
iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

1 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Kapitel 6 Betrieb, Ueberwachung und Fehleranalyse
albion.eu www.tectrain.ch www.accso.de

< Kapitel 5 Installation und Roll Out Kapitel 7 Case Study >

Kapitel 6 Betrieb, Ueberwachung und Fehleranalyse

FLEX Lehrplan

6 Betrieb, Überwachung und Fehleranalyse

Dauer: 90 Min Übungszeit: 30 Min

6.1 Begriffe und Konzepte

Monitoring, Operations, Logging, Tracing, Metrics.

6.2 Lernziele

6.2.1 Was sollen die Teilnehmer können?

Die Teilnehmer sollen ein Konzept grob skizzieren und verstehen können, auf dessen Basis ein System überwacht werden kann d. h.
den aktuellen Status zu beurteilen, Fehler und Abweichungen vom normalen Betrieb möglichst zu vermeiden oder zumindest so früh
wie möglich zu erkennen zu behanden.
Dabei können sie abhängig vom konkreten Projekt-Szenario den Fokus im Konzept auf Logging, Monitoring und die dazu
notwendigen Daten legen.
Die Teilnehmer sollen Architekturvorgaben so treffen können, dass der Einsatz geeigneter Werkzeuge bestmöglich unterstützt wird,
dabei jedoch angemessen mit Systemressourcen umgegangen wird.

6.2.2 Was sollen die Teilnehmer verstehen?

Logging und Monitoring kann sowohl fachliche als auch technische Daten enthalten.
Die richtige Auswahl von Daten ist zentral für ein zuverlässiges und sinnvolles Monitoring und Logging.
Damit Systeme, insbesondere solche, die sich aus vielen einzelnen Teilsystemen zusammensetzen, betreibbar sind, muss die
Unterstützung des Betriebs mit hoher Priorität Bestandteil der Architekturkonzepte sein.
Damit eine möglichst hohe Transparenz erreicht wird, müssen sehr viele Daten erfasst, aber auch zielgruppengerecht voraggregiert
und auswertbar gemacht werden.
Die Teilnehmer sollen verstehen, welche Informationen sie aus Log-Daten und welche sie (besser) durch Instrumentierung des
Codes mit Metrik-Sonden beziehen können.
Die Teilnehmer sollen verstehen, wie eine typische zentralistische Logdaten-Verwaltung aufgebaut ist und welche Auswirkungen sie
auf die Architektur hat.
Die Teilnehmer sollen verstehen, wie eine typische zentralistische Metriken-Pipeline aufgebaut ist (Erfassen, Sammeln & Samplen,
Persistieren, Abfragen, Visualisieren) und welche Auswirkungen sie auf die Architektur hat (Performance-Overhead,
Speicherverbrauch,...).
Die Teilnehmer sollen die unterschiedlichen Möglichkeiten von Logging, Monitoring und einer Operations DB (siehe M. Nygard,
Release IT!) verstehen, was man wofür einsetzt und wie man diese Werkzeuge sinnvoll kombiniert.

https://albion.eu/
http://www.tectrain.ch
http://www.accso.de
https://accso.atlassian.net/wiki/spaces/ISFLX/pages/132941304/Kapitel+5+Installation+und+Roll+Out
https://accso.atlassian.net/wiki/spaces/ISFLX/pages/132941348/Kapitel+7+Case+Study+Flexinale

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

2 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

6.2.3 Was sollen die Teilnehmer kennen?

Werkzeuge für zentralistische Logdaten-Verwaltung
Werkzeuge für zentralistische Metriken-Verarbeitung
Unterscheidung zwischen Geschäfts-, Anwendungs- und Systemmetriken
Bedeutung wichtiger, werkzeugunabhängiger System- und Anwendungsmetriken

6.3 Referenzen

Eberhard Wolff: Continuous Delivery: Continuous Delivery: Der pragmatische Einstieg, dpunkt, 2014, ISBN 978-3-86490-208-6
Michael Nygard: Release It!: Design and Deploy Production-Ready Software, Pragmatic Programmers, 2007, ISBN 978-0-97873-921-
8

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

3 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Inhalte

Kapitel 6 Betrieb, Ueberwachung und Fehleranalyse
(A) Anforderungen - "Design for Operations"

1. Design for Operations
2. Was sind die Hauptunterschiede zwischen Monolithen, Modulithen und verteilten Systemen in Bezug auf betriebliche Aspekte?
3. Auswirkungen eines "betriebsorientierten" Entwurfs auf die Anwendung: Wie kann man den Code sauber halten?

(B) Betrieb der Anwendung

1. Betriebsaufgaben
2. Monitoring, Logging, Tracing
3. Typische Aufgaben im Betrieb für 1st, 2nd und 3rd Level Support
4. Zuständigkeiten des "Fachlichen" und "Technischen" Betriebs

(C) Service Level Agreements, Incident Metrics

1. SLAs
2. Best Practices für das Monitoring von Performance und Verfügbarkeit
3. Uptime und Verfügbarkeit
3. Verfügbarkeit, Verfügbarkeitsklassen
4. Mean Time To Failure
5. Mean Time To Repair

(D) Restart

1. Geplanter Restart
2. Ungeplanter Restart nach Fehler oder Crash der Anwendung

(E) Monitoring

1. Was ist Monitoring?
2. Wie lassen sich Fehler und unerwünschte Situationen beim Monitoring feststellen? Konkrete Fehlerszenarien vs. lang anhaltende
Trends
3. Überblick über nützliche Überwachungs- und Betriebstools, insbesondere im Hinblick auf Java- und Spring-Boot-Anwendungen
4. Prometheus, Grafana und Micrometer für Java/Spring-Boot-Anwendungen kombinieren und einrichten

(F) Logging, Tracing, Metrics

1. Logging
2. Tracing und Unterscheide im Vergleich zu Logging
3. Wann wird aktiv protokolliert, wann passiv überwacht?
5. Was bedeutet die Verwendung solcher Metriken und Logging- und Tracing-Tools für das Design einer Anwendung?
6. Auswirkungen und Folgen, Vor- und Nachteile, für das Laufzeitverhalten der Anwendung beim Einsatz solcher Techniken
7. Wichtige Systemmetriken für Zustands- und Performance-Überwachung von Anwendungen
8. DORA Metriken
9. Sammeln und Korrelieren der Log-Ausgaben: Empfohlene Tools für Spring-Boot-Anwendungen
10. Verbreitete Tools für die zentrale Verwaltung von Protokolldaten
11. Verbreitete Tools für die zentrale Verwaltung von Metriken
12. Logging-Frameworks für Java- und Spring-Boot-Anwendungen

(G) Operations Database

1. Operations Database (Michael Nygard)
2. Analyse-Tracing und Metrik-Tools von der Applikation trennen

(H) Cloud

1. Cloud-Native Design, typische Stacks und Patterns
2. Betriebstools, die in Cloud-Umgebungen wie AWS, Azure und Google Cloud verwendet werden
3. Cloud und IaaS
4. IaaS, PaaS, SaaS

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

4 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

(A) Anforderungen - "Design for Operations"

1. Design for Operations

Im Design von Anwendungen muss der von Tag 1 an mitgedacht werden. Dabei sind insbesondere die fachliche wie technische Betrieb
folgenden Aspekte zu berücksichtigen:

Skalierbarkeit: Die Fähigkeit des Systems, eine wachsende Zahl von Benutzern oder Anfragen ohne Leistungseinbußen zu bewältigen.
Verfügbarkeit: Der Prozentsatz der Zeit, in der das System betriebsbereit und für die Benutzer zugänglich ist.
Ausfallsicherheit: Die Fähigkeit des Systems, sich von Ausfällen zu erholen und den Betrieb aufrechtzuerhalten.
Leistung: Die Geschwindigkeit und Reaktionsfähigkeit des Systems auf Benutzeranfragen.
Sicherheit: Die Fähigkeit des Systems, vor unbefugtem Zugriff, Verstößen und Datenverlusten zu schützen.
Nachvollziehbarkeit: Die Fähigkeit, die Leistung, Nutzung und Fehlerprotokolle des Systems zu überwachen, um Probleme zu erkennen und
zu beheben.
Testbarkeit und Die Fähigkeit, Aufgaben und Prozesse und Tests zu automatisieren, um menschliche Eingriffe zu Automatisierung:
reduzieren und die Effizienz zu verbessern.

Es ist auch wichtig zu überlegen, wie das System langfristig eingesetzt, verwaltet und gewartet werden soll. Dazu gehören Faktoren wie einfache
Bereitstellung, Aufrüstbarkeit und die Verfügbarkeit von Dokumentation und Support.

Flexibilität durch Modularisierung und vor allem Verteilung in Services hat seinen Preis, vor allem in Form erhöhter Aufwände im Betrieb. Ein
verteiltes System ist flexibel und skalierbar, lässt sich aber nur mit erhöhten Aufwänden betreiben, weswegen Automatisierung,
Fehlerkorrekturen, Nachvollziehbarkeit etc. hier direkt mit gedacht werden müssen. Besonders relevante Qualitätseigenschaften sind dabei
Skalierbarkeit, Verfügbarkeit, Zuverlässigkeit, Fragen von Konsistenz und Sicherheit, Performance und Durchsatz. Hier gilt es, im
Anforderungsprozess auch direkt von Seiten des Betriebs zu erheben, abzustimmen, zu implementieren und zu testen.

2. Was sind die Hauptunterschiede zwischen Monolithen, Modulithen und verteilten Systemen in Bezug auf betriebliche Aspekte?

Die Hauptunterschiede zwischen Monolithen, Modulithen und verteilten Systemen in Bezug auf den sind folgende:Betrieb

Monolith: In einer monolithischen Architektur sind alle Komponenten des Systems eng integriert und werden zusammen als eine Einheit
eingesetzt, damit auch als Einheit betrieben.
Modulith: In einer Modulith-Architektur besteht das System aus mehreren lose gekoppelten Modulen, aber alle Module werden zusammen
als eine Einheit eingesetzt. Ein Modulith verhält sich damit im Betrieb wie ein Monolith.
Verteiltes System: In einer verteilten Architektur besteht das System aus mehreren unabhängigen Knoten, die über ein Netz kommunizieren.

Die typischen Betriebsaufgaben unterscheiden sich in der Komplexität und im Umfang:

Deployment, Skalierung, Überwachung, Erfassung von Metriken, Updates, Support ist in einem monolithischen System leichter.
Dagegen skaliert es in der Regel nicht (so gut, siehe auch Scale Up vs Out unten).
Auch ist die Verfügbarkeit eines Monolithen begrenzt.

3. Auswirkungen eines "betriebsorientierten" Entwurfs auf die Anwendung: Wie kann man den Code sauber halten?

Das Design von einer Anwendung. Ein gut konzipiertes betrieblichen Aspekten hat einen Einfluss auf die Codestrukturen und -qualität
System, das die oben aufgeführten Qualitätsmerkmale berücksichtigt, ist robuster, zuverlässiger und wartungsfreundlicher.

Typische Methoden, um den Code dennoch "sauber" zu halten, sind:

Verwendung eines modularen Designs, bei dem verschiedene Funktionen in unterschiedliche Module oder Komponenten aufgeteilt werden,
die unabhängig voneinander leicht verstanden, getestet und gewartet werden können.
Dies kann auch dazu beitragen, die Skalierbarkeit und Wartbarkeit zu verbessern, da es einfacher ist, Funktionen hinzuzufügen oder zu
ersetzen, ohne den Rest des Systems zu beeinträchtigen.
Außerdem ist es hilfreich, klare und konsistente Namenskonventionen zu verwenden, einen einheitlichen Codestil zu befolgen und
automatisierte Tools zur Überprüfung der Codequalität und von Fehlern einzusetzen.

Dabei sollte man den fachlichen Business Code von technischen Details und betrieblichen Funktionen trennen, wie z. B. über:

Die ist ein Programmierparadigma, das die Trennung von übergreifenden Belangen wie aspektorientierte Programmierung (AOP)
Protokollierung, Sicherheit und Fehlerbehandlung von der Kerngeschäftslogik einer Anwendung ermöglicht. AOP kann dazu beitragen, den
Code sauber zu halten, indem es die Identifizierung und Verwaltung dieser querschnittlichen Belange ermöglicht und die Menge an
dupliziertem Code reduziert.
Das Konzept von kann ebenfalls helfen, den Code sauber zu halten, in dem an zentraler Stelle übergreifende Funktionen wie Interceptoren
Protokollierung und Sicherheit zentralisiert und wiederverwendbar implementiert sind und nicht den fachlichen Code "verschmutzen".

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

5 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

AOP und Interceptoren sind mit Bedacht einzusetzen. Die "Magie" hinter solchen Strukturen passiert erst zur Laufzeit, z.B. per Reflection oder
Dynamic Proxies. Damit lassen sich die nötigen Abhängigkeiten nicht (immer) erkennen, wenn z.B. statische Code-Analysen oder -Reviews
erfolgen. Auch die Analyse von Fehlern (z.B. über Stacktraces) ist aufwendiger.

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

6 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

(B) Betrieb der Anwendung

1. Betriebsaufgaben

In Bezug auf DevOps und cross-funktionale Teams ist es üblich, dass die Verantwortung für diese Aufgaben unter den Teammitgliedern
aufgeteilt wird (siehe Kapitel 5 (B)).

So können beispielsweise Entwickler für das Schreiben von Code verantwortlich sein, der sich leicht überwachen und automatisieren lässt,
während sich Betriebsingenieure auf die Implementierung von Überwachungs- und Automatisierungstools konzentrieren können. Darüber hinaus
ist es üblich, dass ein Team einen zentralen Ansprechpartner für alle betriebsbezogenen Aufgaben hat, der dafür verantwortlich ist, dass alle
Aufgaben ausgeführt werden und dass eine klare Kommunikation und Koordination im Team stattfindet. Wichtig ist auch ein klarer Prozess für
das Management von Betriebs-Incidents, und das Team sollte klare Rollen und Verantwortlichkeiten für Notfälle festlegen.

Der Betrieb einer Anwendung umfasst in der Regel eine Vielzahl von um sicherzustellen, dass die Anwendung reibungslos Betriebsaufgaben,
läuft und die Anforderungen der Benutzer erfüllt, darunter:

Maintenance/Wartung: Regelmäßiges Einspielen von Updates und Sicherheitspatches für die Anwendung und ihre Abhängigkeiten.
Das umfasst in der Regel das Deployment der gesamten Anwendung auf einen neuen Server oder das Update der Anwendung Deployment
auf einem vorhandenen Server.
Überwachung, siehe unten
Backup und Regelmäßige Sicherung der Anwendungsdaten und Konfiguration von Disaster-Recovery-Verfahren.Recovery:
Skalierung: Verwaltung der Kapazität der Anwendung zur Bewältigung einer steigenden Last, z. B. durch Hinzufügen weiterer Server oder
Anpassung der Anwendungskonfiguration.
Automatisierung: Automatisierung sich wiederholender Aufgaben, wie z. B. Bereitstellungen und Backups, ist sinnvoll, um die Effizienz zu
steigern und das Risiko menschlicher Fehler zu verringern.
Fehlersuche: Untersuchung und Behebung von Problemen, die in der Anwendung auftreten, z. B. Bugs und Leistungsengpässe.
Unterstützung: 1st, 2nd, 3rd Level Support - siehe unten

2. Monitoring, Logging, Tracing

Für die Überwachung des Systems kommen v.a. zum Einsatz:

Monitoring:

Kontinuierliche Überwachung der Leistung der Anwendung, einschließlich CPU- und Speichernutzung, Antwortzeiten und Fehlerraten.
Dies schliesst technische Kennzahlen wie auch fachliche Kennzahlen (KPIs) mit ein.
In der Regel wird Monitoring durchgeführt als Mischung aus

Kurzfrist- (aktuelle Ereignisse, aktuelles Systemverhalten) und
Langfristdarstellung (Verhalten und Änderungen über längeren Zeitraum wie Stunden oder Tage hinweg).

Logging:

In einer Anwendung umfasst das Logging in der Regel das Sammeln und Speichern von Informationen über das Verhalten und die Leistung
der Anwendung.
Dies kann Informationen wie Anwendungsprotokolle, Systemprotokolle und Zugriffsprotokolle umfassen.
Logs werden zur Fehlersuche, Fehlerbehebung und Prüfung verwendet.
Diese Logs werden in der Regel an einem zentralen Ort gespeichert, z. B. auf einem Protokollserver oder in einer Datenbank.

Tracing:

In einer Anwendung umfasst das Tracing in der Regel die Verfolgung des Flusses einer Anfrage durch die Anwendung und die Identifizierung
von Engpässen oder Fehlern.
Dies kann Informationen wie Anforderungs- und Antwortzeiten und Call Stacks umfassen.
Tracing kann zum Debugging, zur Fehlerbehebung und zur Leistungsoptimierung verwendet werden.
Die Traces werden in der Regel an einem zentralen Ort gespeichert, z. B. auf einem Trace-Server oder in einer Datenbank

3. Typische Aufgaben im Betrieb für 1st, 2nd und 3rd Level Support

Der ist die erste Anlaufstelle für Benutzer, die Probleme mit der Anwendung oder dem System haben. Seine Hauptaufgaben:1st-Level-Support

Beantwortung von Benutzeranfragen und Behebung von grundlegenden Problemen
Sammeln von Informationen über das Problem und ggf. Weiterleitung an das zuständige Team
Bereitstellung von grundlegenden Anweisungen und Anleitungen für die Nutzung der Anwendung oder des Systems

Der ist für die Bearbeitung komplexerer Probleme zuständig, die vom 1st-Level-Support nicht gelöst werden. Seine 2nd-Level-Support
Hauptaufgaben:

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

7 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Fehlersuche und Behebung fortgeschrittener technischer Probleme
Bereitstellung von technischem Fachwissen und Anleitung für den 1st-Level-Support
Untersuchen und Diagnostizieren von Problemen
Koordinierung mit anderen Teams oder Anbietern zur Lösung von Problemen

Der ist für die Bearbeitung der komplexesten Probleme und deren Behebung an der Wurzel zuständig. Seine Hauptaufgaben:3rd-Level-Support

Bereitstellung von fundiertem technischem Fachwissen und Anleitung für den 2nd-Level-Support
Untersuchung und Behebung von Problemen an der Wurzel
Entwicklung und Umsetzung von Lösungen, um zu verhindern, dass ähnliche Probleme in Zukunft auftreten
Mitwirkung an der Konzeption und Implementierung neuer Systeme und Anwendungen

Die Support-Level "verschwimmen" im typischen DevOps-Organiationsmodell, insbesondere zwischen 2nd- und 3rd-Level-Support, da dort cross-
funktional zusammengearbeitet wird - sowohl zwischen Betrieb und Entwicklung als auch zwischen technischem und fachlichem Betrieb.

4. Zuständigkeiten des "Fachlichen" und "Technischen" Betriebs

Der Betrieb ist dafür verantwortlich, dass das Tagesgeschäft eines Unternehmens reibungslos und effizient abläuft. Dazu gehören die
Verwaltung und Wartung der Systeme und Prozesse, die das Unternehmen unterstützen, sowie die Überwachung der Mitarbeiter und
Ressourcen, die für die Durchführung dieser Aktivitäten benötigt werden.

Dabei bezieht sich der auf den funktionalen oder technischen Betrieb des Unternehmens, wie z. B. das Management "Fachliche Betrieb"
von Geschäftsprozessen, Kundendienst und die Koordination von Ressourcen.
Hingegen umfasst der die technischen oder IT-nahen Betriebsaufgaben des Unternehmens, z. B. die Verwaltung von "Technische Betrieb"
IT-Systemen und -Infrastruktur, einschließlich Hardware, Software und Netzwerken.

Solche Aufgaben können in einem klassischen Betriebsteam umgesetzt und ausgeführt werden (z.B. bei großen, formal operierenden
Unternehmen und Behörden). Alternativ ist sind Platform Engineering und Dev Teams im Sinne von DevOps für den Betrieb der Anwendung
verantwortlich ("You build it, you run it").

An den inhaltlichen Aufgaben ändert sich nichts durch ein anderes organisatorisches Modell - die Aufgaben werden nur anders, in modernen
Organisationen kollaborativ und gemeinsam ("cross-funktional") gelöst.

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

8 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

(C) Service Level Agreements, Incident Metrics

1. SLAs

Service Level Agreements (SLAs) sind Vereinbarungen zwischen dem Anbieter eines Dienstes (z. B. einer Anwendung) und dem Kunden, in
denen festgelegt wird, welche Leistungen der Kunde erwarten kann. Zu den typischen SLAs einer Anwendung im Betrieb gehören:

Verfügbarkeit: Der prozentuale Anteil der Zeit, in der die Anwendung zugänglich und betriebsbereit ist, oft auf monatlicher oder jährlicher
Basis gemessen.
Reaktionszeit: Die Zeit, die die Anwendung benötigt, um auf eine Benutzeranfrage zu reagieren, oft gemessen in Sekunden oder
Millisekunden.
Durchsatz: Die Anzahl der Anfragen, die die Anwendung pro Sekunde oder pro Minute bearbeiten kann.
Wiederherstellungszeit: Die Zeit, die die Anwendung benötigt, um sich von einem Fehler oder Ausfall zu erholen, oft in Minuten oder
Stunden gemessen.
Sicherheit: Das Maß an Sicherheit, das die Anwendung bietet, z. B. die Einhaltung von Industriestandards oder Zertifizierungen.
Support: Das Maß an Unterstützung, das den Kunden geboten wird, z. B. die Verfügbarkeit eines Helpdesks oder die Reaktionszeit auf
Support-Anfragen.

SLAs sind für den Betrieb wichtig, weil sie eine klare und messbare Möglichkeit bieten, die Leistung einer Anwendung zu bewerten und Bereiche
zu identifizieren, in denen Verbesserungen nötig sind. Außerdem bieten sie den Kunden die Möglichkeit, den Anbieter für die Qualität der
erbrachten Leistungen zur Rechenschaft zu ziehen.

2. Best Practices für das Monitoring von Performance und Verfügbarkeit

Diese empfehlen sich für das Monitoring von Performance und Verfügbarkeit:Best Practices

Überwachung wichtiger technischer wie Antwortzeiten, Fehlerraten und Ressourcenauslastung. Dies hilft, Probleme Leistungsindikatoren
der Anwendung schnell und frühzeitig zu erkennen und zu beheben.
Verwendung eines zentralen um Protokolldaten aus allen Teilen der Anwendung zu sammeln und zu aggregieren. Dies Logging-Systems,
erleichtert das Durchsuchen und Analysieren von Protokolldaten sowie das Erkennen von Mustern und Trends im Verhalten der Anwendung.
(Automatisierte) zur Benachrictigung, wenn bestimmte Schwellenwerte überschritten werden oder bestimmte Ereignisse eintreten. So Alerts
werden sich anbahnende Probleme schneller erkannt und Ausfallzeiten minimiert.
Hilfreich kann auch eine sein, um ein vollständiges Bild von der Kombination aus synthetischer und realer Benutzerüberwachung
Leistung und Verfügbarkeit der Anwendung zu erhalten. Die synthetische Überwachung simuliert reale Benutzerinteraktionen mit der
Anwendung, während die reale Überwachung Daten aus tatsächlichen Benutzerinteraktionen verwendet.
Einsatz eines das verschiedene Datentypen wie Protokolle, Traces und Metriken korreliert und die Daten in Echtzeit Monitoring-Tools,
analysieren kann. Es sollte flexibel und erweiterbar sein und sich leicht mit anderen Systemen und Tools integrieren lassen.
Idealerweise lassen sich die Monitoring-Informationen auf einem gemeinsamen darstellen und aggregieren.Dashboard

Weiterhin:

Ein Sicherheitsplan sollte vorhanden sein, der die Überwachung verdächtiger Aktivitäten, insbesondere Zugriffe, und von
Sicherheitsverletzungen umfasst.
Ein Plan für die Skalierung sollte vorhanden sein, einschließlich der Überwachung der Ressourcen und der Leistung der Server sowie des
Zustands des Netzwerks und der zugrunde liegenden Infrastruktur. Idealerweise ist das bei dynamischer Skalierung automatisiert gelöst.
Ein Notfallplan sollte vorhanden sein, der alle Überwachungssysteme umfasst, die Ausfälle erkennen und beheben können.

3. Uptime und Verfügbarkeit

Uptime und Verfügbarkeit sind zwei verwandte, aber unterschiedliche .Messgrößen für die Leistung einer Anwendung

Die bezieht sich auf die Zeit, in der eine Anwendung betriebsbereit ist, d.h. zugänglich und einsatzfähig. Sie wird in der Regel als Uptime
Prozentsatz der Gesamtzeit ausgedrückt und ist ein Maß für die Zuverlässigkeit einer Anwendung. Wenn eine Anwendung beispielsweise
eine Uptime von 99,9 % hat, bedeutet dies, dass sie nur 0,1 % der Zeit nicht ist.verfügbar
Die Verfügbarkeit hingegen ist ein Maß für die Nutzbarkeit einer Anwendung. Dabei wird nicht nur die Zeit berücksichtigt, in der eine
Anwendung ist, sondern auch die Zeit, die die Anwendung benötigt, um auf Benutzeranfragen zu reagieren. Sie wird in der Regel verfügbar
auch als Prozentsatz der Gesamtzeit ausgedrückt. Wenn eine Anwendung beispielsweise eine Verfügbarkeit von 99,9 % hat, bedeutet dies,
dass sie nur 0,1 % der Zeit nicht verfügbar ist oder nicht reagiert.

Info
https://www.atlassian.com/incident-management/kpis/common-metrics

https://www.informatik-aktuell.de/betrieb/verfuegbarkeit/hochverfuegbarkeit-und-downtime-eine-einfuehrung.html

https://www.informatik-aktuell.de/betrieb/verfuegbarkeit/hochverfuegbarkeit-und-downtime-metriken.html

https://www.atlassian.com/incident-management/kpis/common-metrics
https://www.informatik-aktuell.de/betrieb/verfuegbarkeit/hochverfuegbarkeit-und-downtime-eine-einfuehrung.html
https://www.informatik-aktuell.de/betrieb/verfuegbarkeit/hochverfuegbarkeit-und-downtime-metriken.html

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

9 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Der Unterschied zwischen Uptime und Verfügbarkeit besteht also darin, dass eine Anwendung zwar verfügbar sein kann, aber aufgrund von
Leistungsproblemen nicht genutzt werden kann, z. B. wenn die Antwortzeit hoch ist oder der Dienst langsam ist, so dass er für den Benutzer
nicht nutzbar ist.

Sowohl die Uptime als auch die Verfügbarkeit sind wichtige Maßstäbe für die Leistung einer Anwendung im Betrieb. Hohe Uptime und
Verfügbarkeit sind entscheidend, um sicherzustellen, dass eine Anwendung zuverlässig und für die Benutzer zugänglich ist.

3. Verfügbarkeit, Verfügbarkeitsklassen

Die / ist ein Maß dafür, wie oft ein System oder eine Komponente in der Lage ist, seine beabsichtigte Funktion zu Availability Verfügbarkeit
erfüllen.

Verfügbarkeit ist ein Verhältnis zwischen der Zeit, in der das System oder die Komponente betriebsbereit ist, und der Gesamtzeit. Sie wird als
Prozentwert ausgedrückt, wobei ein Wert von 100 % bedeutet, dass das System oder die Komponente immer betriebsbereit ist.

Availability := MTTF / (MTTF + MTTR)

Es ist wichtig zu beachten, dass diese Formel davon ausgeht, dass die Ausfallrate im Laufe der Zeit konstant ist und das System oder die
Komponente nur einmal ausfallen kann, und dass das System reparierbar ist. In Wirklichkeit können Systeme mehrfach ausfallen und ihre
Ausfallrate kann sich im Laufe der Zeit ändern. Außerdem berücksichtigt die Formel keine anderen Faktoren wie die Komplexität der Reparatur
oder die Verfügbarkeit von Ersatzteilen. Daher ist es wichtig, diese Formel als grobe Schätzung zu verwenden und andere Faktoren zu
berücksichtigen, die die Verfügbarkeit des Systems oder der Komponente beeinflussen könnten.

Über die Verfügbarkeitszahl lässt sich ein System in eine (VK) einteilen, in das sog. Je mehr Neuer in der Verfügbarkeitsklasse 9er-System:
Prozentangabe (99%, 99,9%, ... 99, 9999%, ...), desto weniger Ausfallzeit pro Jahr. Es gibt alternative Kategorisierungen des BSI bzw. als Availa
bility Environment Classification.

4. Mean Time To Failure

Mean Time To Failure (MTTF) ist ein oder einer Komponente. Sie beschreibt die Maß für die Zuverlässigkeit eines Systems durchschnittlich
 funktioniert. MTTF wird normalerweise in Stunden, Tagen e Zeit, in der ein System oder eine Komponente erwartungsgemäß ohne Ausfall

oder Jahren gemessen.

Der MTTF-Wert wird berechnet, indem die oder einer Komponente gemessen und dann der Zeit zwischen den Ausfällen eines Systems
Durchschnitt dieser Werte gebildet wird. Dieser Wert wird als Vorhersage für die des Systems oder der Komponente erwartete Lebensdauer
verwendet. Er gibt eine Vorstellung davon, wie lange das System oder die Komponente voraussichtlich halten wird, wobei davon ausgegangen
wird, dass die Ausfallrate im Laufe der Zeit konstant ist.

MTTF ist dabei ein statistisches Maß, das die Art des Ausfalls nicht berücksichtigt und keine Informationen über den Zeitrahmen liefert, in dem
ein Ausfall wahrscheinlich eintreten wird. Sie berücksichtigt auch nicht die Möglichkeit von Mehrfachausfällen. Daher sollte sie in Kombination mit
anderen Messgrößen verwendet werden, um ein vollständigeres Bild der Zuverlässigkeit des Systems oder der Komponente zu erhalten.

5. Mean Time To Repair

Mean Time To Repair (MTTR) ist ein oder einer Komponente. Es handelt sich um die Maß für die Wartungsfähigkeit eines Systems durchsc
, die oder einer Komponente benötigt wird, nachdem ein Fehler aufgetreten ist. MTTR wird hnittliche Zeit für die Reparatur eines Systems

normalerweise in Stunden, Tagen oder Jahren gemessen.

Der MTTR-Wert wird berechnet, indem die Zeit gemessen wird, die für die Reparatur eines Systems oder einer Komponente nach dem
, und dann der Durchschnitt dieser Werte genommen wird. Dieser Wert wird als Vorhersage für die zu Auftreten eines Fehlers benötigt wird

erwartende Ausfallzeit des Systems oder der Komponente verwendet, wobei davon ausgegangen wird, dass die Ausfallrate im Laufe der Zeit
konstant ist. Er gibt eine Vorstellung davon, wie lange das System oder die Komponente nach einem Ausfall voraussichtlich außer Betrieb sein
wird, und er ist ein Indikator dafür, wie schnell das System oder die Komponente wieder in den Normalbetrieb überführt werden kann.

Auch die MTTR ist ein statistisches Maß, das die Komplexität der Reparatur oder die Verfügbarkeit von Ersatzteilen nicht berücksichtigt und
keine Informationen über den Zeitrahmen liefert, in dem eine Reparatur wahrscheinlich durchgeführt werden kann. Sie berücksichtigt auch nicht
die Möglichkeit von Mehrfachausfällen. Daher sollte sie in Kombination mit anderen Metriken verwendet werden, um ein vollständigeres Bild zu
erhalten.

Info
https://www.recast-it.com/themen/verfuegbarkeitsklassen/

https://www.recast-it.com/themen/verfuegbarkeitsklassen/

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

10 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

(D) Restart

1. Geplanter Restart

Der einer Anwendung ist von entscheidender Bedeutung, da erst in vielen Fällen erst dadurch Aktualisierungen, Fehlerbehebungen und Restart
andere Änderungen wirksam werden können.

Um sicherzustellen, dass die so kurz wie möglich ist, gibt es mehrere Best Practices und Strategien, die angewendet werden Restart-Zeit
können:

Die Architektur sollte sein: Zustandslose Anwendungen können leicht neu gestartet werden, ohne dass Daten verloren gehen. zustandslos
Dies macht es einfacher, die Anwendung nach einem Neustart schnell wieder online zu bringen.
Implementierung einer Mit einer rollenden Aktualisierungsstrategie kann eine Anwendung auf einem rollenden Aktualisierungsstrategie:
Server nach dem anderen aktualisiert werden (siehe Kapitel 5 (F), 8.).
Containerisierung ermöglicht eine schnellere und effizientere Bereitstellung von Anwendungen. Sie ermöglicht auch eine einfache
Skalierung von Anwendungen und erleichtert es, die Anwendung nach einem Neustart schnell wieder online zu bringen.
Load Balancer leiten den Datenverkehr an die verfügbaren Instanzen der Anwendung weiter, was einen schnelleren Neustart ermöglicht,
indem die Last auf mehrere Instanzen verteilt wird.
Der Neustartprozess muss und werden, um mögliche Probleme nicht erst im echten Betrieb zu erkennen.getestet geübt
Die während des Neustarts hilft, Engpässe zu erkennen, die zu Verzögerungen beim Neustart führen Überwachung der Systemleistung
können.

2. Ungeplanter Restart nach Fehler oder Crash der Anwendung

Der Neustart einer Anwendung nach einem Fehler oder Absturz ist entscheidend, damit nach Behebung des Fehlers die Anwendung
weiterlaufen kann.

Das sind einige Strategien, die einen schnellen und effizienten Neustart nach einem Fehler oder Absturz gewährleisten:

Einen einrichten, um die Anwendung nach einem Absturz oder Fehler automatisch wieder online zu bringen. Dies automatischer Neustart
kann mit Tools wie systemd unter Linux oder launchd unter macOS erfolgen.
Monitoring der Anwendung, Logging, Tracing: Eine ausreichende Protokollierung und Überwachung der Anwendung kann dazu beitragen,
die Ursache des Absturzes oder Fehlers schneller zu ermitteln und entsprechende Maßnahmen zu ergreifen.
Verwendung von Mechanismen zur Die Implementierung von Mechanismen zur Fehlerbehandlung im Anwendungscode Fehlerbehandlung:
kann helfen, Abstürze zu verhindern und Fehler schneller zu beheben. Vgl. Resilience-Patterns in Kapitel 8.
Einen erstellen - als Reihe von Verfahren und Richtlinien für die Wiederherstellung einer Anwendung nach Notfallwiederherstellungsplan
einem Absturz oder Fehler. Ein solcher Plan kann dazu beitragen, Ausfallzeiten zu minimieren und eine schnelle Wiederherstellung zu
gewährleisten.
Selbstheilungsmechanismen können Fehler oder Abstürze automatisch erkennen und beheben, ohne dass ein manuelles Eingreifen
erforderlich ist.

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

11 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.

2.

3.

4.

(E) Monitoring

1. Was ist Monitoring?

Monitoring im Betrieb bezieht sich auf den Prozess der Erfassung und Analyse von Daten über die Leistung, Nutzung und den Zustand
 oder eines Systems. Diese Daten können verwendet werden, um Probleme zu erkennen, die Leistung zu messen und die einer Anwendung

Kapazität und Skalierung zu planen.

Es gibt verschiedene , die je nach Anwendung und den Anforderungen des Unternehmens eingesetzt werden können:Arten des Monitorings

Leistungsüberwachung: Diese Art des Monitorings konzentriert sich auf die Leistung einer Anwendung oder eines Systems, einschließlich
Metriken wie Antwortzeit, Durchsatz und Ressourcennutzung (z. B. CPU, Speicher, Netzwerk).
Überwachung der Diese Art des Monitorings konzentriert sich auf die Verfügbarkeit einer Anwendung oder eines Systems, Verfügbarkeit:
einschließlich Metriken wie Betriebszeit, Ausfallzeit und Reaktionszeit.
Log-Überwachung: Diese Art des Monitorings konzentriert sich auf die Analyse der von einer Anwendung oder einem System erzeugten
Protokolldateien, einschließlich Fehlern, Warnungen und anderen Ereignissen.
Ereignis-Überwachung: Diese Art des Monitorings konzentriert sich auf die Verfolgung bestimmter Ereignisse oder Bedingungen, die
innerhalb einer Anwendung oder eines Systems auftreten.

Monitoring kann mit verschiedenen Tools durchgeführt werden, z. B. mit Protokollanalysatoren, Software für die Leistungsüberwachung und
speziellen Überwachungsplattformen.

Die gesammelten Daten können in Dashboards visualisiert werden.
Es können Alerts eingerichtet werden, um zu benachrichtigen, wenn bestimmte Schwellenwerte erreicht werden
Sie können zur Fehlerbehebung, zur Erkennung von Trends und Kapazitätsproblemen verwendet werden
Sie können zur Planung künftiger Upgrades und Skalierungen verwendet werden.

Dabei ist es wichtig, zwischen und zu unterscheiden: Die Echtzeit-Überwachung dient dazu, Echtzeitüberwachung historischer Überwachung
Probleme sofort zu erkennen und darauf zu reagieren, während die historische Überwachung es ermöglicht, die vergangene Performance zu
analysieren und dadurch Trends zu erkennen.

2. Wie lassen sich Fehler und unerwünschte Situationen beim Monitoring feststellen? Konkrete Fehlerszenarien vs. lang anhaltende
Trends

Es gibt verschiedene Möglichkeiten, zu ermitteln:Fehler und unerwünschte Situationen durch Monitoring

Fehlerprotokolle, die von einer Anwendung oder einem System erzeugt werden, können analysiert werden, um bestimmte Fehler und
Ausnahmen zu identifizieren, die aufgetreten sind. Diese Protokolle können detaillierte Informationen über die Ursache eines Fehlers
liefern und zur Fehlersuche und -behebung verwendet werden.
Leistungsmetriken wie Antwortzeit, Durchsatz und Ressourcennutzung können überwacht werden, um Probleme zu identifizieren, die
die Leistung einer Anwendung oder eines Systems beeinträchtigen können. Wenn beispielsweise die Antwortzeit einer Anwendung
deutlich ansteigt, kann dies ein Hinweis auf ein Problem mit der Anwendung oder der zugrunde liegenden Infrastruktur sein.
Warnungen können eingerichtet werden, um zu benachrichtigen, wenn bestimmte Bedingungen oder Schwellenwerte erreicht werden.
Wenn beispielsweise die CPU-Auslastung eines Servers einen bestimmten Schwellenwert überschreitet, kann ein Alert an das
Betriebsteam gesendet werden, damit dieses Maßnahmen ergreift.
Mit Hilfe lassen sich Muster oder Trends in den Daten erkennen, die auf ein zugrunde liegendes Problem statistischer Analyse
hindeuten können. Wenn zum Beispiel die Anzahl der Fehler in einer Anwendung im Laufe der Zeit zunimmt, weist dies auf ein
grundliegendes Problem hin.

Dabei ist zu unterscheiden:

Konkrete Fehlerszenarien beziehen sich auf spezifische, isolierte Ereignisse, die innerhalb einer Anwendung oder eines Systems auftreten.
Diese Art von Fehlern sind in der Regel leicht zu identifizieren und zu beheben, da sie oft eine klare Ursache und Wirkung haben.
Lang anhaltende Trends beziehen sich auf Muster oder Trends, die über einen längeren Zeitraum hinweg auftreten. Diese Art von Fehlern
ist unter Umständen schwieriger zu erkennen, da sie nicht sofort offensichtlich sind, aber sie können erhebliche Auswirkungen auf die
Leistung und Verfügbarkeit einer Anwendung haben. Es ist wichtig, die Daten im Zeitverlauf zu analysieren, um diese Trends zu erkennen
und geeignete Maßnahmen zu ergreifen, um sie zu beheben.

Mit einer Kombination aus diesen Techniken lassen sich Fehler und unerwünschte Situationen beim Monitoring am besten erkennen.

3. Überblick über nützliche Überwachungs- und Betriebstools, insbesondere im Hinblick auf Java- und Spring-Boot-Anwendungen

Diese werden für Java- und Spring Boot-Anwendungen typischerweise verwendet:Überwachungs- und Betriebswerkzeuge

Spring Boot Hierbei handelt es sich um ein integriertes Tool, das mit Spring Boot geliefert wird und mehrere Endpunkte für Actuator:
Monitoring und Verwaltung einer Spring Boot-Anwendung bereitstellt, z. B. Zustandsprüfung, Metriken und Umgebungsinformationen.

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

12 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Java Management Extensions (): JMX ist ein Java-Standard für die Verwaltung und Überwachung von Java-Anwendungen und -JMX
Ressourcen. JMX kann zur Überwachung von Metriken wie Speichernutzung, Thread-Anzahl und CPU-Auslastung verwendet werden.
Prometheus: Ein Überwachungssystem und eine Zeitreihendatenbank, die Metriken von einer Vielzahl von Anwendungen, einschließlich
Java- und Spring Boot-Anwendungen, abrufen und für eine spätere Analyse speichern kann.
Grafana: Grafana ist ein beliebtes Open-Source-Tool zur Visualisierung von Daten und kann verwendet werden, um Metriken aus
Prometheus und anderen Überwachungssystemen in einem benutzerfreundlichen Format anzuzeigen.
Für das Logging bietet Spring Boot Unterstützung für verschiedene wie z. B. Logback und Log4j.Logging-Frameworks,

4. Prometheus, Grafana und Micrometer für Java/Spring-Boot-Anwendungen kombinieren und einrichten

Durch die Kombination von Micrometer, Prometheus und Grafana kann man eine Spring Boot-Anwendung in Echtzeit überwachen und Fehler
beheben und Maßnahmen ergreifen, wenn Probleme auftreten.

Prometheus, Grafana und Micrometer können zusammen verwendet werden, um Spring Boot-Anwendungen zu überwachen:

Micrometer ist eine Metrikbibliothek für Java, die über eine integrierte Unterstützung für den Export von Metriken nach Prometheus verfügt.
So können Metriken aus einer Spring Boot-Anwendung gesammelt und zur Speicherung und Analyse nach Prometheus exportiert werden.
Prometheus ist ein Überwachungssystem und eine Zeitseriendatenbank, die Metriken aus einer Vielzahl von Quellen, einschließlich
Micrometer, abrufen kann. Prometheus kann so konfiguriert werden, dass es Metriken aus einer Spring Boot-Anwendung abruft und sie für
eine spätere Analyse speichert.
Grafana ist ein beliebtes Open-Source-Tool zur Visualisierung von Daten. Es kann verwendet werden, um Metriken aus Prometheus in einem
benutzerfreundlichen Format anzuzeigen, wodurch Trends, Ausreißer und andere Probleme leicht zu erkennen sind.

Damit eine Tools wie verwendet, ist folgendes tun:Spring Boot-Anwendung Prometheus und Grafana

Anwendung

Die passende Micrometer-Abhängigkeit zur pom.xml- oder build.gradle-Datei des Projekts hinzufügen. Um Prometheus-Unterstützung
einzubinden, wird micrometer-registry-prometheus benötigt.
In der application.properties/.yml-Datei Konfigurationen für den Export von Metriken an Prometheus hinzufügen.
Mit Spring Boot Actuator den Endpunkt für die Erfassung von Metriken aktivieren. Spring Boot Actuator bietet eine Reihe von Endpunkten
zur Überwachung und Verwaltung einer Anwendung. Über den Endpunkt /actuator/prometheus können Metriken nach Prometheus
exportiert werden.

Prometheus

Einen Prometheus-Server einrichten, um Metriken der Anwendung zu sammeln.
Prometheus so konfigurieren, dass es Metriken vom /actuator/prometheus-Endpunkt derAnwendung abgreift.
Optional Alerts einrichten, um Nachrichten zu senden, wenn bestimmte Schwellenwerte überschritten werden, z. B. eine hohe
Speichernutzung oder hohe Fehlerraten.

Grafana

Grafana so konfigurieren, dass es sich mit dem Prometheus-Server verbindet und Metriken in Form von Graphen und Diagrammen
anzeigt.
In Grafana nun benutzerdefinierte Dashboards erstellen, die die für die Anwendung wichtigsten Metriken anzeigen, z. B. CPU-Auslastung,
Speichernutzung und Antwortzeiten.

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

13 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

(F) Logging, Tracing, Metrics

1. Logging

Das von Vorgängen bezieht sich auf das , die von einer Anwendung oder Logging Sammeln, Speichern und Analysieren von Protokolldaten
einem System erzeugt werden. Protokolldaten können Informationen wie Anwendungsereignisse, Systemereignisse, Fehler, Warnungen und
Leistungskennzahlen enthalten. Die Protokollierung ist ein wichtiger Aspekt des Betriebs, da sie wertvolle Einblicke in das Verhalten und die
Leistung einer Anwendung oder eines Systems liefert und zur Fehlersuche und -behebung, zur Ermittlung von Trends und zur
Leistungsverbesserung verwendet werden kann.

Es gibt verschiedene Arten von Protokollen, die je nach Anwendung und den Anforderungen des Unternehmens gesammelt werden können:

Anwendungsprotokolle enthalten Informationen über die Ereignisse, die innerhalb einer Anwendung auftreten, z. B. Benutzeraktionen,
Datenbankabfragen und Fehlermeldungen.
Systemprotokolle enthalten Informationen über Ereignisse, die innerhalb der zugrunde liegenden Infrastruktur auftreten, z. B.
Systemausfälle, Ressourcennutzung und Sicherheitsereignisse.
Zugriffsprotokolle enthalten Informationen über die an eine Anwendung gestellten Anfragen, z. B. die IP-Adresse des Clients, die
Anfragemethode und den Antwortstatus.
Audit-Protokolle enthalten Informationen über sicherheitsrelevante Ereignisse, die innerhalb einer Anwendung oder eines Systems
auftreten, z. B. Anmeldeversuche von Benutzern und Zugriff auf sensible Daten.

Protokolle können mit verschiedenen Tools gesammelt werden, z. B. mit Protokollanalysatoren, Protokollbibliotheken und speziellen
Protokollierungsplattformen. Die aggregierten Daten können in Dashboards visualisiert werden, und es lassen sich Warnmeldungen einrichten,
wenn bestimmte Bedingungen erfüllt sind. Sie können auch zur Fehlerbehebung, zur Ermittlung von Trends und zur Planung künftiger Upgrades
und Skalierungen verwendet werden.

Die muss gut definiert sein, einschließlich der Frage, was protokolliert werden soll, wie protokolliert werden soll Protokollierungsstrategie
(Format, auf welchen Log-Level) und wo die Protokolle gespeichert werden sollen, um sicherzustellen, dass die Protokolldaten vollständig, genau
und für die Analyse leicht zugänglich sind. Zugleich muss man mit sensiblen Daten wie Benutzerdaten oder Passwörtern sorgfältig umgehen, aus
Sicherheitsgründen, aber auch um Datenschutzbestimmungen nicht zu verletzen.

Es gibt viele und die für die Überwachung verwendet werden können. Welche am nützlichsten sind, hängen von dem zu Metriken KPIs,
überwachenden System oder der Anwendung ab. Einige gängige Kategorien der Überwachung sind:

Health: Dazu gehören Metriken, die den Gesamtstatus und das Wohlergehen des Systems anzeigen, wie CPU- und Speichernutzung,
Festplattenspeicher und Netzwerkkonnektivität.
Durchsatz: Diese Metriken messen die Leistung des Systems, z. B. Anfragen pro Sekunde, Antwortzeit und Fehlerquote.
Domänenspezifische Metriken: Hierbei handelt es sich um Metriken, die für einen bestimmten Bereich spezifisch sind, z. B.
Finanztransaktionen, Kundenbindung oder Website-Traffic.

Es ist üblich, Protokolle und Traces zu überwachen, um das Verhalten des Systems zu verstehen und auf Anomalien oder Fehler aufmerksam zu
machen.

2. Tracing und Unterscheide im Vergleich zu Logging

Tracing und sind zwei verwandte, aber unterschiedliche Konzepte auf dem Gebiet der Softwareentwicklung und des Softwarebetriebs. Logging

Ein Trace ist eine "Spur einer Anfrage durch das Gesamtsystem" (in einer längeren Zeitspanne), ein Logeintrag ein konkret auftretendes zu
protokollierendes Ereignis. Der Hauptunterschied zwischen Tracing und Logging besteht also darin, dass man im Betrieb Tracing für die
Verfolgung des Flusses einer Anfrage durch ein verteiltes System heranzieht - Logging hingegen zur Protokollierung von auftretenden

:Ereignissen

Logging bezieht sich auf den Prozess der Aufzeichnung von Informationen über die Ausführung einer Anwendung in einem strukturierten
Format, normalerweise in einer Datei oder einer Datenbank, zur späteren Analyse und Fehlerbehebung. So erstellte Logs enthalten
Informationen über aufgetretene Ereignisse, wie z. B. die Ausführung einer bestimmten Funktion, den Empfang einer Anfrage oder das
Auftreten eines Fehlers.
Tracing hingegen ist eine Technik, mit der der Fluss einer Anfrage oder einer Transaktion durch ein verteiltes System verfolgt werden kann.
Es ermöglicht Entwicklern und Betriebsteams, den gesamten Fluss einer Anfrage zu sehen, vom Zeitpunkt ihrer Initiierung bis zu ihrer
Fertigstellung, einschließlich aller Dienste und Systeme, die sie auf ihrem Weg berührt. Tracing kann dabei helfen, Engpässe, Fehler und
andere Probleme zu identifizieren, die durch die Untersuchung von Protokolldateien allein nicht offensichtlich sind.

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

14 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.

2.

3.

3. Wann wird aktiv protokolliert, wann passiv überwacht?

Passive Protokollierung und aktive Überwachung sind zwei verschiedene Techniken, die zur Sammlung und Analyse von Daten über eine
Anwendung oder ein System verwendet werden können.

Bei der werden die von einer Anwendung oder einem System erzeugten Protokolldaten gesammelt und für eine passiven Protokollierung
spätere Analyse gespeichert. Diese Technik wird in der Regel verwendet, um eine breite Palette von Daten über das Verhalten und die
Leistung einer Anwendung zu sammeln, einschließlich Fehlern, Leistungsmetriken und Benutzeraktionen. Die passive Protokollierung ist
nützlich, um Trends und Muster in den Daten zu erkennen, die auf ein zugrundeliegendes Problem hindeuten könnten, und um Probleme zu
beheben.
Aktive Überwachung hingegen bezieht sich auf den Prozess der aktiven Untersuchung einer Anwendung oder eines Systems, um Daten
über dessen Leistung, Verfügbarkeit und Zustand zu sammeln. Die aktive Überwachung erfolgt in der Regel durch das gezielte (aktive)
Senden von Anfragen an bestimmte Endpunkte innerhalb einer Anwendung oder eines Systems und das Messen der Antwortzeit, des
Durchsatzes und anderer Metriken. Diese Technik ist nützlich für die Überwachung der Echtzeit-Performance einer Anwendung und für die
Identifizierung und Behebung von Problemen, die sich auf die Verfügbarkeit oder Performance auswirken können. Außerdem lässt sich auf
diese Weise überprüfen, ob ein bestimmter Dienst, eine Komponente oder ein Endpunkt wie erwartet funktioniert.

5. Was bedeutet die Verwendung solcher Metriken und Logging- und Tracing-Tools für das Design einer Anwendung?

Der Einsatz von Metriken, Logging- und Tracing-Tools kann sich erheblich auf das Design einer Anwendung auswirken, da die Anwendung so
instrumentiert werden muss, dass Daten aus verschiedenen Teilen des Systems erfasst werden können.

Instrumentierung: Die Anwendung muss so konzipiert sein, dass sie Metriken, Protokolle und Traces auf organisierte Weise ausgeben
kann. Dazu muss im Code dafür gesorgt werden, dass diese Ereignisse an den entsprechenden Stellen geschrieben werden.
Datenerfassung und Die Anwendung sollte so konzipiert sein, dass eine effiziente Erfassung und Speicherung der von der -speicherung:
Instrumentierung ausgegebenen Daten möglich ist. Dazu kann das Senden von Daten an Überwachungswerkzeuge, Protokollierungssysteme
oder Datenspeicherlösungen gehören.
Datenanalyse: Die Anwendung sollte so konzipiert sein, dass eine einfache Analyse der erfassten Daten möglich ist, z. B. durch die
Verwendung von Dashboards oder Abfragesprachen. Eine Möglichkeit ist beispielsweise die Verwendung von Request-IDs, um eine Anfrage
in den Logs identifiziereung und durch eine Anwendung hindurch verfolgen zu können.
Integration mit Die Anwendung sollte auch so konzipiert sein, dass sie in Warnsysteme integriert werden kann, so Alarmierungssystemen:
dass alle erkannten Probleme schnell an die zuständigen Stellen weitergeleitet werden können.

6. Auswirkungen und Folgen, Vor- und Nachteile, für das Laufzeitverhalten der Anwendung beim Einsatz solcher Techniken

Der Einsatz von in einer Anwendung hat sowohl Vorteile als auch Nachteile.Metriken, Logging- und Tracing-Techniken

Vorteile:

Ermöglicht die Überwachung des Systemzustands und der Systemleistung in Echtzeit
Ermöglicht die schnellere Identifizierung und Lösung von Problemen
Bietet wertvolle Einblicke in das Verhalten des Systems im Laufe der Zeit

Nachteile:

Kann die Anwendung hinsichtlich der Ressourcennutzung (z. B. CPU und Speicher) zusätzlich belasten Um die Leistung hoch zu halten, ist
es wichtig, den Overhead bei der Überwachung und Protokollierung zu minimieren. Die Logdaten und -frequenz ist sorgfältig zu wählen, effizi
ente Lösungen für die Datenerfassung und -speicherung müssen verwendet werden. Idealerweise werden Log-Informationen asynchron
weggeschrieben.
Kann den Code der Anwendung komplexer machen
Kann Sicherheitsrisiken mit sich bringen, wenn sensible Daten protokolliert oder nachverfolgt werden Daher ist es wichtig, sicherzustellen,
dass sensible Daten wie Passwörter nicht protokolliert oder nachverfolgt werden. Logs sollte nur mit geeigneter Authentifizierung
/Autorisierung zugreifbar sein.
Darüber hinaus ist es wichtig, einen Plan für die Verwaltung der erfassten Daten zu haben, einschließlich Aufbewahrungsrichtlinien und
Archivierungsstrategien, um sicherzustellen, dass die Daten nur so lange aufbewahrt werden, wie sie benötigt werden.

7. Wichtige Systemmetriken für Zustands- und Performance-Überwachung von Anwendungen

Bei der gibt es mehrere wichtige Überwachung von Zustands und Performance einer Java- und Spring-Boot-basierten Anwendung
Systemmetriken, die berücksichtigt werden sollten:

JVM-Metriken: Dazu gehören Metriken wie die Heap- und Non-Heap-Speicherauslastung, GC-Aktivität (Garbage Collection) und Thread-
Anzahl. Diese Metriken geben Aufschluss über die Speichernutzung und die Leistung der JVM.
CPU-Nutzung: Diese Metrik gibt Aufschluss über die CPU-Ressourcen, die die Anwendung verbraucht. Eine hohe CPU-Auslastung kann
darauf hindeuten, dass die Anwendung eine große Menge an Berechnungen durchführt oder dass sie auf Leistungsengpässe stößt.
Speichernutzung: Diese Metrik gibt Aufschluss über die von der Anwendung beanspruchte Speichermenge.

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

15 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

4.

5.

1.

2.

3.

1.

2.

3.

4.

5.

6.

1.

2.

3.

Netzwerkaktivität: Diese Metrik gibt Aufschluss über den Umfang des Netzwerkverkehrs, den die Anwendung erzeugt. Eine hohe
Netzwerkaktivität kann darauf hinweisen, dass die Anwendung mit einer großen Anzahl externer Dienste kommuniziert oder dass sie eine
große Menge an Netzwerkressourcen verbraucht.
Anfrage/Antwort-Metriken: Dazu gehören Metriken wie Anforderungsrate, Fehlerrate und Antwortzeit. Diese Metriken geben Aufschluss
über die Leistung der Anwendung bei der Verarbeitung eingehender Anfragen.

8. DORA Metriken

DORA steht für " ". Als Google-Forschungsgruppe analysierte es die Leistung von DevOps-The DevOps Research and Assessment Team
Teams bei Softwareentwicklung und -bereitstellung mit diesen Metriken:

Deployment-Frequenz: Bezieht sich auf die Häufigkeit erfolgreicher Software-Releases für die Produktion.
Vorlaufzeit für Änderungen: Erfasst die Zeit zwischen dem Commit einer Code-Änderung und ihrem einsatzfähigen Zustand.
MTTR: Misst die Zeit zwischen einer Unterbrechung aufgrund eines Deployments oder eines Systemausfalls und der vollständigen
Wiederherstellung. Siehe Kapitel 8.
Change Failure Rate: Gibt an, wie oft die Änderungen oder Hotfixes eines Teams zu Fehlern führen, nachdem der Code bereitgestellt wurde.

9. Sammeln und Korrelieren der Log-Ausgaben: Empfohlene Tools für Spring-Boot-Anwendungen

Es gibt verschiedene Möglichkeiten, die , je nach den spezifischen Anforderungen Logausgaben von Diensten zu sammeln und zu korrelieren
Ihrer Anwendung und Infrastruktur. Einige gängige Ansätze sind:

Zentralisiertes Logging: Bei diesem Ansatz werden alle Logmeldungen von verschiedenen Diensten an einen zentralen Server
gesendet, wo sie gesammelt, geparst und analysiert werden können. Tools wie Elasticsearch, Logstash und Kibana oder (ELK-Stack) Gra

 sind eine gängige Wahl für das zentralisierte Logging.ylog
Verteiltes T acing: Bei diesem Ansatz wird eine Anfrage verfolgt, während sie durch verschiedene Dienste fließt. Informationen über die r
Anfrage und die Antwort werden in einem zentralen Speicher gesammelt. Tools wie Jaeger und Appdash sind eine gängige Wahl Zipkin,
für verteiltes Tracing.
Log-Aggregation: Bei diesem Ansatz wird ein Log-Aggregator-Tool verwendet, um Log-Daten aus mehreren Quellen zu sammeln und
eine einheitliche Ansicht zu bieten. Log-Aggregatoren wie Fluentd, Logagent und Logstash können die Logs parsen und an einen
zentralen Speicher, z. B. Elasticsearch, weiterleiten.

Für Spring Boot-Anwendungen empfieht sich Spring Cloud Sleuth und Zipkin. Spring Cloud Sleuth ist ein Open-Source-Framework, das
verteiltes Tracing in Spring Boot-Anwendungen ermöglicht. Zipkin ist ein verteiltes Tracing-System, mit dem man Traces von Services sammeln,
durchsuchen und visualisieren kann.

Außerdem bietet Spring Boot standardmäßig Unterstützung für verschiedene Logging-Frameworks wie logback und log4j2, um die Logs zu
schreiben.

10. Verbreitete Tools für die zentrale Verwaltung von Protokolldaten

Elasticsearch, Logstash und Kibana Dieser Open-Source-Stack wird häufig für Log-Management verwendet, da er die (ELK-Stack):
Sammlung, Speicherung und Visualisierung von Protokolldaten ermöglicht.
Splunk: Hierbei handelt es sich um ein kommerzielles Tool zur Log-Management, das leistungsstarke Indizierungs- und Suchfunktionen
sowie die Möglichkeit bietet, benutzerdefinierte Dashboards und Warnmeldungen zu erstellen.
Fluentd: Hierbei handelt es sich um einen Open-Source-Tool, mit dem Protokolldaten gesammelt und an einen zentralen Ort zur
Speicherung und Analyse weitergeleitet werden können.
Loggly: Hierbei handelt es sich um einen Cloud-basierten Log-Management-Service, der die Sammlung, Speicherung und Analyse von
Protokolldaten aus verschiedenen Quellen ermöglicht.
Graylog ist ein Open-Source-Tool für das Log-Management, das die Sammlung, Speicherung und Analyse von Protokolldaten aus
verschiedenen Quellen ermöglicht und über eine Webschnittstelle für die Suche und Alarmierung verfügt.
Papertrail ist ein Cloud-basierten Log-Management-Service, der das Sammeln, Speichern und Analysieren von Protokolldaten aus
verschiedenen Quellen mit einer Webschnittstelle für die Suche und Alarmierung ermöglicht.

11. Verbreitete Tools für die zentrale Verwaltung von Metriken

Prometheus: Hierbei handelt es sich um ein Open-Source-System zur Sammlung und Speicherung von Metriken, das in Cloud-nativen
Umgebungen weit verbreitet ist. Es bietet eine leistungsstarke Abfragesprache und die Möglichkeit, benutzerdefinierte Warnmeldungen zu
erstellen.
InfluxDB: Hierbei handelt es sich um eine Open-Source-Zeitreihendatenbank, die häufig zum Speichern und Abfragen von Metrikdaten
verwendet wird. Sie enthält auch eine integrierte Abfragesprache und Warnfunktionen.
Grafana: Hierbei handelt es sich um ein Open-Source-Tool zur Visualisierung von Metriken, das zur Erstellung von benutzerdefinierten
Dashboards und Warnmeldungen verwendet werden kann. Es unterstützt eine breite Palette von Datenquellen, einschließlich Prometheus
und InfluxDB.

Info
https://www.leanix.net/en/wiki/vsm/dora-metrics

https://www.leanix.net/en/wiki/vsm/dora-metrics

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

16 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

4.

5.

6.

7.

1.

2.

3.

4.

5.

Datadog: Hierbei handelt es sich um eine Cloud-basierte Plattform für die Verwaltung und Überwachung von Metriken, die die Sammlung,
Speicherung und Analyse von Metrikdaten aus verschiedenen Quellen ermöglicht. Sie verfügt außerdem über integrierte Funktionen zur
Alarmierung und Erkennung von Anomalien.
New Relic: Dies ist eine Cloud-basierte Plattform zur Leistungsüberwachung und -analyse, die Echtzeiteinblicke in die Leistung einer
Anwendungen, Infrastruktur und Protokolle bietet.
Zabbix: Hierbei handelt es sich um eine Open-Source-Überwachungslösung, die die Erfassung, Speicherung und Analyse von
Metrikdaten ermöglicht. Sie umfasst auch eine integrierte Abfragesprache und Warnfunktionen.
Nagios: Hierbei handelt es sich um eine Open-Source-Überwachungslösung, die die Überwachung von Netzwerkdiensten und Hosts
ermöglicht. Sie umfasst Warnmeldungen und Berichtsfunktionen.

12. Logging-Frameworks für Java- und Spring-Boot-Anwendungen

Log4j: Log4j ist ein Java-basiertes Logging-Framework, das Teil des Apache Logging Services Project ist. Es ist weit verbreitet, flexibel
und gut konfigurierbar.
Logback: Logback ist ein Logging-Framework für Java, das als Nachfolger des beliebten log4j-Frameworks gedacht ist. Es wurde
entwickelt, um schneller, zuverlässiger und flexibler als log4j zu sein.
Java Util Logging JUL ist ein in Java eingebautes Logging-Framework, das einfach zu benutzen ist und grundlegende Logging-(JUL):
Funktionen bietet.
SLF4J: SLF4J ist eine Fassade, bzw. Abstraktion für verschiedene Logging-Frameworks. Es ermöglicht, das gewünschte Logging-
Framework erst zur Laufzeit einzubinden.
Der von Spring Boot: Spring Boot verwendet Commons Logging für sein internes Logging, kann aber leicht so Standard-Logger
konfiguriert werden, dass jedes andere der oben genannten Logging-Frameworks verwendet wird.

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

17 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.

2.

3.

4.

5.

6.

(G) Operations Database

1. Operations Database (Michael Nygard)

Die ist ein Konzept, das von Michael Nygard in seinem Buch "Operations Database (OpsDB) Release It! Design and Deploy Production-Ready
" vorschlägt. Es handelt sich um eine Datenbank, in der Betriebsdaten wie Metriken, Protokollierung und Konfiguration gespeichert Software

werden, die von verschiedenen Teilen des Systems gesammelt werden.

Der Hauptzweck der OpsDB besteht darin, einen zentralen Ort für die Speicherung und Analyse von Betriebsdaten bereitzustellen, die dann zur
Überwachung des Zustands und der Leistung des Systems, zur Fehlerbehebung und für datengestützte Entscheidungen verwendet werden
können.

Die OpsDB ist so konzipiert, dass sie hochverfügbar und fehlertolerant ist und hohe Schreib- und Leselasten bewältigen kann. Sie ist außerdem
so konzipiert, dass sie mit Tools wie SQL oder einer speziellen Abfragesprache leicht abgefragt und analysiert werden kann.

Einer der Hauptvorteile der OpsDB besteht darin, dass sie eine Trennung der operativen Daten von den eigentlichen Geschäftsdaten
ermöglicht, was die Verwaltung und Analyse der Daten erleichtert. Dies ermöglicht auch ein klares Separation of Concerns zwischen
Anwendungs- und Betriebsteam. Eine OpsDB ist somit kein Ersatz für Unternehmensdatenbanken, sondern vielmehr ein ergänzendes Tool für
die Speicherung und Analyse von Betriebsdaten.

Die OpsDB ermöglicht auch eine bessere Beobachtbarkeit und Überwachung des Systems, da sie eine einzige Quelle der Wahrheit für die
Betriebsdaten bietet. Dies ermöglicht eine effizientere Fehlerbehebung und Ursachenanalyse sowie die Erstellung von benutzerdefinierten
Metriken und Warnmeldungen auf der Grundlage der in der OpsDB gespeicherten Daten.

2. Analyse-Tracing und Metrik-Tools von der Applikation trennen

Es ist aus mehreren Gründen eine gute Idee, selbst herauszuhalten und sie auf Analyse-, Tracing- und Metrik-Tools aus der Anwendung
verschiedene Systeme aufzuteilen:

Entkopplung: Die Trennung der Überwachungs- und Protokollierungsfunktionen von der Anwendung ermöglicht eine bessere
Entkopplung von Belangen, was die Wartung und Aktualisierung der Anwendung erleichtert. Außerdem kann die Überwachungs- und
Protokollierungsfunktionalität unabhängig von der Anwendung weiterentwickelt werden, was für das Hinzufügen neuer Funktionen oder
die Behebung von Fehlern nützlich sein kann.
Performance: Die Trennung der Überwachungs- und Protokollierungsfunktionen von der Anwendung kann dazu beitragen, den Overhead
zu verringern, den die Überwachung und Protokollierung auf die Leistung der Anwendung haben kann. Dies liegt daran, dass die
Überwachungs- und Protokollierungsfunktionalität unabhängig von der Anwendung optimiert und skaliert werden kann.
Skalierbarkeit: Die Trennung der Überwachungs- und Protokollierungsfunktionen von der Anwendung kann zu einer besseren
Skalierbarkeit beitragen. Durch den Einsatz spezialisierter Tools, wie z. B. eines Log-Aggregators oder eines Metriksammlers, ist es
möglich, große Datenmengen zu verarbeiten und das System entsprechend den sich ändernden Anforderungen zu skalieren.
Flexibilität: Die Trennung der Überwachungs- und Protokollierungsfunktionen von der Anwendung kann die Flexibilität verbessern. Durch
den Einsatz spezialisierter Tools ist es einfacher, das beste Tool für die jeweilige Aufgabe auszuwählen und zwischen verschiedenen
Tools zu wechseln, wenn sich die Anforderungen des Systems ändern.
Sicherheit: Die Trennung der Überwachungs- und Protokollierungsfunktionen von der Anwendung kann zur Verbesserung der Sicherheit
beitragen, da sie getrennt von der Anwendung gesichert werden können. Außerdem wird die Einhaltung von Vorschriften erleichtert, da
die Daten gemäß den gesetzlichen Bestimmungen erfasst, gespeichert und analysiert werden können.
Nachvollziehbarkeit: Die Trennung der Überwachungs- und Protokollierungsfunktionen von der Anwendung ermöglicht ein klares
Verständnis des Systemzustands und der daran vorgenommenen Änderungen, was die Nachvollziehbarkeit verbessern kann.

Siehe dazu Kapitel 6 (A) zum Einsatz von AOP und Interceptoren.

Info
Michael T. Nygard: "Release It!: Design and Deploy Production-Ready Software", Pragmatic Programmers, 2017

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

18 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

(H) Cloud

1. Cloud-Native Design, typische Stacks und Patterns

Cloud-natives Design für eine Anwendung bezieht sich auf die Grundsätze und Praktiken für die Erstellung, Bereitstellung und Ausführung von
Anwendungen in einer Cloud-Umgebung.

Das Hauptziel von Cloud-nativem Design besteht darin, die Skalierbarkeit, Verfügbarkeit und andere Funktionen von Cloud-Computing-
Plattformen zu nutzen, um Anwendungen zu erstellen, die stabiler, leistungsfähiger und kostengünstiger sind.

Zu den wichtigsten Grundsätzen des gehören:Cloud-nativen Designs

Microservices-Architektur: Kleine, unabhängig voneinander einsetzbare Dienste ermöglichen eine schnellere Entwicklung, eine effizientere
Skalierung und eine bessere Fehlerisolierung.
Containerisierung: Hierbei werden eine Anwendung und ihre Abhängigkeiten in einen Container verpackt, der dann in einer Cloud-Umgebung
bereitgestellt und ausgeführt werden kann. Container bieten eine konsistente und isolierte Laufzeitumgebung für die Anwendung.
Automatisierung und Orchestrierung: Dies beinhaltet die Automatisierung der Bereitstellung, Skalierung und Verwaltung der Anwendung und
ihrer Abhängigkeiten.
Immutable Infrastructure: Dabei wird die Infrastruktur, auf der eine Anwendung läuft, als unveränderlich behandelt, d. h. sie sollte eher ersetzt
als verändert werden. Siehe Kapitel 5 (D) 4.
Selbstheilung und Selbstoptimierung: Hier geht es um die Entwicklung von Anwendungen, die Fehler automatisch erkennen und beheben
sowie ihre eigene Leistung automatisch optimieren können.

Typische für Cloud-native Anwendungen sind (Auswahl, vgl. auch andere Abschnitte z.B. in Kapitel 5 oder 8):Stacks

Kubernetes, Docker und Prometheus für die Orchestrierung und Überwachung von Containern.
Spring Boot als Anwendungsrahmen für die Services
Consul, Eureka, Zookeeper für Service Discovery
Istio, Envoy als Service Mesh
Grafana, Kibana für die Visualisierung und Analytik
Jenkins, Travis für CI/CD-Pipelines

2. Betriebstools, die in Cloud-Umgebungen wie AWS, Azure und Google Cloud verwendet werden

Cloud-Anbieter wie AWS, Azure und Google Cloud bieten eine breite Palette von Tools für den Betrieb und die Verwaltung von Cloud-
. Einige der gängigen Tools sind:basierten Anwendungen und Infrastrukturen

CloudFormation, Terraform und ARM Templates: Hierbei handelt es sich um Infrastructure-as-Code-Tools (IaC), mit denen Benutzer Cloud-
Ressourcen mithilfe von Code bereitstellen und verwalten können, anstatt sie manuell zu konfigurieren.
CloudWatch, Azure Monitor und Stackdriver sind Cloud-native Überwachungs- und Protokollierungslösungen, mit denen Benutzer Metriken
und Protokolle von Cloud-basierten Ressourcen sammeln, speichern und analysieren können.
Elastic Beanstalk, App Service und App Engine: Hierbei handelt es sich um Platform-as-a-Service (PaaS)-Lösungen, mit denen Benutzer
Anwendungen bereitstellen und ausführen können, ohne die zugrunde liegende Infrastruktur verwalten zu müssen.
EC2 Auto Scaling, Virtual Machine Scale Sets und Kubernetes Engine sind Lösungen zur automatischen Skalierung der Anzahl der Instanzen
einer Anwendung je nach Bedarf.
Elastic Load Balancing, Azure Load Balancer und Cloud Load Balancing sind Lösungen für die Verteilung des eingehenden Datenverkehrs
auf mehrere Instanzen einer Anwendung.
S3, Azure Blob Storage und Google Cloud Storage sind Object Stores, die es den Benutzern ermöglichen, große Datenmengen zu speichern
und abzurufen.
RDS, Azure SQL Database und Cloud SQL: Hierbei handelt es sich um relationale Datenbankdienste, mit denen Nutzer eine relationale
Datenbank in der Cloud einfach bereitstellen, verwalten und skalieren können.
CloudFront, Azure CDN und Cloud CDN: Hierbei handelt es sich um Content Delivery Network (CDN)-Services, mit denen Benutzer Inhalte
über mehrere Standorte verteilen können, um sie schneller bereitzustellen.
AWS Lambda, Azure Functions und Cloud Functions: Hierbei handelt es sich um Serverless-Computing-Lösungen, die es Benutzern
ermöglichen, Code auszuführen, ohne Server bereitstellen oder verwalten zu müssen.

3. Cloud und IaaS

Cloud Infrastructure as a Service (IaaS) ist eine Kategorie des Cloud Computing, die Nutzern über das Internet Zugang zu rohen
Rechenressourcen wie virtuellen Maschinen, Speicher und Netzwerken bietet. IaaS-Anbieter wie Amazon Web Services (AWS), Microsoft Azure
und Google Cloud Platform (GCP) ermöglichen es den Nutzern, diese Ressourcen nach Bedarf zu mieten, ohne dass sie in eine eigene
physische Infrastruktur investieren und diese verwalten müssen.

Mit IaaS kann man Rechenressourcen je nach Bedarf schnell und einfach vergrößern oder verkleinern. Iaas kann für eine breite Palette von
Anwendungen verwendet werden, einschließlich Web- und Mobilanwendungen, Big Data-Verarbeitung und maschinelles Lernen.

IaaS-Anbieter bieten in der Regel eine breite Palette von Dienstleistungen an, darunter:

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

19 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Virtuelle Maschinen: Benutzer können virtuelle Maschinen erstellen und verwalten, auf denen verschiedene Betriebssysteme wie Windows,
Linux und macOS ausgeführt werden können.
Speicher: Benutzer können Daten in der Cloud speichern und darauf zugreifen, einschließlich Object Stores, Blockspeicher und Dateispeicher.
Vernetzung: Benutzer können virtuelle Netzwerke erstellen und verwalten, einschließlich virtueller privater Clouds (VPCs), Lastverteiler und
VPNs.
Datenbanken: Benutzer können relationale und nicht-relationale Datenbanken erstellen und verwalten, darunter MySQL, SQL Server und
MongoDB.
weitere Dienste wie Sicherheit, Überwachung und Automatisierung

4. IaaS, PaaS, SaaS

IaaS, PaaS und SaaS sind drei Kategorien von Cloud Computing-Diensten, die sich durch die Abstraktionsebene unterscheiden, die sie den
Benutzern bieten.

IaaS (Infrastructure as a Service) ist die grundlegendste Stufe des Cloud Computing und bietet den Nutzern Zugang zu
Rohdatenverarbeitungsressourcen wie virtuellen Maschinen, Speicher und Netzwerken. Beispiele für IaaS-Anbieter sind Amazon Web
Services (AWS), Microsoft Azure und Google Cloud Platform (GCP).
PaaS (Platform as a Service) baut auf IaaS auf und bietet Benutzern eine Plattform, auf der sie ihre Anwendungen entwickeln, ausführen und
verwalten können. PaaS-Anbieter bieten in der Regel diverse Diensten wie Datenbanken, Webserver und Entwicklungs-Frameworks an, die
zur Erstellung und Ausführung von Anwendungen verwendet werden können. Beispiele für PaaS-Anbieter sind Heroku, Google App Engine
und AWS Elastic Beanstalk.
SaaS (Software as a Service) ist die höchste Abstraktionsebene des Cloud Computing und bietet den Benutzern Zugang zu
Softwareanwendungen, die vom Anbieter gehostet und verwaltet werden. Die Nutzer greifen über einen Webbrowser oder eine mobile
Anwendung auf diese Anwendungen zu und müssen sich nicht um die zugrunde liegende Infrastruktur oder Plattform kümmern. Beispiele für
SaaS-Anbieter sind Salesforce, Microsoft Office 365 und Google G Suite.

	Kapitel 6 Betrieb, Ueberwachung und Fehleranalyse

