implementierung 2-6

Konzeptionell 2-6

Spezifikation 2-6

Unbeweglichkeit 1-10

Undurchsichtigkeit 1-11

Ungarische Notation 4-16

Unified Modeling Language 2-6

Unnötige Komplexität 1-11

Unnötige Wiederholungen 1-11

Unterstreichungen 6-7

Untertitel 7-6

Unveränderliche Objekte 9-7

V

Verantwortlichkeit 3-20

Vererbung 2-12, 3-4, 5-7

Verhalten 2-5

Verständlichkeit 1-5

Vertrag 2-17

Violations of Metrics Limits 8-10

virtuelle Felder 2-20

Vision 5-16

Visions-Prinzip 3-22

VML Siehe Violations of Metrics Limits

W

Wartezeiten 9-3

Wartungsfreundlichkeit 1-5

Weighted Methods per Class 8-7

White-Box-Tests 2-18

Wiederverwendbarkeit 1-5

WMC Siehe 8.3.1 Weighted Methods per
Class

Wortpaar 4-13

Wortspiel 4-17

Z

Zähflüssigkeit 1-11

Zeitungsartikel 7-6

Zeitungsmetapher 7-6, 7-9

Zerbrechlichkeit 1-10

Zugriffsmethode 2-18

Zustand 2-5

Zuverlässigkeit 1-4

IDX Gesamtindex

IDX-6 © Integrata AG 1.0.0210 / 9033

