iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Kapitel 7 Case Study Flexinale

albion.eu www.tectrain.ch www.accso.de

A\ aLsion J’E%ji . ' == ACCSO

STRATEGY TO CAPABILITY

< Kapitel 6 Betrieb, Ueberwachung und Fehleranalyse Kapitel 8 Ausblick >

Kapitel 7 Case Study "Flexinale"

©® £ ExLehrplan

7 Case Study
Dauer: 90 Min Ubungszeit: 60 Min

Im Rahmen einer Lehrplan-konformen Schulung muss eine Fallstudie die Konzepte praktisch erlautern.

7.1 Begriffe und Konzepte

Die Case Study fuhrt keine neuen Begriffe und Konzepte sein.

7.2 Lernziele

Die Case Study soll keine neuen Lernziele vermitteln, sondern die Themen durch praktische Ubungen vertiefen und die Praxis
verdeutlichen.

7.3 Referenzen

Keine. Schulungsanbieter sind fur die Auswahl und Beschreibung von Beispielen verantwortlich.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 1

https://albion.eu/
http://www.tectrain.ch
http://www.accso.de
https://accso.atlassian.net/wiki/spaces/ISFLX/pages/132941286/Kapitel+6+Betrieb+Ueberwachung+und+Fehleranalyse
https://accso.atlassian.net/wiki/spaces/ISFLX/pages/132941356/Kapitel+8+Ausblick

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

Inhalte

® Kapitel 7 Case Study "Flexinale"
® (A) Was ist die Flexinale? Uberblick und Anforderungen

® 1. Flexinale in a Nutshell

. Mengengeriste und Qualitatsanforderungen
. Besucherportal

Backoffice

. Betreuung Fachpublikum

Ticketing

. Zentrale Verkaufsstelle

. Spielstatte

. Buchhaltung

10. Bounded Contexts

11. Context Map

® (B) How-To: Wie mache ich was in der Flexinale?

. Wie richte ich die Anwendungen ein und bringe sie erstmalig zum Laufen?
. Wo finde ich den Code der vier verschiedenen Flexinale-Anwendungen?
. Wie baue ich die Flexinale-Anwendungen?
. Wie starte ich die Infrastruktur (Datenbank und Kafka)?
Wo gibt es Testdaten?
Wie kann ich die Datenbank mit Testdaten fiillen?
. Wo finde ich Testdaten?
. Wie starte ich die Flexinale-Anwendungen?
. Gibt es statische Code Analyse fur die Flexinale und wo finde ich sie?
0. Wo finde ich Architekturtests fur die Flexinale?
11. Wo finde und wie starte ich Tests?
12. Wie starte ich die Anwendung?
13. Wie greife ich auf die verschiedenen Flexinale-Anwendungen zu und wie logge ich mich ein?
14. Wie pflege ich die Daten zu Filmen, Kinos, Kinosélen, etc.?
15. Monitoring
® 16. Wie baue ich Docker-Images aus den Flexinale-Anwendungen?
® (C) Entwicklungstagebuch: Monolith > Modulith 1 > Modulith 2 > Verteiltes System

B O©ONOUAWNR

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

(A) Was ist die Flexinale? Uberblick und Anforderungen

1. Flexinale in a Nutshell

Flexinale ist eine Beispiel-Anwendung fir Organisation, Durchfiihrung und Ticketverkauf eines Filmfestivals. Flexinale orientiert sich an einem
echten, realen Kundenproblem (mit anderer Fachlichkeit, aber &hnlichen Nutzergruppen, -szenarien und sehr grofen Mengengeristen von
>300k Nutzern und >2 Mio Anzahl Haupt-Entitaten pro Jahr, bei teils sehr groBen Lastspitzen verursacht durch Algorithmik und Nutzer-Requests)

Der Name ist ein Kunstwort aus dem "FLEX"-Advanced Level Modul und dem grof3ten deutschen Filmfestival, der jahrlich stattfindenden
Berlinale.

Nachstehende Abbildung gibt einen Uberblick iiber die Flexinale.

*Ii

Mitarbeiter Flexinale

/ Besucherportal \ / Backoffice \

Film- p
= ":mn_ Gutscheinpaket fir
P -.\Ee’*en ' Tickets arwerben Filme Spielstatien (Kinos)
"' i cinstelien verwalten
\-’ Gurschein
eindosen Program Vorfuhrung in de
Besucher m planen Werkauf geben
Flexinale-Daten
/ \ pflegen /
Tickets *‘;;:ﬂ“
AISIENAT Berechnen

Kontingent
Plitze reservieren B

Tickats Kontin- - reservieren .
gent ‘

ungiitig
machen freigeben
e } Betreuung Mitarbeiter Flexinale
Fachpublikum
K Ticketing /
Rest- L Rest.
' vortinger : ! b kontingen
orfdhrungen :j’:i:g:: ' i tanzeigen

ansehen

Gutschein einlosen

Gutschein einlgsen
oder Ticket kaufen oder Ticket kaufen

Zentraler Ticketverkauf
Ticketverkauf K an der Kinokasse /
\ r'p
”\".
m S8 A
Besucher Ticketverkédufer

Besucher Ticketverkauferin

Abbildung: Uberblick iiber die Flexinale
(Quelle: selbst erstellt)

Die Funktionalitat wird im Detail ab Abschnitt 3 beschrieben.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Die vier Flexinale-Varianten implementieren nicht alle Funktionalitaten vollstandig. Die folgenden Abbildungen zeigen, was in der jeweilige
Variante implementiert ist.

Die Flexinale-Anwendung ist in vier Varianten implementiert:

als Monolith
als Modulith 1 mit Onion Architektur
als Modulith 2 mit Fachlichen Komponenten

als verteilte, service-orientierte und event-basierte Anwendungen (Besucherportal, Backoffice, Ticketing), im Folgenden: Distributed

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

https://github.com/accso/flex-training-flexinale/tree/main/flexinale-monolith
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-modulith-1-onion
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-modulith-2-components
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-distributed

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

Monolith: (Funktional identisch mit Modulith-1 und Modulith-2)

hlirarbeer Mecinde
fi Besucherportal Bac

@ = = e
ol B =
8 — 1

= -

% Ticketing f‘

Abbildung: In der Variante "Monolith" implementierte Funktionalitat
(Quelle: selbst erstellt)

Modulith-1: (Funktional identisch mit Monolith und Modulith-2)

2

Mitaitaiter Feuinake

/" Besucherportal /— Backoffice \

+\

8. = = = G
Besicher !
| —

L \ 4

o

|

\ Ticketing A

Abbildung: In der Variante "Modulith-1" implementierte Funktionalitat
(Quelle: selbst erstellt)

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

Modulith-2: (Funktional identisch mit Monolith und Modulith-1)

Besucherportal Backoffice
Vi [et uanes pspa
przgram— rermimion s
@
-‘\"’ Progawn TG I O
- Gy
parer=m e Il o g
Basiather —
—
— P oot e

Enpbere. iy BEAS Cam

Fuwats
wrzaber

Ticketing

Abbildung: In der Variante "Modulith-2" implementierte Funktionalitat
(Quelle: selbst erstellt)

Distributed: (Zusatzliche Funktionalitat ggi. Monolith, Modulith-1 und Modulith-2: "Ticket ungtiltig machen")

2

St Fleoinaie

/" asucharportal "\ T
=
= =
\ [N = J
==
=

\ Ticketing /

Abbildung: In der Variante "Distributed" implementierte Funktionalité&t
(Quelle: selbst erstellt)

&,

!
H
(HE e

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

2. Mengengeruste und Qualitatsanforderungen
Die Qualitatsanforderungen an die Flexinale orientieren sich an realen Mengengeristen und Nutzungsszenarien.

Mengengeruste Reale Zahlen aus der Berlinale:

orientieren sich am

; . 1. Mehr als 400 Filme sollen auf der Berlinale 2023 gezeigt werden.
Berlinale-Filmfest

2. Die Filme werden haufig mehrfach gezeigt, so dass von weit tiber 1.000 Vorfihrungen auszugehen ist.
3. Es gibt 20 - 30 Kinos / Spielstatten mit 1 - 10 Salen
4. Aus der Bilanz der Berlinale 2020
a. 330.000 verkaufte Tickets
b. Schéatzungsweise ca. 30.000 "Named User" im Portal (Grundlage der Schatzung: Jeder Nutzer kauft im
Schnitt ca. 10 Tickets)
c. bis zu 500.000 Vorfuhrungsbesuche (auch Fachpublikum).
d. 22.000 akkreditierte Fachbesucher

Last Lastspitzen gibt es v.a. kurz vor und wahrend der Flexinale beim Abruf von Informationen zu Filmen und
Vorfuihrungen, sowie beim Ticketkauf.

Antwortzeiten Die Anwendung soll auch unter hoher Last noch responsiv sein.

1. Informationsseiten (zu Filmen, Spielstatten) sollen im Sekundenbereich antworten.
2. Beim Ticketkauf durfen die Antwortzeiten langer sein.

Sicherheit Jeder Zugriff auf die Anwendung von auen muss geschutzt sein (User, Password).

1. Fir das Besucherportal, insbesondere zum Einldsen von Gutscheinen, sowie fiir Aktionen im Backoffice (hier:
Datenpflege) ist eine Authentifizierung erforderlich (user, password).
2. Es gibt ein Rollenkonzept:

a. Besucher bendtigen die Rolle BESUCHER.
b. Die Datenpflege im Backoffice benétigt die Rolle ADMIN

Nachvollziehbarkeit Alle Ticket-Kaufe miissen tUber Transaktionen nachvollziehbar sein:

1. Kauf, d.h. hier das Einlésen von Gutscheinen.
2. Fehlgeschlagener Kauf (wenn z.B. das Kontingent ausgeschdopft ist)
3. Ungultig gewordene Tickets (nur verteilte Anwendung)

Mandantenféhigkeit Die Flexinale bedient verschiedene Filmfeste. Aktuell ist in der Software keine Mandanten-1D
vorgesehen, Mandantenfahigkeit kann aber recht einfach durch getrennte Installationen erreicht werden.

Internationalisierung Die Flexinale bedient Filmfeste mit grof3em internationalem Publikum. Daher muss die Flexinable internationalisierbar
sein: Mindestens deutsch- und eine englischsprachige Version muss es geben.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 7

https://www.berlinale.de/de/home.html
https://www.tagesspiegel.de/kultur/die-besucher-bleiben-der-berlinale-treu-6603265.html

3. Besucherportal

Login

Filmprogramm
ansehen

Vorfuihrung
auswahlen

Gutscheinpaket
fur Tickets
erwerben

Ticketkauf -
Gutscheine
online einldsen

Persdnliches
Programm
ansehen

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Besucher:innen kénnen das Besucherportal nur mit einem Login benutzen.

Besucher:innen erhalten Informationen, welche Filme es gibt, wann und wo sie gezeigt werden, sowie zu
den jeweiligen Kinos (Spielstétten), in denen Filme gezeigt werden.

Zu jedem Film kénnen sich die Besucher:innen anschauen welche Vorfiihrungen es gibt und eine
auswahlen, die sie besuchen mdchten.

Um Tickets zu erwerben, muss ein Besucher zunéchst ein Gutscheinpaket fur Tickets erwerben. Die
Gutscheine lost er dann gegen Tickets ein.

(Dieses Vorgehen wurde fiir diese Case Study gewahlt, um keinen Bezahlprozess implementieren zu
mussen. Der Gutscheinkauf selber ist daher ebenfalls nicht implementiert.)

Besucher:innen kdnnen fiir eine ausgewahlte Vorfiihrung Gutscheine einlésen. Die Zahl der pro Vorfihrung
einlésbaren Gutscheine ist begrenzt.

Um Besuchern die Planung zu erleichtern und insbesondere damit sie nicht versehentlich Tickets fur zwei
zeitgleich stattfindende Vorfihrungen erwerben, gibt es folgende Komfort-Funktionen: Ein/e Besucher:in
kann nur Gutscheine fir Vorfihrungen einlésen ...

1. fur die sie noch keine Tickets hat,

2. die zeitlich nicht mit einer anderen Vorstellung Gberlappt, fir die sie bereits Tickets hat. Bei der
zeitlichen Uberlappung ist auRerdem ein Puffer eingerechnet fiir eine Mindestzeit zwischen zwei
Vorfuhrungen (um z.B. die Spielstatte zu wechseln).

Das Aggregate "Ticketbundle" kennt alle Tickets des Besuchers und ist daher notwendig, um diese
Komfortfunktionen bereitzustellen.

Die Vorfuihrungen, fiir die Tickets erworben wurden, sowie die Anzahl der fiir die Vorfiihrung erworbenen
Tickets werden angezeigt.

Nur in Distributed:

Tickets, die ihre Giltigkeit verloren haben, werden ebenfalls angezeigt. Grinde, dass ein Ticket seine
Giiltigkeit verliert, kénnen z.B. sein, dass eine Vorfiinrung abgesagt wird, oder allgemein Anderungen an
Daten Film, Kino / Kinosaal / Vorfilhrung (s.u. unter Backoffice, "Anderungen an den Daten Film,..."

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Hauptentita
ten,
Aggregate

Besucher

Nur lesend:

Film, Kino,
Vorfihrung

Gutscheinpak
et

Gutschein

Aggregate: Ti
cketbundle -
alle Tickets
eines
Besuchers

Implem
entiert?

o
o

4. Backoffice

Flexinale-Daten
pflegen

Filme einstellen

Ausstrahlungsbe
dingungen
verwalten

Spielstatten
(Kinos) verwalten

Programm planen

Ul fir die
Datenpflege im
Backoffice

CRUD-
Funktionen

fur die
Datenpflege im
Backoffice

Anderungen an
den Daten Film,
Kino, Kinosaal
oder Vorfuhrung
und Tickets

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Daten zum Festival wie Zeitraum, Ort

Die Filme, die auf der Flexinale gezeigt werden, erstellen und pflegen: Name, IMBD-Link, Dauer (in
Stunden)

Verwalten der (recthlichen) Bedingungen, unter denen ein Film ausgestrahlt werden kann:

1. Wann und wie lange darf ein Film ausgestrahlt werden?
2. FSK-Bedingungen
3. Wie groB dirfen die Spielstatten (Anzahl der Platze) maximal sein?

Die Spielstéatten der Flexinale pflegen: Die Kinos mit ihren Adressen und Kontaktdaten, sowie ihren fiir die
Flexinale zur Verfugung stehenden Kinoséle und ihr Platzangebot.

Die Vorfuhrungen der Filme planen, also planen, welcher Fiilm wann und in welchem Kino gezeigt wird.

Die Datenpflege (Film, Kino / Kinosaal, Vorfihrung) ist in der Flexinale als REST-Controller implementiert.
Per HTTP-POST-Request wird ein Excel-Sheet der Anwendung Ubergeben, welches die Daten enthalt.

1. Im Monolith / Modulith 1 / Modulith 2 kénnen nur Daten hinzugefiigt werden.
2. In Distributed kdnnen dariiber hinaus Daten aktualisiert werden (sind versioniert).

Das Loéschen von Daten ist bewusst nicht moglich.
Wenn die Daten Film, Kino, Kinosaal oder Vorfuhrung geéndert werden, werden die Tickets aller
Vorfiihrungen, die von einer der Anderungen betroffen sind, unguiltig.

Das heif3t:

1. Anderungen an einem Film: Tickets fur alle Vorfiihrungen, die diesen Film zeigen, werden ungdiltig.

2. Anderungen an einem Kino oder Kinosaal: Tickets fiir alle Vorfiihrungen, die in diesem Kino oder
Kinosaal stattfinden, werden ungiltig.

3. Anderungen an einer Vorfilhrung: Tickets fir diese Vorfiihrung werden unguiltig.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Hauptentita
ten,
Aggregate

Metadaten
zur Instanz
des Festivals
(z.B. Zeiten,
Tage)

Film

Kino
Kinosaal

Vorfihrung

Implem
entiert?

© 00 ©

&

(nur
Distribut
ed)

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

5. Betreuung Fachpublikum

Diese Funktionalitat ist nicht implementiert.

Platze reservieren

Kontingent
reservieren

6. Ticketing

Tickets erstellen

Kontingent
berechnen

Kontingent
freigeben

Ticket ungultig
machen

Ticketverkauf
protokollieren

In jeder Vorfuhrung kénnen Plétze fur die Filmcrew und andere Mitwirkende reserviert werden.

In jeder Vorfihrung an ein Kontingent an Tickets fiir ein Fachpublikum, Presse, Fernsehen o.4. reserviert
werden. Die nicht in Anspruch genommenen Tickets gehen kurz vor Beginn der Vorfiihrung in den Verkauf
in der Spielstétte.

Wenn ein/e Besucher:in einen oder mehrere Gutscheine fir eine Vorfuhrung einldst, werden entsprechend
Tickets fiir sie erstellt. Dazu wird zunéchst geprift, ob das Restkontingent fiir die Vorfihrung und fiir den
Verkaufskanal (Online, zentraler Verkauf, an der Kinokasse) noch ausreicht. Nur wenn das vorhandene
Kontingent ausreicht fur die gewiinschte Anzahl an Tickets, werden diese erstellt.

Das Kontingent zu einer Vorfiihrung ist die Gesamtzahl der Tickets, die fur diese Vorfuhrung verkauft
werden kénnen. Es teilt sich auf in

1. Kontingent fir den Online-Verkauf
2. Kontingent fur den zentraler Verkauf
3. Kontingent fur den Verkauf an der Kinokasse der Spielstatte

Die Aufteilung zwischen den drei Verkaufsarten ist durch eine (anwendungsweit) konfigurierbare Quote fir
den Online-Verkauf festgelegt. Das Kontingent fur den zentraler Verkauf und den Verkauf an der
Kinokasse der Spielstatte ist jeweils die Halfte des verbliebenen Restes nach Abzug des Online-
Kontingentes.

Das Kontingent ist die Anzahl der Platze eines Kinosaals (eigentlich abztiglich der Reservierungen, s.u.
Diese sind jedoch nicht implementiert).

Das Kontingent wird (neu) berechnet,

1. wenn eine Vorfuhrung in den Verkauf gegeben wird.
2. wenn Tickets fir diese Vorfiihrung verkauft werden.
3. wenn eine Vorfihrung geandert wird.

s. Betreuung Fachpublikum - Kontingent reservieren:

Tickets aus dem fir ein Fachpublikum reservierten Kontingent, die nicht in Anspruch genommen wurden,
werden automatisch zeitgesteuert 30 Minuten vor einer Vorfuhrung fir den freien Verkauf direkt in der
Spielstatte freigegeben.

Wenn Daten von Film, Kino, Kinosaal oder Vorfihrung geandert werden, werden die Tickets fiir alle
Vorfiihrungen, die von einer der Anderungen betroffen sind, unguiltig.

Das heif3t:

1. Anderungen an einem Film: Tickets fir alle Vorfiihrungen, die diesen Film zeigen, werden ungdiltig.

2. Anderungen an einem Kino oder Kinosaal: Tickets fiir alle Vorfihrungen, die in diesem Kino oder
Kinosaal stattfinden, werden unguiltig.

3. Anderungen an einer Vorfilhrung: Tickets fur diese Vorfiihrung werden ungdiltig.

Das Kontingent fiir die betroffene Vorfiihrung wird neu berechnet.

Aus Griinden der Nachvollziehbarkeit wird protokolliert, welche Tickets verkauft wurden oder unguiltig
gemacht wurden.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Hauptentita
ten,
Aggregate
Reservierung

Kontingent

Hauptentita
ten,
Aggregate
Ticket

Kontingent

Kontingent

Kontingent

Ticket

Kontingent

Implem
entiert?

Implem
entiert?

&

(nur far
Verkaufs
kanal
online)

&

&

(nur
Distribut
ed)

10

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

7. Zentrale Verkaufsstelle

Diese Funktionalitat ist nicht implementiert.

Hauptentita Impleme

ten, ntiert
Aggregate
Information Verkaufer und Besucher kdnnen Informationen zu Filmprogramm, Spielstatten (Kinos / Kinosélen) und Nur lesend:
Vorfihrungen ansehen
Film, Kino,
Vorfihrung
Restkontingent Der Verkaufer sieht, wieviele Platze im zentralen Verkauf fir eine Vorfhrung noch zur Verfligung stehen. Nur lesend:
anzeigen
Besucher sehen nur eine grobe Zahl in Form einer Ampel (griin - noch reichlich Platze frei, gelb - nur Kontingent
noch wenige Platze frei, rot - ausverkauft) zentral
Gutschein Besucher kénnen Tickets erwerben, indem sie Gutscheine einlésen.

einlésen oder
Ticket kaufen

8. Spielstatte

Diese Funktionalitat ist nicht implementiert.

Hauptentitd Impleme
ten, ntiert
Aggregate

Nur lesend:

Information Informationen zu Filmprogramm und Vorfiihrungen in dieser Spielstatte

Film, Kino,
Vorfiuihrung

Restkontingent Der Verkaufer sieht, wieviele Platze im Verkauf an der Kinokasse fiir eine Vorfuhrung noch zur Verfigung Nur lesend:

anzeigen stehen. -
Kontingent

Besucher sehen nur eine grobe Zahl in Form einer Ampel (griin - noch reichlich Platze frei, gelb - nur Spielstatte
noch wenige Platze frei, rot - ausverkauft)

G_ut§0hein 1. Anzeige der noch vorhandenen Tickets fur eine Vorfuhrung (des Kontingentes fir den Verkauf an
einlosen oder der Kinokasse)
Ticket kaufen 2. Tickets verkaufen

9. Buchhaltung

Diese Funktionalitat ist nicht implementiert

Hauptentita Impleme
ten, ntiert
Aggregate

Lesend alle

Informationen zu Anzahl Filme, Anzahl Vorfiihrungen, Anzahl verkaufter Tickets
Entitaten

Reporting

Lesend

Finanzbuchhaltung Informationen zu Einnahmen und Ausgaben
Tickets

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 11

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

10. Bounded Contexts

Die Abbildung unten zeigt eine Mdglichkeit, Bounded Contexts fiur die Flexinale zu schneiden. Das sind die Treiber fiir den Schnitt der Bounded
Contexts:

Akteureund 1. Das Besucherportal wird von allen Flexinale-Besuchern genutzt, das Backoffice dagegen nur von Flexinale-
Nutzungsszenarien Mitarbeitern.

2. Der Ticketverkauf dagegen wird von auf3en, tber verschiedene Verkaufskanéle, angestof3en.

Datenhoheit Die Hoheit uber Entitdten oder Aggregates sollte vollstandig innerhalb eines Bounded Contexts liegen
Qualitétsteige_nsc 1. Das Besucherportal steht im Internet, muss daher gut gegen entsprechende Angriffe abgesichert sein.
haften: Security 2. Die Verwaltung der Filme dagegen kann eine interne Anwendung sein.

3. Auch der Ticketverkauf muss nicht direkt im Internet stehen, er wird nur angesto3en bspw. durch Aktionen aus
dem Besucherportal

Qualitatsteigensc Unterschiedliche Bounded Contexts missen unterschiedlich skalieren.
haften: Last
1. Der Ansturm auf Tickets ist in den Tagen direkt vor oder zu Beginn einer Flexinale besonders hoch, wenn die
Vorfiihrungen fiir den Verkauf freigeschaltet werden. Dann muss der Ticketverkauf skalieren.
2. Die Vorbereitungen - Einstellen der Filme, Spielstatten, Programmplanung - dagegen werden Uber einen
langeren Zeitraum und nur von einer sehr begrenzten Zahl von Anwendern durchgefiihrt.

Die Bounded Contexts "Finanzen" und "Reporting” sind hier gestrichelt markiert, weil sie auBerhalb des eigentlichen fachlichens Scopes der
Flexinale liegen. Der Bounded Context "Finanzen" wird in einem SAP-System umgesetzt, "Reporting” ist eine Data Warehouse-Anwendung.
Beide bendtigen jedoch Daten aus der Flexinale, die sie nur lesend verwenden.

Backoffice Film

Backoffice
Spielstatten (Kinos)

ne

Besucherportal

Programmplanung

s — s tre-
o - 2ee e

Kontingentierung /" Finanzen

Ticketverkauf

[Ticknt
veriat versnten

Ticket
unguiig
machen

" Reporting
‘.. (BI/DWH) .-

Auditlog

Abbildung: Bounded Contexts der Flexinale
(Quelle: selbst erstellt)

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 12

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

11. Context Map
Die Context Map veranschaulicht die Abh&ngigkeiten zwischen den verschiedenen Bounded Contexts. Die Pfeile zeigen den Datenfluss in der
Richtung Upstream Downstream. Das heif3t besipielsweise, dass der Bounded Context "Besucherportal" Daten aus dem "Backoffice Film"

bekommt, also von diesem Bounded Context abhangt.
Die Bounded Contexts "Finanzen" und "Reporting" benotigen Daten aus fast allen Bounded Contexts.

Abhidngigkeiten: Datenfluss
Upstream Downstream

Backoffice
Spielstatten (Kinos)

Backoffice Film

Verschiedene
Bounded Contexts

Finanzen

Progl'amm-
planung

Besucherportal

Reporting
BI/DWH) . . (SAP)

N

Kontingentierung

Auditlog

Abbildung: Context Map der Flexinale
(Quelle: selbst erstellt)

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

(B) How-To: Wie mache ich was in der Flexinale?

1. Wie richte ich die Anwendungen ein und bringe sie erstmalig zum Laufen?

Die Einrichtung der Infrastrukur, von IntelliJ, das erstmalige Bauen und Starten der Anwendung ist beschrieben in Installationsanleitung: Java,
Spring-Boot, Maven, Sourcecode fiir die Case Study "Flexinale"

2. Wo finde ich den Code der vier verschiedenen Flexinale-Anwendungen?

Die vier Anwendungen sind in IntelliJ als ein Projekt mit vier Modulen angelegt. Sie sind direkt unterhalb des obersten Verzeichnisses flex-
training-filmfestival zu finden:

. flexinale-distributed

. flexinale-modulith-1-onion

. flexinale-modulith-2-components
. flexinale-monolith

A WNBE

Auf oberster Ebene liegt aulRerdem das Verzeichnis infrastructure. Es enthalt Skripte zum Starten der Datenbank und Kafka mit docker oder
podman.

Das Modul flexinale-distributed ist in weitere Module zerlegt.

Alle Module folgen der Standard-Struktur von Maven-Projekte: src/main/java, src/test/java, etc.

B B it Yew heagee {oce Befanr Beld Run Joob O Wiedow lelp - x
S S A Morcish - 1laet app [Thsirakedionctitagplention) B 0 G G~ G o @9 9 >
re. Il |
~ # g
(] H £ 4
]
¥ » Thrminabe-dartribaried
‘; o T winnbe - moadalith- 1- ardon -
i . Neminale . modulith. . comporamiy i
L Twinals-moscdith
‘E' e th, Siep I, Componenit
[T e
& e
F i
e "
e le Shif comps
O [
Pkl 24 -
el pachage
e —
0
data &p 4
¢ fg=E B
- e
ity Mavigation Bar AltsPos 1 gy
tarp T
Drperdmcn
wre:
- IR
B Mt bl ok stion,
i
et
il
Fia
e
L gt
Lt
)
: pomarmd
| o FHEATHGE =3
] b B
L}
L4
-
d {
H |
o]
Voo e TPl B e 0000 0 Peiiesi B Temwsl [Dot Chanp 0 e N s
Chbliirs O Tl i anttiis bl D] 1 W ilbblindri B sl il b5 BOBE el vt T i,) iwinnl] i [l (90 31 200 B 1.0 O e]

Abbildung: Flexinale-Varianten in IntelliJ
(Quelle: selbst erstellt)

3. Wie baue ich die Flexinale-Anwendungen?

Die Anwendungen werden mit Maven gebaut. Wie das genau geht, ist in 7 Case Study "Flexinale" (C) HowTo: Setup des Flexinale-Beispielcodes
fur jede der Anwendungen in den Abschnitten 8.a) / 9.a) / 10.a)/ 11.a) ausgefihrt.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 14

https://accso.atlassian.net/wiki/spaces/ISFLX/pages/132942488/FLEX-Schulung+-+Installationsanleitung+f+r+die+Case+Study
https://accso.atlassian.net/wiki/spaces/ISFLX/pages/132942488/FLEX-Schulung+-+Installationsanleitung+f+r+die+Case+Study
https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Der Maven-Build kann auf allen Ebenen der Modul-Hierarchie ausgefuihrt werden: Auf oberster Ebene fur alle vier Anwendungen zusammen, fur
jede Anwendung getrennt, und getrennt fur die Module in flexinale-distributed.

4. Wie starte ich die Infrastruktur (Datenbank und Kafka)?

® Alle vier Flexinale-Anwendungen, ebenso die Tests, bendtigen eine laufende Datenbank.
® Nur die Flexinale distributed ben6étigt ein laufendes Kafka.

Die Datenbank und Kafka werden per docker oder podman gestartet.

1. Wie man die Datenbank erstmalig einrichtet startet, ist in 7 Case Study "Flexinale" (C) HowTo: Setup des Flexinale-Beispielcodes, 5.a)
beschrieben.

2. Wie man die Datenbank nach der ersten Einrichtung startet und stoppt ist in 7 Case Study "Flexinale” (C) HowTo: Setup des Flexinale-
Beispielcodes, 5.b) beschrieben.

3. Wie man Kafka startet und stoppt ist in 7 Case Study "Flexinale" (C) HowTo: Setup des Flexinale-Beispielcodes, 6. beschrieben.

5. Wo gibt es Testdaten?

Fir jede Implementierungsvariante wird eine eigene Postgres-Datenbank benutzt. Wie diese eingerichtet werden, ist in 7 Case Study "Flexinale"
(C) HowTo: Setup des Flexinale-Beispielcodes, 5.a) beschrieben.

Zur Befillung steht jeweils ein Satz an Testdaten in Form eines Excel-Sheets zur Verfligung. Sie sind abgelegt unter

® im Monolith und beiden Modulithen: src/test/resources/testdata/TestData.xIsx
® in Distributed im Modul flexinale-distributed-testdata, dort ebenfalls unter src/test/resources/testdata/TestData.xIsx

Die Excel-Sheets haben verschiedene Tabellenblatter fiir die verschiedenen Datenarten.

Wer die Testdaten erganzen oder verandern will, kann in diesen Excelsheets andern.

6. Wie kann ich die Datenbank mit Testdaten fullen?
Die Testdaten kdnnen auf zwei verschiedene Arten in die Datenbank geladen werden:

1. Uber per JUnit startbare Testdaten-Loader
2. oder Uber HTTP-Requests.

Option 2. ist im Abschnitt Backoffice -Datenpflege weiter unten beschrieben.
Hier beschreiben wir 1. Uber per JUnit startbare Testdaten-Loader.

Fir das Laden per JUnit-Testdaten-Loader gibt es run configurations in IntelliJ, gruppiert nach der jeweiligen Anwendung (s. im Run/Debug-
Configurations-Fenster oder im Servcies-Fenster von IntelliJ)

* 4k JUnit
» Testdata Distributed
> Testdata Modulith 1
> Testdata Modulith 2
i Testdata Monaolith
1F Monolith - delete all data from database
1k Manolith - load all data to database

Abbildung: JUnit Test in IntelliJ
(Quelle: selbst erstellt)

Hier gibt es jeweils run configurations, um

1. Testdaten aus der Datenbank zu I6schen (erstellt insbesondere eine Datenbank mit allen Schemata)
2. Testdaten in die Datenbank zu laden.

Im Monolith und Modulith gibt es nur jeweils eine run configuration fur alle Datentypen gemeinsam, im Modulith 2 und in Distributed gibt es
zusatzlich run configurationen, um Benutzer- und Daten zu Film, Kino, Kinosélen und Vorfiihrungen getrennt zu laden.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 15

https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497
https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497
https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497
https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497
https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497
https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Anlegen der Datenbank-Schemata
Die Datenbank-Schemata mussen nicht explizit angelegt werden.

Sie werden automatisch von Spring / Hibernate beim Starten der run-configuration delete all data from database geléscht neu erzeugt.

Dafir sorgt die property spri ng. j pa. hi ber nat e. ddl - aut o=cr eat e.

Die JUnit-Klassen, die sich um Loschen und Laden der Testdaten kimmern, liegen in der jeweiligen Anwendung unter src/test/java/testdata,
bzw. in der flexinale-distributed im Modul flexinale-distributed-testdata unter src/test/java/testdata.

Die Testdaten liegen in der jeweiligen Anwendung unter src/test/resources/testdata, bzw. in der flexinale-distributed im Modul flexinale-
distributed-testdata unter src/test/resources/testdata, dort in einem oder mehreren Excelsheets.

Die Testdaten-Loader implementieren folgendes Verhalten:
1. Wenn ein Datensatz mit der gleichen ID noch nicht in der Datenbank vorhanden ist, wird der Datensatz aus den Excelsheet hinzugefigt.

2. Wenn ein Datensatz mit der gleichen ID bereits vorhanden ist, wird er mit dem Datensatz aus den Excelsheet Gberschrieben.
3. Datensétze in der Datenbank werden nie geldscht.

7. Wo finde ich Testdaten?

Die Testdaten liegen in der jeweiligen Anwendung unter src/test/resources/testdata, bzw. in der flexinale-distributed im Modul flexinale-distributed-
testdata unter src/test/resources/testdata, dort in einem oder mehreren Excelsheets.

8. Wie starte ich die Flexinale-Anwendungen?

Die Flexinale-Anwendungen starten wir aus IntelliJ heraus. Wie das genau geht, ist in 7 Case Study "Flexinale" (C) HowTo: Setup des Flexinale-
Beispielcodes fir jede der Anwendungen in den Abschnitten 8.c) / 9.c) / 10.c)/ 11.c) ausgefuhrt.

9. Gibt es statische Code Analyse fur die Flexinale und wo finde ich sie?

Fur die statische Code Analyse in der Flexinale wird spotbugs genutzt, sowie findsecbugs fiir Security-Bugs. Fur beide ist das jeweilige Maven-
plugin konfiguriert. Sie laufen in der "Verify"-Phase von Maven.

Ausnahmen, d.h. Warnungen oder Fehler, die spotbugs oder findswecbugs finden und die bewusst ignoriert werden sollen, sind (wo vorhanden)
in der Datei SpotbugsExcludeFilter.xml konfiguriert. Sie liegt jeweils auf oberster Ebene eines Projektes.

Hinweis: Sporbugs und findsecbugs analysieren den Java byte code. AuBerdem benutzen sie die SpotbugsExcludeFilter.xml, die im target-
Verzeichnis eines Projektes liegt. Bei einer Analyse von gedndertem Code oder einer Anderung an der SpotbugsExcludeFilter.xml ist also ein
neuer maven build erforderlich.

10. Wo finde ich Architekturtests fur die Flexinale?
Architekturtests gibt es fir die Modulithen und Distributed. Fir die Tests verwenden wir ArchUnit. Diese Tests liegen unter

Modulith-1 flexinale-modulith-1-onion/src/test/java/architecturetests

Modulith-2 flexinale-modulith-2-components/src/test/java/architecturetests

Distributed in einem eigenen Maven-Projekt: flexinale-distributed/flexinale-distributed-test-architecture/src/test/java/architecturetests
Die ArchUnit-Tests sind als JUnit-Tests geschrieben. Damit

® konnen sie wie diese in IntelliJ direkt gestartet werden
® Jaufen sie in der test phase in Maven mit

11. Wo finde und wie starte ich Tests?

Tests fir die Anwenung sind als JUnit-Tests geschrieben. Sie liegen jeweils unter

Mon flexinale-monolith/src/test/java/de/accso/flexinale
olith

Mod flexinale-modulith-1-onion/src/test/java/de/accsol/flexinale

ulith-
1

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 16

https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497
https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Mod flexinale-modulith-2-components/src/test/java/de/accso/flexinale
ulith-
2
Distri in zwei eigenen Maven-Projekten:
buted
1. flexinale-distributed/flexinale-distributed-test-integrated/src/test/java - funktionale Tests. Hierbei werden die Anwendung
integriert in einem einzigen Prozess gestartet. Zum Messaging wird ein In-Memory-Bus verwendet.
2. flexinale-distributed/flexinale-distributed-test-distributed/src/test/java - Verteilungs-Aspekte werden hier getestet.
Voraussetzungen:

1. Die Datenbank muss laufen

2. Fur distributed muss fur die Tests der Verteileung (Tests in flexinale-distributed-test-distributed) auch Kafka laufen.
Tests kdnnen gestartet werden

1. In IntelliJ, Rechtsklick auf die Testklasse und "Run..." / "Debug..."
2. Per Maven, test-Phase

12. Wie starte ich die Anwendung?

Die Anwendungen werden als Spring Boot Application gestartet. Fir den Start der Anwendungen gibt es in der Gruppe Spring Boot jeweils eine
Gruppe fir die Run Configuration(s) in IntelliJ.

Infrastruktur fir die Anwendungen
Damit die Anwendungen starten kdnnen:

® Muss PostgreSQL laufen.
® Missen die Datenbankschemata angelegt sein.

® Dazu reicht es, einmal die run configuration zum Ldschen aller Daten aus der Datenbank zu starten (s. Abschnitt "Datenbank mit
Testdaten fillen").
® Nur Distributed: Muss Kafka laufen.

Sevices

P E = YR+
* aps HTTP Request
1k Uit
Maven
Spring Boot
App Distributed

Distributed Backoffice - start app ("FlexinaleDistributedApplicationBackoffice™)
Distributed Besucherportal- start app ("FlexinaleDistributedApplicationBesucherportal®)

Distributed Ticketing - start app ("Flexinale Distributed ApplicationTicketing ™)
App Modufith 1

W

Maodulith 1 - start app ("FlexinaleMadulith Tﬂlnionﬂuppli:atiqnﬂ
App Modulith 2

Madulith 2 - start app [“FlexinaleModulith2 ComponentsApplication”)
~ App Manolith

Maonolith - start app ("FlexinaleMonolithApplication™)
Abbildung: Services zum Start in IntelliJ
(Quelle: selbst erstellt)

Der Monolith und die beiden Modulithen bestehen jeweils aus genau einer Spring Boot Application, die gestartet werden muss

Distributed besteht aus drei Spring Boot Applications. Diese miissen in der richtigen Reihenfolge gestartet werden.
Startreihenfolge fur Distributed

1. Besucherportal (warten auf die Info "Started FlexinaleDistributedApplicationBesucherportal” in der Konsole)

2. Ticketing (warten auf die Info "Started FlexinaleDistributedApplicationTicketing" in der Konsole)
3. Backoffice

13. Wie greife ich auf die verschiedenen Flexinale-Anwendungen zu und wie logge ich mich ein?

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 17

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Alle Anwendungen (in Distrubuted: Das Besucherportal) laufen unter http://localhost:8080/. Im Default horchen damit alle Anwendungen auf
den gleichen Port, es kann also nur eine Anwendung zu einem Zeitpunkt gestartet werden.

Login

Die Anwendung kann nur mit einem eingeloggten Benutzer benutzt werden. Benutzer und Passworter finden sich im Testdaten-Excelsheet, im
Tabellenblatt Benutzer. Sie missen die Rolle Besucher haben (ROLE_BESUCHER).

Vor der ersten Benutzung
Die Benutzer, die sich einloggen kénnen, mussen in der Datenbank stehen.

Daher vor der ersten Benutzung einmal mindestens die Benutzer aus dem Testdatensatz in die Datenbank laden,
z.B. Uber die run configuration zum Laden aller Daten in die Datenbank (s. Abschnitt "Datenbank mit Testdaten fiillen").

Beispielsweise kann man sich nach dem Laden der Benutzer-Testdaten mit dem Benutzer man mit Passwort mannl einloggen.

Hinweis: Die Passworter der einzelnen Benutzer stehen nur im Excel-Sheet im Klartext. In der Datenbank sind sie verschliisselt. Sie sind aber
immer nach diesem Muster gebildet:

® Passwort = <login>1
® Beispiel: login: mann, Passwort: mannl

Anwendungen anhand der Header-Farbe unterscheiden

Zur besseren Orientierung hat jede Anwendung eine andere Header-Farbe:

Monolith

Flexinale \

Modulith 1 (Onion)

%
Flexinale \

Modulith 2 (Components) [s ree mo tos s

)
Flexinale \

Distributed

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 18

http://localhost:8080/

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Flexinale

14. Wie pflege ich die Daten zu Filmen, Kinos, Kinosélen, etc.?

Die Ul fur die Datenpflege im Backoffice ist eine REST-Schnittstelle, Uber die ein Excel Sheet mit den gewunschten Daten geladen werden kann.
Die REST-Controller akzwptieren dazu Excel-Sheets mit Daten in dem gleichen Format wie auch die Testdaten abgelegt sind. Zum Test der
REST-Schnittstelle kdnnen also die Excelsheets mit den Testdaten (s.0.) verwendet werden.

Vor dem Laden der Daten
Damit die Daten Uberhaupt geladen werden kdnnen:

1. Muss die Anwendung laufen.
2. Muss es einen Benutzer in der Benutzer-Tabelle geben, der die Rolle Admin hat (ROLE_ADMIN). In den Testdaten gibt es dafur den

User admin (Passwort: adminl).

Die bendétigten HTTP-Requests kann man direkt aus IntelliJ heraus absetzen oder per curl von einer Kommandozeile, dazu s.u.

In IntelliJ gibt es run configurations fir die HTTP-POST-Requests zur Datenpflege (in diesen ist der User admin mit Passwort adminl hinterlegt):

= | R Y R+
£ ¥ am HTTP Request
’ Actuator Distributed
b REST upload Distributed
am Distributed Backoffice - REST upload to add and update filme
am Distributed Backoffice - REST upload to add and update kinos
am Distributed Backoffice - REST upload to add and update vorfuehrungen
> REST upload Modulith 1
H] REST upload Madulith 2
* REST upload Monalith

Abbildung: Services zum Absetzen von REST-Post-Calls
(Quelle: selbst erstellt)

Per HTTP GET kann man auf3erdem die Daten zu Film, Kino, Kinosalen und Vorfihrungenuber die REST-Controller auslesen. Dazu braucht

man die Rolle Besucher (ROLE_BESUCHER). Fur die GET-Requests sind keine run-configurations hinterlegt.

Einfigen und aktualisieren von Daten zu Film, Kino, Kinosélen, Vorfihrungen
Mit dem hier beschriebenen Mechanismus kann man

® Neue Daten hinzufligen.

® Vorhandenen Daten &ndern.
® Benutzerdaten kdnnen nicht tiber die Datenpflege des Backoffice geladen werden. Sie missen iiber die Testdatenloader eingespielt

werden.
Das Loschen vorhandener Daten ist nicht méglich.

(S.a. Beschreibung der Flexinale)
HTTP-Requests per Curl

€3 Curl und WSL2

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 19

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

! Curl funktioniert nicht von WSL2 auf die Flexinale-Anwendungen, die unter Windows (z.B. in IntelliJ) laufen,
da der Zugriff auf localhost nicht moglich ist (siehe hier). Auch Anderungen der wslconfig (siehe hier) funktioniert leider nicht.

Curl muss man daher von der Windows-CMD oder der Windows-Powershell nutzen.

Fur CLI-Benutzer (Windows CMD oder Powershell): GET-Requests fur die Daten zu Film, Kino, Kinosalen und Vorfithrungen

(Hier wird ein Benutzer mit Besucher-Rechten benétigt (ROLE_BESUCHER)

Curl fur GET-Requests auf Rest-Controller: Daten auslesen

Port bei Mnolith und Modulithl/2 ist 8080, bei Distributed |auft die
Backof fi ce- App auf 8081

Filme
curl -v -X GET -u USER: PASSWORT http://Ilocal host: PORT/rest/fil ne

Kinos (und -sael e)
curl -v -X GET -u USER PASSWORT http://I|ocal host: PORT/ rest/ ki nos

Vorf uehrungen
curl -v -X GET -u USER PASSWORT http://|ocal host: PORT/ rest/vorfuehrungen

Fur CLI-Benutzer (Windows CMD oder Powershell): POST-Requests zum Einspielen von Daten zu Film, Kino, Kinosélen und
Vorfuhrungen

(Hier wird ein Benutzer mit Admin-Rechten benétigt (ROLE_ADMIN)

Curl fur POST-Requests auf Rest-Controller: Daten neu einspielen oder updaten

Wechsel in Verzeichnis, wo XLSX-Datei |iegt
cd ...\src\test\resources\testdata

Curl

Port bei Mnolith und Mbdulithl/2 ist 8080, bei Distributed |&auft die
Backof fi ce- App auf 8081

Filme

curl -v -X POST -u USER PASSWORD - F

fil e=@estdat aFi | nKi noKi noSaal Vor f uehrung. xl sx http://I ocal host: PORT
/rest/filne

Kinos (und -saele)

curl -v -X POST -u USER PASSWORD - F

file=@estdataFi | nKi noKi noSaal Vor f uehrung. xI sx http://I ocal host: PORT
[rest/kinos

Vor f uehrungen

curl -v -X PGST -u USER PASSWORD - F
fil e=@estdat aFi | nKi noKi noSaal Vor f uehrung. xl sx http://I ocal host: PORT

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

20

https://stackoverflow.com/questions/64763147/access-a-localhost-running-in-windows-from-inside-wsl2
https://learn.microsoft.com/en-us/windows/wsl/wsl-config

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

[rest/vorfuehrungen

Benut zer

... konnen absichtlich NI CHT per Curl gel aden werden. Sie missen in
der Dat enbank vorhanden sein, sonst ist die Authentifizierung nicht
noglich (401)

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

21

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

15. Monitoring
Monitoring-Endpunkte gibt es nur in der Variante Distributed.
Fir das Monitoring nutzt die Flexinale Spring Boot Actuator. Hierfirr gibt es Endpunkte in den jeweiligen Applikationen flexinale-distributed-

besucherportal, bzw. flexinale-distributed-backoffice, bzw. flexinale-distributed-ticketing, dort im infrastructure-Package.

Am Beispiel Besucherportal:

=[0G flex-training-filmfestival [flexinale]
> idea
& flexinale-distributed
1 flexinale-distributed-backoffice

? infrastructure
> run-configurations
e Fi(s
b main
e java
b de
il accso
i flexinale
ki backoffice
? api
> core

i infrastructure
¥ persistence
€ BootstrappingPostConstructBackoffice

FlexinaleBackofficeActuatorEndpointEventsPublished

£ FlexinaleBackofficeSpringFactory
& FlexinaleDistributedApplicationBackoffice
& resources
> test

Abbildung: Actuator-Endpoint in flexinale-distributed, backoffice
(Quelle: selbst erstellt)

Die Actuator-Endpoints kdnnen per HTTP-Request aufgerufen werden.

In Intellid gibt es run configurations fir die HTTP-GET-Requests zum Aufrufen der Actuator-Endpoints (in diesen ist der User admin mit Passwort
adminl hinterlegt):

v 3 HTTP Request
e Actuator Distributed

:m Distributed Backoffice - Actuator Events Published
am Distributed Backoffice - Actuator Health
am Distributed Backoffice - Actuator Info
am Distributed Backoffice - Actuator Metrics
e Distributed Backoffice - Actuator Prometheus
am Distributed Besucherportal - Actuator Cache Contents
am Distributed Besucherpartal - Actuator Events Consumed
e Distributed Besucherportal - Actuator Events Published
amr Distributed Besucherportal - Actuator Health
an Distributed Besucherportal - Actuator Info

:ﬂ Distributed Besucherpartal - Actuator Metrics

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 22

https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

am Distributed Besucherportal - Actuator Prometheus
anr Distributed Ticketing - Actuator Events Consumed
am Distributed Ticketing - Actuator Events Published
o Diistributed Ticketing - Actuator Health

an Distributed Ticketing - Actuator Info

e Distributed Ticketing - Actuator Metrics

am Distributed Ticketing - Actuator Prometheus

Abbildung: Services zum Absetzen von HTTP-Requests fuir Actuator-Endpoints
(Quelle: selbst erstellt)

HTTP-Requests per Curl

3 Curlund WSL2

! Curl funktioniert nicht von WSL2 auf die Flexinale-Anwendungen, die unter Windows (z.B. in IntelliJ) laufen,
da der Zugriff auf localhost nicht moglich ist (siehe hier). Auch Anderungen der wslconfig (siehe hier) funktioniert leider nicht.

Curl muss man daher von der Windows-CMD oder der Windows-Powershell nutzen.

Fir CLI-Benutzer (Windows CMD oder Powershell): GET-Requests fur Actuator
Hier wird ein Benutzer mit Admin-Rechten benétigt (ROLE_ADMIN)
Beispiel:

...

Curl fir GET-Requests auf Rest-Controller: Daten auslesen

Beispiel: Aufruf des info-Acutator-Endpunkts in Ticketing. Die D e
Ti cketing-Application [&uft in Distributed auf Port 8082

curl -v -u USER PASSWORD http://I ocal host: 8082/ actuator/info

16. Wie baue ich Docker-Images aus den Flexinale-Anwendungen?

Docker-Images der Flexinale-Anwendungen bendétigen wir nicht fur die Schulung. Es reicht dafiir vollig aus, die Anwendungen in IntelliJ zu
starten.

Im Projekt fur die jeweilige Applikation gibt es im Verzeichnis infrastructure jeweils Skripte fiir Docker, bzw. Podman. In Monolith, Modulith-1 und
Modulith-2 liegen die Skripte zum Bauen und Starten der Images im gleichen Verzeichnis

= [flexinale-monolith
> idea
N docker
docker-compose_up.sh
docker_build.sh
o« Dockerfile
oe: flexinale-monalith.ymi
i podman
o Dockerfile
pe: flexinale-monalith.yml
= podman-compose_up.bat
= podman_build.bat

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 23

https://stackoverflow.com/questions/64763147/access-a-localhost-running-in-windows-from-inside-wsl2
https://learn.microsoft.com/en-us/windows/wsl/wsl-config

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Abbildung: Monolith:Verzeichnis infrastructure mit Docker-/Podman-Skripten (Struktur in Modulith-1 und Modulith-2 analog)
(Quelle: selbst erstellt)

In Distributed gibt es infrastructure-Verzeichnisse in den jeweiligen Anwendungen (zum Bauen der Images), sowie eines auf oberster Ebene zum
Starten der gesamten Anwendung.

~ 1 flexinale-distributed
~ 1, flexinale-distributed-backoffice
e docker
dacker_build.sh

o Dockerfile
hdl podman
o Dockerfile

B podman_build bat

Abbildung: Distributed: Verzeichnis infrastructure in backoffice mit Docker-/Podman-Skripten zum Bauen (Struktur in besucherportal und ticketing
analog)
(Quelle: selbst erstellt)

1 flexinale-distributed
* g flexinale-distributed-backoffice
* 115 flexinale-distributed-backoffice_apicontract
» 1, flexinale-distributed- besucherportal
» 1, flexinale-distributed- besucherportal_apicontract

L

= flexinale-distributed-commen

» 1, flexinale-distributed-security

* 7% flexinale-distributed-security_apicontract
* 1 flexinale-distributed-test-architecture

» 1, flexinale-distributed-test-distributed

» 14 flexinale-distributed-test-integrated

1, flexinale-distributed-testdata

* 0 flexinale-distributed-ticketing

* 1 flexinale-distributed-ticketing_apicontract

~ I infrastructure [flexinale-distributed-infrastructure]
i docker

docker-compose_up.sh

ge; flexinale-distributed-backoffice yml
pes flexinale-distributed-besucherportal.ymi
sy flexinale-distributed-ticketing.yml

il podman
e flexinale-distributed-backoffice.yml
o flexinale-distributed-besucherportal yml
e flexinale-distributed-ticketing.yml

® podman-compose_up. bat

Abbildung: Distributed: Verzeichnis infrastructure in backoffice mit Docker-/Podman-Skripten zum Starten mit Compose
(Quelle: selbst erstellt)

Zum Bauen der Images gibt es Build-Skripte:

® Fir Docker: In einer Shell (z.B. WSL2) in das passende Unteverzeichnis wechseln, dort docker _bui | d. sh aufrufen.
® Fir Podman: In einer CLI (Windows CMD oder Powershell) in das passende Unteverzeichnis wechseln, dort podnan_bui | d. bat aufrufen.

Zum Starten der Anwendung inkl. Infrastruktur (Monolith / Modulith-1 und -2: inkl. Postgres-Datenbank; Distributed: zusétzlich Kafka) gibt es
compose-Skripte, Verzeichnisse s.o..

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 24

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

® Fir Docker: In einer Shell (z.B. WSL2) in das passende Unteverzeichnis wechseln, dort docker - conpose_up. sh aufrufen.
® Fir Podman: In einer CLI (Windows CMD oder Powershell) in das passende Unteverzeichnis wechseln, dort podman- conpose_up. bat
aufrufen.

£3 Compose in Distributed

! Der Start der gesamten Anwendung mit den Applikationen als Docker-/ Podman-Images funktioniert derzeit in Distributed nicht. Hier
kénnen sich die Applikationen nicht mit Kafka connecten. Die Fehlerursache ist derzeit unklar.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 25

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

(C) Entwicklungstagebuch: Monolith > Modulith 1 > Modulith 2 > Verteiltes System

10

11

12

13

14

15

16

“ab" Anwendung
Monolith
Monolith

Monolith

Modulith-1

Modulith-1

Modulith-1

Modulith-1

Modulith-1

Alle

Modulith-2,
Distributed

Alle

Modulith-2,
Distributed

Alle

Alle

Alle

was (Thema)

RestController als "Backoffice"
TicketBundle - unser Aggregate

Rollen Besucher, Admin;
Benutzer mit unterschiedlichen
Rollen

Onion-Architektur

Trennung von domain und
infrastructure:

1. domain model, Daos
getrennt von Entitaten,
Repositories

2. Keine Spring-
Annotationen in Domane,
dafiir DAos als Interfaces,
Delegates, SpringFactory

Trennung von Besucher und
Benutzer-Entitat

Equals by content

Version in den Entitaten (auch
model, spater TOs)

Good Practice: Architekturtests
fir Soll-Architektur vorab
schreiben (nein, nicht alle,
aber... vorab)

(ATDD = Architecture Test
Driven Design)

Im besucherportal und
ticketing nur noch besucherld
anstelle des vollstandigen
Benutzers benutzen

Vorfuihrung hat kein Kontingent
mebhr, daflr hat Kontingent nun
die Vorflihrungsld.

Ticket hat nur noch die IDs von
Film, Vorfiihrung, Besucher
anstatt der vollstandigen Entitéat.

Tests missen die
Architekturtests nicht bestehen.

Security, onion haben keine
Onionarchitektur und miissen
auch keine haben

(Spring-)Context in alle
Testklassen isolieren

Bidirektionale Beziehung Kino
KinoSaal: @Jsonlgnore im Kino
im KinoSaal (Alles, was
serialisiert wird - TOs oder
Doménenobjekte oder - im
Monolith - Entitaten)

Bidirektionale Beziehungen
(Kino KinoSaal) sind echt

anstrengend ==

Tests und damit
Testverzeichnisse aufgeteilt
nach

® Architekturtests
® Testdaten-Cleaner und -Loader
® "echten" Tests der Anwendung

Distributed

(Fast) alle Tests nach distributed-
test-integrated verschoben.

warum Referenz im Code (Link zu Github)

Verschiedene Blickwinkel: Fur A&A wird login, password, BenutzerEntity
Rolle bendtigt.

Besucher
Besucher ist fachlich, wird im Besucherportal benutzt.

Wir ziehen das nicht so konsequent durch, insbesondere
machen wir nichts wirklich mit dem Benutzer. Wir
verwenden ihn nur fiir Login und die ID an den Tickets.

Equals-Check ohne Version

Implementierung von Optimistic Locking

So uberlegt man sich vorab, wie die Architektur aussehen
soll und sieht regelmaRig, wo man steht

Abhangigkeiten im Datenmodell I6sen geméaf den
fachlichen Komponenten:

Abhéangigkeiten nur noch tber die ID (Fremdschliissel),
nicht mehr als Relation auf die vollstandige Entitat.

Viele integrative Tests Per selbstgeschriebener Annotation (in allen Projekten identisch): DoNotCheckin
ArchitectureTests

Man kann in ArchUnit auch per Importer Testklassen ausschlieRen.

Primar, weil weitgehend Implementierung von z.B. in Modulith2: security
SpringSecurity-Klassen, damit ist die Struktur vorgegeben.

Sonst gibt's durcheinander, auch auf der Datenbank Mit Annotation

@i rtiesContext(classMbde = DirtiesContext.d assMbde. BEFORE
CLASS)

Sonst gibt es eine Endlosschleife. Wir haben uns fir Kino
im KinoSaal entschieden (da Kino die abhangige Entitat
ist)

Sind verschiedene Kategorien von Tests, das will man
weit oben unterscheiden.

Die TestDatalLoader sind eigentlich nur aus Convenience
als Tests geschrieben - so kann man sie ganz einfach
starten.

Sehr viele integrierte Tests. Es lohnt sich nicht, kleinteilig
nach Tests in nur den einzelnen Anwendungen zu suchen.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 26

https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-1-onion/src/main/java/de/accso/flexinale/infrastructure/security/BenutzerEntity.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-1-onion/src/main/java/de/accso/flexinale/core/domain/model/Besucher.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-2-components/src/test/java/de/accso/flexinale/shared_code_for_test/DoNotCheckInArchitectureTests.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-2-components/src/test/java/de/accso/flexinale/shared_code_for_test/DoNotCheckInArchitectureTests.java
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-modulith-2-components/src/main/java/de/accso/flexinale/security

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Distributed

Distributed

Distributed

Distributed

Alle

Distributed

Distributed

Distributed

Distributed

Distributed

Monolith /
Modulith-1/
Modulith-2

Distributed

Distributed,
Modulith-2

Alle

Distributed

EventBus und Events sind
designed und implementiert:

1. Bus gibt es InMemory
(synchron) und via Kafka
(asynchron)

2. Bus ist event-typisiert,
iber einen Bus kommt
immer nur ein Typ von
Events (bei Kafka also in

1 Topic nur ein Event-Typ)

w

. Event-Interface und
AbstractEvent als
Vorgaben, haben auch
a. ID, Context mit

Historie und
Correlation-ID.

o

die Events die richtige
Struktur haben (z.B.
Version, Default-
Konstruktor), damit
auch Serialisierung
per Jackson
funktioniert.

Subscriber und Publisher
empfangen/senden Events.

Die Retriever aus Modulith-2
werden zu Consumern und der
Kontrollfluss dreht sich von Pull
nach Push.

InMemoryCache implementiert

KafkaConsumerAdapter und
KafkaProducerAdapter als
eigene Implementierung erstellt,
nicht per Spring @Listener,...
Annotation

@Transactional an allen Rest-
oder Web-Controllern gesetzt,
wo es Anderungen gibt (POST).

VorfuehrungSubscriber
idempotent machen, so dass
dieser mit mehreren
VorfuehrungCreatedEvents fur
die gleiche Vorfuehrung
umgehen kann (Folge-Created-
Events werden erkannt und
ignoriert)

Error Handling in Kafka
Consumers: DeadLetterTopic

(bLT)

Kinold im VorfuehrungTO
erganzt.

Behandlung Doppelzustellung
eines GutscheinEinloesen-
Events

@PostContructs fur
Backofficeund Ticketing:
Publizieren ihren gesamten
Datenbankinhalt

(Besucherportal hat keine
Daten, die andere interessieren)

Gutschein einlosen:
Riickmeldung im
Besucherportal, ob der
Ticketkauf erfolgreich war

Gutschein einlésen: Meldung
"Ticketkauf beauftragt".

(Rickmeldung, wenn er
fehlschlug wegen Kontingent
ausgeschopft, nicht
implementiert)

Film als vollwertiges TO im
VorfuehrungTO (war vorher nur
filmid)

Monolith / Modulith-1 / Modulith-
2/ Distributed sind an Header-
Farben unterscheidbar

Verschieden Profiles eingefihrt:

. test-integrated
. test-distributed
. testdata

. configtest

B wNE

. Tests sichern ab, dass

Zur Benutzung tberall, wo nicht-eigene Daten abgelegt
werden sollen, z.B. im Besucherportal fur alle Daten
FKKsV.

Nur so kénnen wir selber die Topic-Namen vergeben.

Serialisierungsproblem, bzw. Problem der bidirektionalen
Relation. Bei der Kino KinoSaal-Relation muss an einer
Seite ein @Jsonlgnore stehen, sonst gibt es eine
Endlosschleife. Diese steht am Jino des KinoSaals.

Auch Gutschein einldsen muss idempotent sein

Restart von Anwendungen; Kafka "Read from Beginning”
ist nicht implementiert.

... da asynchron.

Genauso behandeln wie KinoSaal.

Hilft beim Erkennen, wo man gerade ist.

1) Erzeugen des passenden Event-Busses (bzw. der -
Factory):

1. Keines der Profile: KafkaAsyncEventBus
2. test-integrated: InMemorySyncEventBusSpy
3. testdata, configtest, configtest: NopeEventBus

KafkaConsumerAdapter

KafkaProducerAdapter

VorfuehrungSubscriber

KafkaConsumerErrorHandler

VorfuehrungTO

KinoSaalTO

GutscheinEinloesenBeauftragtSubscriber

1. BootstrappingPostConstructBackoffice
2. BootstrappingPostConstructTicketing

VorfuehrungTO in Modulith-2

VorfuehrungTO in Distributed

FlexinaleCommonSpringFactory

FlexinaleDistributedApplicationBesucherportal, FlexinaleDistributedApplicationBa
ckoffice, FlexinaleDistributedApplicationTicketing versus FlexinaleDistributedAppl
icationTestIntegrated

BootstrappingPostConstructBackoffice

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 27

https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/KafkaConsumerAdapter.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/KafkaProducerAdapter.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing/src/main/java/de/accso/flexinale/ticketing/core/application/event/VorfuehrungSubscriber.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/KafkaConsumerErrorHandler.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-stammdaten_apicontract/src/main/java/de/accso/flexinale/stammdaten/apicontract/event/model/VorfuehrungTO.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-stammdaten_apicontract/src/main/java/de/accso/flexinale/stammdaten/apicontract/event/model/KinoSaalTO.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing/src/main/java/de/accso/flexinale/ticketing/core/application/event/GutscheinEinloesenBeauftragtSubscriber.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-backoffice/src/main/java/de/accso/flexinale/backoffice/infrastructure/BootstrappingPostConstructBackoffice.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing/src/main/java/de/accso/flexinale/ticketing/infrastructure/BootstrappingPostConstructTicketing.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-2-components/src/main/java/de/accso/flexinale/stammdaten_apicontract/apicontract/model/VorfuehrungTO.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-stammdaten_apicontract/src/main/java/de/accso/flexinale/stammdaten/apicontract/event/model/VorfuehrungTO.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/FlexinaleCommonSpringFactory.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-besucherportal/src/main/java/de/accso/flexinale/FlexinaleDistributedApplicationBesucherportal.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-backoffice/src/main/java/de/accso/flexinale/FlexinaleDistributedApplicationBackoffice.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-backoffice/src/main/java/de/accso/flexinale/FlexinaleDistributedApplicationBackoffice.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing/src/main/java/de/accso/flexinale/FlexinaleDistributedApplicationTicketing.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-test-integrated/src/test/java/de/accso/flexinale/FlexinaleDistributedApplicationTestIntegrated.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-test-integrated/src/test/java/de/accso/flexinale/FlexinaleDistributedApplicationTestIntegrated.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-backoffice/src/main/java/de/accso/flexinale/backoffice/infrastructure/BootstrappingPostConstructBackoffice.java

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

5. smoketest
6. local

Alle Spring Factories: Die
creates mit Préfix fiir Application
versehen

32 Distributed

Update der Daten Film, Kino /
Kinosaal, Vorfuehrung méglich:
Wenn F/K/Ks/V bereits
vorhanden, Update.

33 Distributed

VorfuehrungUpdatedEvents
werden nicht nur fur die direkt
betroffenen Entitaten publiziert,
sondern auch fiir die indirekt
betroffenen Vorfuehrungen.

NUR in Distributed umgesetzt!
(in MMM weiterhin nur ADD
moglich!)

Tickets ungiltig machen, wenn
sich eine Vorfiihrung &ndert
(direkt oder indirekt - also auch,
wenn sich am Film oder dem
KinoSaal in der Vorfiihrung
etwas andert).

34 Distributed

Geénderte Vorfilhrung im
Ticketing:

1. Tickets fir diese
Vorfiihrung ungtiltig
machen (+ publishen)

. Online-Kontingent
zuriicksetzen fir diese
Vorfiihrung.

N

Ungiltige Tickets im
besucherportal handhaben:

1. Anzeige ungliltiger Tickets

2. Nur giltige Tickets sind
relevant beim Berechnen
Uberlappender
Vorfiihrungen oder
"Ticket bereits
vorhanden".

Unterscheide die

35 Modulith-1, 1€I0E .
unterschiedlichen Arten von api:

Modulith-2,
Distributed
1. apicontract
2. eingehende api (web,
rest, retriever)

Siehe auch unten bei Nr. #45
(Trennung dort von api _i n und
api _out

36 Distributed Actuator-Endpunkte erstellt

PredecessorEventContext,
insbes. Correlation ID, bei
Eventketten weitergeben.

37 Distributed

1. Events, die Teil einer
Eventkette sind, haben
ein

PredecessorEventContext

, die anderen nicht.

. Der EventContext wird
beim Aufrufen der
Subscriber gesetzt und
anschlieBend removed.

. Beim Publish wird der
Predecessor aus dem
EventContext geholt und

N

w

gesetzt (wenn vorhanden)

4. Implement ist der
EventContextHolder tiber
ThreadLocal

38 Distributed

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

2) Passende SpringBootApplication auswahlen -
Unterscheidung, ob die drei Applications separat laufen
oder integriert als eine einzige Anwendung

3) PostConstruct wird nicht in den integrierten Tests
aufgerufen und nicht beim Erstellen der Testdaten.

Um in den integrated-Tests alles zusammen als eine
einzige Anwendung starten zu kénnen, brauchen alle
Spring-Beans (hier: mit @Bean annotierte Methoden)
unterschiedliche Namen.

Beispiel fiir Anderungen an DatenF/K/Ks/V und Umgang
mit deren fachlich abhangigen Daten

Fachlich sehr einfacher -
Vorfiihrungen

Umgang mit sich andernden

Abhangigkeiten sortieren: Welche apiX darf welche apiY
aufrufen.

Fachliches und technisches Monitoring.

Damit wir Eventketten identifizieren kénnen

Die (fachlichen) Tests der korrekten Behandlung

BootstrappingPostConstructTicketing

(Besucherportal hat kein PostConstruct)

FlexinaleBesucherPortalSpringFactory
FlexinaleBackofficeSpringFactory

FlexinaleTicketingSpringFactory

Backoffice. Insbesondere:
FilmRestController, Methode publ i shFi | msAndVor f uehr ungen

KinoKinoSaalRestController, Methode publ i shKi nosAndVor f uehr ungen

Etliche Stellen im Besucherportal, Ticketing

Regeln s. Architekturtests in jeder Anwendung:
Architekturtests Modulith 1
Architekturtests Modulith 2

Architekturtests distributed

http-Request jeweils abgelegt in den drei Applications
besucherportal

backoffice

ticketing

1. TicketGekauftEvent mit PredecessorEventContext, GutscheinEinloesenB
eauftragtEvent dagegen ohne, da Beginn einer Eventkette.
2. Befilllen des EventContext:
3. Auslesen und Setzen des Predecessors (insbes. Correlation ID) aus dem
EventContextHolder: TicketPublisher, beide publish-Methoden.
. Interface EventContextHolder, Implementierung

N

28

https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing/src/main/java/de/accso/flexinale/ticketing/infrastructure/BootstrappingPostConstructTicketing.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-besucherportal/src/main/java/de/accso/flexinale/besucherportal/infrastructure/FlexinaleBesucherPortalSpringFactory.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-backoffice/src/main/java/de/accso/flexinale/backoffice/infrastructure/FlexinaleBAckofficeSpringFactory.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing/src/main/java/de/accso/flexinale/ticketing/infrastructure/FlexinaleTicketingSpringFactory.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-backoffice/src/main/java/de/accso/flexinale/backoffice/api/rest/FilmRestController.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-backoffice/src/main/java/de/accso/flexinale/backoffice/api/rest/KinoKinoSaalRestController.java
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-modulith-1-onion/src/test/java/architecturetests
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-modulith-2-components/src/test/java/architecturetests
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-distributed/flexinale-distributed-test-architecture
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-distributed/flexinale-distributed-besucherportal/src/test/curl
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-distributed/flexinale-distributed-backoffice/src/test/curl
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-distributed/flexinale-distributed-ticketing/src/test/curl
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing_apicontract/src/main/java/de/accso/flexinale/ticketing/apicontract/event/TicketGekauftEvent.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing_apicontract/src/main/java/de/accso/flexinale/ticketing/apicontract/event/GutscheinEinloesenBeauftragtEvent.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing_apicontract/src/main/java/de/accso/flexinale/ticketing/apicontract/event/GutscheinEinloesenBeauftragtEvent.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing/src/main/java/de/accso/flexinale/ticketing/core/application/event/TicketPublisher.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/core/application/eventbus/EventContextHolder.java

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

39 Distributed

40 Distributed

41 Alle

42 Modulith-1,
Modulith-2 und
Distributed

43 Distributed

Korrekte Behandlung von
PredecessorEventContext /
Correlation ID fiir synchronen
Event Bus: Dazu eigene
Implementierung des
EventContextHolder fur den
synchronen Fall. Zahler, wie oft
er gesetzt wurde.

Correlation ID sollen synchron ausfiihrbar sein.

Hinweis: Diese Implementierung
funktioniert, wenn es zu einer
Zeit nur maximal einen
EventContext gibt. Fur mehrere
ware ein Stack nétig.

Der passende
EventContextHolder (synchron /
asynchron) wird im jeweiligen
Eventbus gesetzt.

Erlaube Registrierung
ungetypter "Generic"
Eventsubscriber, um alle Events
zu erhalten.

z.B. fur ein Auditlog, das samtliche Events loggen soll.

Kafka-Konfiguration: Consumer Dadurch lesen
auf "earliest” umgestellt (aber

siehe auch unten bei #43; . . -~ .
) 1. bei erstmaliger subscription die Consumer alle

Events im Topic (es existiert noch kein Offset)
2. bei erneuter subscription die Events seit dem
letzten Lesen.

Kein ID-Suffix mehr in
Consumer Groups bei
Subscription an Topics

Die Anwendungen mussen nun nicht mehr in einer
bestimmten Reihenfolge gestartet werden.

Die Flexinale selbst kann nun "dockerisiert” werden.
AufRerdem gibt es dazu build-Skripte und Compose-
Skripte zum Starten.

Docker-Build-Files + Skripte fir
Flexinale erstellt

! In Distributed funktioniert leider das Compose nicht.
Die Flexnale-Applikationen finden Kafka nicht. Problem
unklar.

Typisierte Attribute,
insbesondere fiir Version und Id

Attribute sind nun typisiert. Statt "Roh"-Typen wie Integer
und String werden nun explizite Typen benutzt:

1. Diese Typen sind Records und Teil der
“umgebenden Klasse", also nicht in separaten
Dateien.

2. Id ist ein Record des Interfaces Identifiable

3. Version ist ein Record des Interfaces Versionable

Einschrankungen:

1. In den Persistenz-Klassen wurden bewusst die
Roh-Typen weiter benutzt, da man sonst das
Hibernate-Mapping hatte erweitern miissen.

2. Typisierte Attribute werden daher benutzt in:
Domain-Klassen, TO-Klassen, Event-Klassen

3. Daher wurden insbesondere umgestellt: Modulith-
1, Modulith-2 und Distributed.

Es gibt dazu nun Architekturtests, die auf die Typisierung
der Attribute prufen, z.B. "Wird in einer Domain-Klasse
eine ID-Klasse benutzt anstelle eines Strings?"

Kafka-Konfiguration: Consumer
sind nun in Consumer-Gruppen
und geben an, wie sie bei Start
lesen wollen

Wird Kafka als verteilter, asynchroner Bus benutzt, so gibt
nun jeder Subscriber an:

1) In welcher Gruppe bin ich? Als Gruppen sind aktuell
die Application-Namen ("besucherportal”, "ticketing”, ...
fest vorgegeben. Zum Beispiel sind alle Subscriber im
Besucherportal in einer Gruppe.

Lost diese Probleme:

1. Consumergroup in Kafka
hatte die technische
Adapter-Klasse "KafkaCon
sumerAdapter" im Namen
der ConsumerGroup

2. Ohne UUID-Suffix in der

2) Wie soll das Startverhalten fiir die Subscription
aussehen? Mdglich sind eine der folgenden drei
Optionen:

Il (re)read all nessages fromthe EventBus

Consumer-Group hiessen /?ffromot he very beginning (i.e. from
haben Subscriber in ;)/ Is::t Ka: ka this is
Besucherportal und -

p /1 for a new ConsunerGoup - "earliest".

Ticketing gleich nur einer
erhélt Stammdaten

. Mit UUID-Suffix werden
nach Restart /
Wiederanlauf (weil
"earliest") alle
Bewegdaten (z.B.
GutscheinEinloesen-
Auftrage) nochmal
verarbeitet.

START_READI NG_FROM BEG NNI NG,

w

/'l read all nessages fromnow on (so don't
/1 (re)read anything published before now)
/1 In Kafka this is -

/1 for a new Consumer Group -
START_READI NG_FROM_NOW

"latest".

Il read all
Il starting where we left off
Il (so last offset we had + 1)
Il (if we had not connected before at all:
start

I/ frombeginning, i.e. fromoffset 0)

Il In Kafka this is - for a known
Consuner Group -

/1 the default.

START_READI NG_FROM LAST_TI ME

messages fromthe EventBus,
last tine

Man muss also explizit
unterscheiden, welchen Typ der
Subscriber hat und wie er mit
den Daten in einem Topic (als
Stammdaten (i.d.R. immer alles
neu einlesen) oder als

Implementierung des Interface EventContextHolder durch InMemorySyncEventC
ontextHolder.

Eventbusse mit jeweils passendem EventContextHolder:

1. KafkaAsyncEventBus
2. InMemorySyncEventBus

Anderung in KafkaConfiguration.java

In den jeweiligen infrastructure-Verzeichnissen auf oberster Ebene der
Varianten, bzw. in distributed in den Applikations-Projekten fiir Besucherportal /
Backoffice / Ticketing

Beispiel: Domain-Klasse Film in Modulith-2

public class Film

inpl emrents ldentifiable, Versionable, Equal sByContent {

public record Titel (String raw
RawWw apper <String> {}

public record IndbUrl (String raw)
RawW apper <Stri ng> {}

public record DauerlnM nuten(lnteger raw
RawW apper <I nt eger > {}

i mpl enent s
i mpl enent s

i mpl enent s

public final 1d id;

public final Version version;
public Titel titel;

public IndbUrl indbUrl;

publi ¢ Dauer|nM nuten dauer|nM nuten;

Architekturtest in Modulith-2: Fiir Domain-Klassen, fiir Entity-Klassen, ftir TO-
Klassen

EventSubscriptionAtStart

Methode consumerConfig() in KafkaConfiguration

InMemorySyncEventBus und InMemorySyncEventBusSpy

Verteilmechanismus: Selection

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 29

https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/core/application/eventbus/EventContextHolder.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/InMemorySyncEventContextHolder.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/InMemorySyncEventContextHolder.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/KafkaAsyncEventBus.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/InMemorySyncEventBus.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/KafkaConfiguration.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-2-components/src/main/java/de/accso/flexinale/backoffice/core/domain/model/Film.java
http://InternalStructureOfDomainClassesUsingCorrectInterfacesAndAttributeTypesTest
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-2-components/src/test/java/architecturetests/InternalStructureOfEntityClassesUsingCorrectInterfacesAndAttributeTypesTest.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-2-components/src/test/java/architecturetests/InternalStructureOfTOClassesUsingCorrectInterfacesAndAttributeTypesTest.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-2-components/src/test/java/architecturetests/InternalStructureOfTOClassesUsingCorrectInterfacesAndAttributeTypesTest.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/core/application/eventbus/EventSubscriptionAtStart.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/KafkaConfiguration.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/InMemorySyncEventBus.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/InMemorySyncEventBusSpy.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/shared_kernel/Selection.java

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Bewegdaten (i.d.R. nur die
neuesten Daten neu einlesen)
umgehen soll.

Wegen Problem 2. hatten wir
zwischenzeitlich mal Anderung
#40 (UUID-Suffix, earliest)
reaktiviert, aber damit andere
Probleme, siehe oben.

44 Distributed Datenbank-Schemata aufgeteilt
45 Modulith-1, Onion-Refactoring
Modulith-2 und
Distributed

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Die InMemory-Bus-Variante beriicksichtigt ebenfalls das
Startverhalten und die Consumergruppen. Anders als
vorher bekommen also nicht mehr alle Subscriber auf
einen Event-Typ ein Event als Broadcast zugeschickt,
falls sie in der gleichen Gruppe sind (dabei sind
unterschiedliche Verteilalgorithmen méglich, i.d.R. ist
"RoundRobin" sinnvoll, sprich nur ein Subscriber in der
Gruppe bekommt die Nachricht, danach der nachste etc.).

Damit unterscheidet sich die InMemory-Variante von
Kafka nur noch:

1. Kafka ist asynchron - InMemory ist synchron

2. Kafka hat Partitionen - InMemory nicht

3. Kafka macht automatische Verteilung der
Consumer Uber Partitionen - InMemory macht das
Uber den eingestellten Verteilmechanismus
("Selection")

Jeder Service hat nun sein eigenes Datenbank-Schema
(weiterhin jedoch in der gleichen Infrastruktur: Es gibt
weiterhin nur eine Postgres-DB):

1. besucherportal: distributed-besucherportal: Enthalt
die Benutzer-Tabelle (fiir A&A)

2. backoffice: distributed-backoffice: Enthéllt die
Benutzer-Tabelle (fiir A&A), sowie Film, Kino,
Kinosaal, Vorfuehrung

3. ticketing: distributed-ticketing: Enthélt die Tabellen
Kontingent und Ticket.

Fir die integrierten tests (test-integrated) gibt es ein
weiteres Schema, das alle tabellen enthalt: distributed-
test.

Die Testdata-Loader wurden ebenfalls entsprechend
angepasst

Wir haben die Onion-Struktur in M1, M2 und D korrigiert
und i.W. restriktiver gemacht:

1. Ringe darf man nicht mehr Giberspringen

a. Insbesondere diirfen domai n. servi ces noch
von appl i cat i on genutzt werden (nicht mehr
aus api).

b. Das Domain-Model darf aber weiterhin auch
von api rein lesend genutzt werden (daher dort
nun alle Klassen immutable, dazu Anderungen
an Kont i ngent).

. Die Transaktionskontrolle liegt ausschlie3lich in ap
plication.

. api nach "in" und "out" getrennt: In "in" sind Rest-
und Web-Controller sowie die Event-Subscriber. In

"out" sind die Event-Publisher.

N

w

Dazu

[N

. Architekturtests angepasst (bei der Gelegenheit
auch geéndert: Nur noch eine ausgehende
Richtung der Abhangigkeiten sind modelliert / wird
gepruft, bisher waren das redundant die
ausgehenden und die eingehenden
Abhangigkeiten).

2. Neue Services in appl i cat i on erstellt. Diese

sind nun mit @ ansact i onal -annotiert.

In Distributed: Event-Nutz/Metadaten werden (wie

bisher) in appl i cat i on aufbereitet, dem

Publisher ubergeben (der aber nun ein Interface

implementiert, das in appl i cati on liegt &hnlich

Dao-Interface und Implementierung in per si st en

ce.

api contract umbenanntin api _contract

(analog zu api _i n und api _out)

. cor e abgeschafft, appl i cati on und domai n
liegen “eins héher"

w

>

o

Bewusst nicht gemacht:

1. Logging nur in Application erlauben. (Das ware
sehr aufwendig; auBerdem ist es auch in APl und
ggf. in Domain mal sinnvoll zu loggen)

30

	Kapitel 7 Case Study Flexinale

