iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Kapitel 2 Motivation

albion.eu www.tectrain.ch www.accso.de

A\ JLsion tec ' == ACCSO

STRATEGY TO CAPABILITY t ra | m

< Kapitel 1 Grundlegendes zum Modul FLEX Kapitel 3 Modularisierung >

Kapitel 2 Motivation

©® £ ExLehrplan

2 Motivation

Dauer: 120 Min Ubungszeit: Keine

2.1 Begriffe und Konzepte

Verfugbarkeit, Zuverlassigkeit, Time-to-Market, Flexibilitat, Vorhersagbarkeit, Reproduzierbarkeit, Homogenisierung der Stages, Internet
/Web-Scale, verteilte Systeme, Parallelisierbarkeit der Feature-Entwicklung, Evolution der Architektur (Build for Replacement),
Heterogenitat, Automatisierbarkeit.

2.2 Lernziele

2.2.1 Was sollen die Teilnehmer kénnen?

® Architekturen kénnen auf unterschiedliche Qualitatsziele hin optimiert werden. In diesem Modul lernen die Teilnehmer, wie sie flexible
Architekturen erstellen, die schnelles Deployment und damit schnelles Feedback aus der Anwendung des Systems erlauben.

® Sie haben die Treiber fur die Architektur-Typen verstanden, die in diesem Lehrplanmodul vermittelt werden, welche Konsequenzen
die Treiber fur die Architekturen haben und wie die Wechselwirkung der Architekturen mit Organisation, Prozessen und Technologien
ist.

® Sie haben die Tradeoffs der vorgestellten Architektur-Typen (mindestens Microservices, Self Contained Systems und Deployment
Monolithen) verstanden und kénnen diese sowohl vermitteln als auch im Rahmen konkreter Projekte/Systementwicklungen
anwenden, um angemessene Architekturentscheidungen zu treffen.

2.2.2 Was sollen die Teilnehmer verstehen?

* Auf die Fahigkeit, neue Features schnell in Produktion bringen zu kdnnen, hat die Architektur entscheidenden Einfluss.

® Abhéangigkeiten zwischen Komponenten, die von unterschiedlichen Entwicklungsteams verantwortet werden, beeinflussen die Dauer,
bis Software in Produktion gebracht werden kann, weil sie die Kommunikationsaufwénde erhdhen und sich Verzégerungen
fortpflanzen.

® Die Automatisierung von Aktivitaten (wie z. B. Test- und Deployment-Prozesse) erhdht die Reproduzierbarkeit, Vorhersagbarkeit und
Ergebnisqualitat dieser Prozesse. Das kann zu einer Verbesserung des gesamten Entwicklungsprozesses fiihren.

® Die Vereinheitlichung der verschiedenen Umgebungen (z. B. Entwicklung, Test, QA, Produktion) reduziert das Risiko von spéat
entdeckten und (in anderen Umgebungen) nicht reproduzierbaren Fehlern aufgrund unterschiedlicher Konfigurationen.

® Die Vereinheitlichung und Automatisierung sind wesentliche Aspekte von Continuous Delivery.

® Continuous Integration ist eine Voraussetzung fur Continuous Delivery.

® Eine geeignete Architektur ist die Voraussetzung fur eine Parallelisierbarkeit der Entwicklung sowie die unabhéngige Inbetriebnahme
von eigenstandigen Bausteinen. Das kénnen, miissen aber nicht ,Services" sein.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 1

https://albion.eu/
http://www.tectrain.ch
http://www.accso.de
https://accso.atlassian.net/wiki/spaces/ISFLX/pages/132941383/Kapitel+1+Grundlegendes+zum+Modul+FLEX
https://accso.atlassian.net/wiki/spaces/ISFLX/pages/132941328/Kapitel+3+Modularisierung

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

0. Einige Anderungsszenarien lassen sich leichter in monolithischen Architekturen umsetzen. Andere Anderungsszenarien lassen sich
leichter in verteilten Service-Architekturen umsetzen. Beide Anséatze konnen kombiniert werden.
® Es gibt unterschiedliche Arten der Isolation mit unterschiedlichen Vorteilen. Beispielsweise kann der Ausfall auf eine Komponente
begrenzt werden oder Anderungen kénnen auf eine Komponente begrenzt werden.
® Bestimmte Arten der Isolation sind zwischen Prozessen mit Remote-Kommunikation deutlich einfacher umzusetzen.
® Remote-Kommunikation hat aber Nachteile — z. B. viele neue Fehlerquellen.

2.2.3 Was sollen die Teilnehmer kennen?

Gesetz von Conway

Partitionierbarkeit als Qualitadtsmerkmal

Durchlaufzeiten durch die IT-Wertschopfungskette als Wettbewerbsfaktor
Aufbau einer Continuous-Delivery-Pipeline

Die verschiedenen Test-Phasen in einer Continuous-Delivery-Pipeline

2.3 Referenzen

® Jez Humble, David Farley: Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation,
Addison-Wesley, 2010, ISBN 978-0-32160-191-9

® Eberhard Wolff: Continuous Delivery: Continuous Delivery: Der pragmatische Einstieg, dpunkt, 2014, ISBN 978-3-86490-208-6

® Jez Humble, Barry O'Reilly, Joanne Molesky: Lean Enterprise: Adopting Continuous Delivery, DevOps, and Lean Startup at Scale, O’
Reilly 2014, ISBN 978-1-44936-842-5

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 2

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

Inhalte

® Kapitel 2 Motivation
® (A) Architekturarbeit: Design fur Anforderungen

1. Architekturarbeit mit der Architekturbrezel
2. Die Architektur muss hinsichtlich Qualitatsattributen optimiert werden - abhangig von den Anforderungen
3. Typische Tradeoffs

4. Schlisselprinzip 1: Aufteilung in kleinere Teile - Die Notwendigkeit von Modularisierung, Partitionierung und Entkopplung auf allen
Ebenen

5. Schlisselprinzip 2: Friihzeitige und reproduzierbare Testergebnisse - Der Bedarf fir (Test-)Automatisierung und einfachen und immer-
gleichen Setups

® (B) ISO 25010: Definition der Qualitatseigenschaften
® 1. Warum Qualitatseigenschaften?
® 2. Qualitatsmodell der ISO 25010

3. Uberblick Uiber Qualititseigenschaften, aus der ISO-Norm (Englisch)
4.1S0-25010 - Update von 2023
5. Qualitatsszenarien

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 3

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

(A) Architekturarbeit: Design fur Anforderungen

1. Architekturarbeit mit der Architekturbrezel

Info
Stefan Toth: "Vorgehensmuster fiir Softwarearchitektur. Kombinierbare Praktiken in Zeiten von Agile und Lean". https://www.hanser-elibrary.
com/doi/book/10.3139/9783446460096

In einem iterativen und fortlaufenden Prozess werden Anforderungen an die Software gesammelt, priorisiert und in eine Architektur umgesetzt
(einschlieBlich Feedback und Reflexion).

Input und Feedback kommen von verschiedenen Stakeholdern (Entwicklungsteam, Benutzer, Business, Betrieb, Sicherheitsteam, Management
etc.).

Der Gesamtprozess lasst sich am besten mit der "Architekturbrezel" darstellen, siehe nachstehendes Bild. Dabei ist insbesondere Wert auf einen
effizienten und effektiven Gesamtprozess zu legen, um die Durchlaufzeiten durch die IT-Wertschopfungskette gezielt zu optimieren.

Abbildung: "Architekturbrezel"
(Quelle: Stefan Toth, "Vorgehensmuster fir Softwarearchitektur. Kombinierbare Praktiken in Zeiten von Agile und Lean")

2. Die Architektur muss hinsichtlich Qualitatsattributen optimiert werden - abhangig von den Anforderungen

Anforderungen sind typischerweise Qualitatsattribute - oder lassen sich auf diese zurtickfiihren, wie weiter unten (und im Rest der FLEX-
Schulung) ausfihrlich beschrieben wird.

Solche Anforderungen mussen spezifiziert werden - je préziser, desto besser. Je messbarer, desto besser. Es ist eine der - wenn nicht die -
wichtigste(n) Aufgabe(n) eines Architekten, relevante Anforderungen und Informationen zu sammeln, zu konsolidieren, zu verstehen und diese
im architektonischen Entwurf umzusetzen.

Manchmal sind Anforderungen nicht einfach zu messen oder zu vage wie z.B. Verfugbarkeit, Zuverlassigkeit, Time-to-Market, Flexibilitat,
Vorhersagbarkeit, Reproduzierbarkeit, Homogenisierung der Stages, Internet/Web-Scale, verteilte Systeme, Parallelisierbarkeit der Feature-
Entwicklung, Evolution der Architektur (Build for Replacement), Heterogenitét, Automatisierbarkeit.

Was diese Begriffe genau bedeuten und wie sie in der Software und ihrer Architektur angegangen werden, ist aber entscheidend. Prazisierung
Uber Qualitatsmerkmale ist nétig, siehe unten in Kapitel 2, Abschnitt (B).

3. Typische Tradeoffs

Architektonische Tradeoffs und Kompromisse beziehen sich auf die Entscheidungen, die wahrend des Entwurfs und der Entwicklung einer
Softwarearchitektur getroffen werden, um konkurrierende Ziele und Beschrankungen auszugleichen. Bei diesen Kompromissen geht es darum,
zwischen verschiedenen Designoptionen zu wéahlen, die unterschiedliche Vor- und Nachteile haben. Einige haufige architektonische
Kompromisse sind:

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 4

https://www.hanser-elibrary.com/doi/book/10.3139/9783446460096
https://www.hanser-elibrary.com/doi/book/10.3139/9783446460096

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

® Flexibilitat vs. Einfachheit: Ein sehr flexibles System kann komplexer und schwieriger zu verstehen und zu warten sein als ein "einfaches"
System, das z.B. als Monolith ohne Architekturprinzipien und Trennung von Zustéandigkeiten implementiert ist. Andererseits ist ein solches
"einfaches" System mdoglicherweise nicht in der Lage, alle Anforderungen bzw. wechselnde Bediirfnisse ausreichend gut zu erfiillen.

® Security vs. Benutzerfreundlichkeit: Die Verbesserung der Sicherheit kann dazu fuhren, dass ein System weniger gut benutzbar ist, und
umgekehrt. So kann beispielsweise das Hinzufligen zusétzlicher Authentifizierungs- oder Verschlisselungsfunktionen ein System zwar
sicherer, aber auch weniger benutzerfreundlich machen.

® Kosten vs. Qualitat: Manchmal stehen Kosten und Qualitat in einem umgekehrten Verhéltnis zueinander. Die Implementierung hochwertiger
Funktionen oder die Verwendung teurer Technologien kann die Kosten des Projekts steigern., umgekehrt aber notwendig sein, um die
geforderte Qualitét der Software zu erreichen oder sie zu erhéhen.

® Anpassbar vs. von der Stange ("Customizable vs off-the-shelf"): Die Verwendung von Off-the-Shelf-Komponenten kann Zeit und Geld
sparen, aber die Flexibilitat des Systems einschrénken. Eine mafRgeschneiderte Losung ist zwar flexibler, kann aber auch langfristig teurer
und zeitaufwandiger sein.

Diese Kompromisse sind oft ein Balanceakt zwischen den Zielen der Software, den Rahmenbedingungen und Beschrankungen von Produkt oder
Projekt und den Bediirfnissen der Stakeholder.

4. Schlusselprinzip 1: Aufteilung in kleinere Teile - Die Notwendigkeit von Modularisierung, Partitionierung und Entkopplung auf allen
Ebenen

Die Zerlegung eines Problems in kleinere Teile, auch bekannt als Dekomposition (auch Partitionierung, Teile&Herrsche, Divide&Congquer), ist ein
wesentlicher Aspekt von Softwareentwicklung und -architektur, da sie dazu beitragen kann, die Komplexitat zu bewaltigen und den
Gesamtentwurf des Systems zu verbessern. Durch die Aufteilung eines groRen Problems in kleinere, besser handhabbare Teile kdnnen die
Entwickler das Problem besser verstehen und I6sen und ein besser wartbares und flexibleres System schaffen.

Die Aufteilung eines Systems in kleinere, unabhéngige Komponenten oder Module ist entscheidend: Durch eine solche Partitionierung kénnen
Entwickler ein modulare(re)s Design erstellen, das einfach(er) zu verstehen, zu testen und zu warten ist. Die Partitionierung kann auch zur
Verbesserung der Skalierbarkeit beitragen, da bestimmte Teile des Systems unabh&ngig voneinander skaliert werden kénnen. Die Entkopplung
ist die zentrale Voraussetzung fur die Erflllung dieser Anforderung.

Griinde, warum Dekomposition in der Softwareentwicklung und -architektur wichtig ist:

® Modularitat und Modularisierung: Die Dekomposition erméglicht es Entwicklern, modulare, einzelne Komponenten zu erstellen, die in
verschiedenen Teilen des Systems wiederverwendet werden kdnnen. Dies erhéht die Flexibilitat und Wartbarkeit des Systems und verkirzt
die Gesamtentwicklungszeit.

® Leichter verstandlich: Durch die Aufteilung eines grof3en Problems in kleinere Teile wird es fur die Entwickler einfacher, das Problem und die
Losung zu verstehen. Jeder kleinere Teil kann unabhéngig untersucht, entworfen und implementiert werden.

® Leichter zu testen: Wenn ein Problem in kleinere Komponenten aufgeteilt wird, ist es einfacher, jede Komponente einzeln zu testen, wodurch
Fehler schneller erkannt und behoben werden kénnen.

® Skalierbarkeit: Dekomposition kann dazu beitragen, ein System skalierbar zu machen, wenn so Entwickler neue Funktionen hinzufiigen oder
bestimmte Teile des Systems unabhéangig voneinander skalieren kénnen.

® Klare Verantwortlichkeiten und Scoping: Die Zerlegung eines Problems in kleinere Teile tragt dazu bei, die Verantwortung jeder
Komponente klar zu definieren, was die Identifizierung und Behebung von Fehlern erleichtern und die Gesamtqualitat des Systems
verbessern kann.

®* Deployment und Releases kleinerer, voneinander unabhangiger Einheiten sind moglich, der Release-Prozesses wird flexibler.

Dekomposition ist das Kernprinzip einer stabilen und handhabbaren Architektur, bei der die Funktionalitat in kleine, unabhangige Teile
(Komponenten, Dienste usw.) aufgeteilt wird, die unabhangig voneinander entwickelt, eingesetzt und skaliert werden kdnnen.

Es ist wichtig zu beachten, dass die Dekomposition immer einen Balanceakt darstellt: Eine zu starke Dekomposition fuhrt i.d.R. zu erhohter
Komplexitat und erhéhtem Koordinationsaufwand, wahrend eine zu geringe Dekomposition dazu fiihrt, dass das System schwer zu verstehen, zu
testen und weiterzuentwickeln ist.

5. Schlusselprinzip 2: Frihzeitige und reproduzierbare Testergebnisse - Der Bedarf fur (Test-)Automatisierung und einfachen und
immer-gleichen Setups

Fruhzeitiges und reproduzierbares Testen ist bei der Software-Entwicklung und -Architektur hilfreich, da es wertvolle Informationen tber die
Funktionalitat und Qualitat des Systems liefert und dabei hilft, Fehler friihzeitig im Entwicklungsprozess zu erkennen und zu beheben.

® Durch frihzeitiges Testen erkennen und beheben Entwickler Fehler friihzeitig, bevor sie in spateren Phasen schwieriger und teurer zu
beheben sind. Dies tragt dazu bei, die Gesamtqualitit des Systems zu verbessern und verringert das Risiko, dass bei Anderungen am
System neue Fehler entstehen.

® Die Reproduzierbarkeit ist beim Testen von Software essentiell, denn nur sie garantiert Entwicklern, Fehler und Testergebnisse
nachzustellen und sicherzustellen, dass ein Fehler behoben ist und das System korrekt funktioniert. AuBerdem kénnen die Entwickler so das
System unter verschiedenen Bedingungen testen und sicherstellen, dass es sich wie erwartet verhalt. Insbesondere in einem verteilten
System sind integrative Tests nur schwer und aufwéndig reproduzierbar umzusetzen (siehe Kapitel 4, Abschnitt (1)).

® Die Automatisierung von Tests hilft enorm, um sicherzustellen, dass die Tests schnell und mit méglichst wenigen manuellen Eingriffen
durchgefiihrt werden kdnnen. Die Automatisierung ermdoglicht, Tests mehrfach, wiederholbar und in verschiedenen Umgebungen
auszufiihren, um insgesamt sicherzustellen, dass das System korrekt funktioniert. AuBerdem kénnen die Entwickler so Tests in
verschiedenen Phasen des Entwicklungsprozesses durchfiihren, z. B. wenn neuer Code libergeben wird oder neue Funktionen hinzugefiigt
werden.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 5

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

® Einfache und gleiche (oder zumindest &hnliche) Test-Setups sind wichtig, um die Durchfiihrung von Tests zu erleichtern und so
sicherzustellen, dass die Tests in gleichen/ahnlichen Umgebungen durchgefuhrt werden wie die, in denen das System eingesetzt werden soll
(Beispiel: Pra-Produktionsumgebung - hinsichtlich Verhalten, Sizing der Umgebung, Verhalten, Konfigurationen). Automatisierte, leicht
reproduzierbare und ahnliche Test-Setups ermdglichen, Probleme friihzeitig und mit minimalem Aufwand zu erkennen und sicherzustellen,
dass das System korrekt funktioniert und in der Produktion zuverlassig ist.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

(B) ISO 25010: Definition der Qualitatseigenschaften

1. Warum Qualitatseigenschaften?

Der Entwurf einer Software-Architektur ist kein Selbstzweck. Sie muss stattdessen Qualitatseigenschaften (veralteter Begriff: nicht-funktionale
Anforderungen) umsetzen. Es gibt verschiedene Quallititsmodelle wie z.B. die ISO-Norm 25010, die solche Qualitatseigenschaften
kategorisieren und herunterbrechen auf standardisierte Begriffe.

Damit wird ein Standard etabliert, mit dem Begriffe wie "Sicherheit", "Performance", "Wartbarkeit" etc. bestmdglich - wenn auch nicht ideal - in
eine klar definierte und im besten Falle messbare Form gebracht werden.

Eine "flexible Architektur" muss diese Qualitatseigenschaften beachten und Trade-offs zwischen ihnen priorisiert umsetzen. Eine konkrete
Messbarkeit kann z.B. liber Qualitatsszenarien erfolgen.

2. Qualitatsmodell der ISO 25010

Info

https://is025000.com/index.php/en/iso-25000-standards/iso-25010

https://de.wikipedia.org/wiki/ISO/IEC_9126

ISO/IEC 25010 ist eine internationale Norm, die einen gemeinsamen Rahmen fir die Beschreibung und Spezifikation der Qualitatseigenschaften
(-merkmale, -attribute) von Softwaresystemen bietet.

Die ISO-Norm definiert somit eine Reihe von Qualitatseigenschaften und Untereigenschaften, die Giblicherweise zur Bewertung der Qualitat von
Software verwendet werden, einschlieBlich Funktionalitat, Leistung, Benutzerfreundlichkeit, Zuverlassigkeit und Sicherheit.

3. Uberblick tiber Qualitatseigenschaften, aus der ISO-Norm (Englisch)

FUNCTIONAL
COMPLETENESS

FUNCTIONAL
CORRECTNESS

FUNCTIONAL
APPROPRIATENESS

is025000.com

TIME BEHAVIOUR

RESOURCE
UTILIZATION

CAPACITY

CO-EXISTENCE

INTEROPERABILITY

APPROPRIATENESS
RECOGNIZABILITY

LEARNABILITY

OPERABILITY

USER ERROR
PROTECTION

USER ENGAGEMENT

INCLUSIVITY

USER ASSISTANCE

SELF-
DESCRIPTIVENESS

FAULTLESSNESS

AVAILABILITY

FAULT TOLERANCE

RECOVERABILITY

CONFIDENTIALITY
INTEGRITY
NON-REPUDIATION
ACCOUNTABILITY
AUTHENTICITY

RESISTANCE

MODULARITY

REUSABILITY

ANALYSABILITY

MODIFIABILITY

TESTABILITY

ADAPTABILITY

SCALABILITY

INSTALLABILITY

REPLACEABILITY

OPERATIONAL
CONSTRAINT

RISK
IDENTIFICATION

FAIL SAFE
HAZARD WARNING

SAFE INTEGRATION

Abbildung: 1ISO25010 , 2023 - Norm fiir Qualitatseigenschaften, EN
(Quelle: https://is025000.com/images/figures/iso_25010_en.png)

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

https://iso25000.com/images/figures/iso_25010_en.png
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?start=0
https://de.wikipedia.org/wiki/ISO/IEC_9126

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Quality
Attribute,
aus
1SO25010
(EN), 2023

Functional
Suitability

Functional
completeness

Functional
correctness

Functional

Qualitatseigenschaft

(DE, eigene
Ubersetzung)

Funktionalitat

Funktionale
Vollstandigkeit

Funktionale Korrektheit,
Richtigkeit

Funktionale

appropriateness Angemessenheit

Performance
efficiency

Time behaviour
Resource
utilization

Capacity

Compatibility

Co-existence

Interoperability

Interaction
capability

Appropriatenes
s
recognizability

Learnability
Operability
User error

protection

User
engagement

Inclusivity

User
assistance

Self-
descriptiveness

Performanz, Effizienz

Zeitverhalten

Verbrauchsverhalten

Leistungsfahigkeit

Kompatibilitat

Ko-Existenz

Interoperabilitat

Erkennbarkeit der
Angemessenheit

Erlernbarkeit
Bedienbarkeit
Schutz vor
Fehlbedienung

Benutzerengagement

Inklusivitat

Benutzerunterstiitzung

Selbstbeschreibungsfahi
gkeit

1SO25010 Description (EN)

This characteristic represents the degree to which a product or system provides
functions that meet stated and implied needs when used under specified
conditions.

Degree to which the set of functions covers all the specified tasks and user objectives.

Degree to which a product or system provides the correct results with the needed degree
of precision.

Degree to which the functions facilitate the accomplishment of specified tasks and
objectives.

This characteristic represents the performance relative to the amount of
resources used under stated conditions.

Degree to which the response and processing times and throughput rates of a product or
system, when performing its functions, meet requirements.

Degree to which the amounts and types of resources used by a product or system, when
performing its functions, meet requirements.

Degree to which the maximum limits of a product or system parameter meet
requirements.

Degree to which a product, system or component can exchange information with
other products, systems or components, and/or perform its required functions
while sharing the same hardware or software environment.

Degree to which a product can perform its required functions efficiently while sharing a
common environment and resources with other products, without detrimental impact on
any other product.

Degree to which two or more systems, products or components can exchange
information and use the information that has been exchanged.

Degree to which a product or system can be interacted with by specified users to
exchange information ia the user interface to complete specific tasks in a variety
of contexts of use.

Appropriateness recognizability - Degree to which users can recognize whether a product
or system is appropriate for their needs.

Learnability - Degree to which the functions of a product or system can be learnt to be
used by specified users within a specified amount of time.

Operability - Degree to which a product or system has attributes that make it easy to
operate and control.

User error protection. Degree to which a system prevents users against operation errors.

Degree to which a user interface presents functions and information in an inviting and
motivating manner encouraging continued interaction.

Degree to which a product or system can be used by people of various backgrounds
(such as people of various ages, abilities, cultures, ethnicities, languages, genders,
economic situations, etc.).

Degree to which a product can be used by people with the widest range of characteristics
and capabilities to achieve specified goals in a specified context of use.

Degree to wich a product presents appropriate information, where needed by the user, to
make its capabilities and use immediately obvious to the user without excessive
interactions with a product or other resources (such as user documentation, help desks or

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Typ

Ausfihrungsquali
tat (zur Laufzeit
beobachtbar),
"execution
quality”

Evolutionsqualita
t (manifestiert in
der Struktur),
"evolution
quality”

Ausfiihrungsqualitét

Ausfiihrungsqualitét

Ausfiihrungsqualitat

Ausfiihrungsqualitét

Ausfiihrungsqualitat

Ausfiihrungsqualitéat

Ausfiihrungsqualitat

Ausfiihrungsqualitéat

Ausfiihrungsqualitéat

Ausfiihrungsqualitéat

Ausfiihrungsqualitét

Ausfiihrungsqualitét

Ausfiihrungsqualitét

Ausfiihrungsqualitét

Ausfiihrungsqualitat

Ausfiihrungsqualitéat

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Reliability

Faultnessless

Availability

Fault tolerance

Recoverability

Security

Confidentiality
Integrity

Non-
repudiation

Accountability

Authenticity

Resistance

Maintainability

Modularity

Reusability

Analysability

Modifiability

Testability

Flexibility

Adaptability

Scalability

Installability

Replaceability

Safety

Operational
Constraint

Zuverlassigkeit

Fehlerfreiheit

Verflugbarkeit

Fehlertoleranz

Wiederherstellbarkeit

Informationssicherheit

Vertraulichkeit
Integritat
Nichtabstreitbarkeit
Verfolgbarkeit
Authentizitat, Echtheit,
Glaubwiirdigkeit

Widerstand

Anderbarkeit

Modularitat

Wiederverwendbarkeit

Analysierbarkeit

Modifizierbarkeit

Prifbarkeit, Testbarkeit

Flexibilitat

Anpassbarkeit

Skalierbarkeit

Installierbarkeit

Austauschbarkeit

Betriebssicherheit

Betriebseinschréankung

other users).

Degree to which a system, product or component performs specified functions
under specified conditions for a specified period of time.

Degree to which a system, product or component meets needs for reliability under normal
operation.

Degree to which a system, product or component is operational and accessible when
required for use.

Degree to which a system, product or component operates as intended despite the
presence of hardware or software faults.

Degree to which, in the event of an interruption or a failure, a product or system can
recover the data directly affected and re-establish the desired state of the system.

Degree to which a product or system protects information and data so that
persons or other products or systems have the degree of data access appropriate
to their types and levels of authorization.

Degree to which a product or system ensures that data are accessible only to those
authorized to have access.

Degree to which a system, product or component prevents unauthorized access to, or
modification of, computer programs or data.

Degree to which actions or events can be proven to have taken place so that the events
or actions cannot be repudiated later.

Degree to which the actions of an entity can be traced uniquely to the entity.

Degree to which the identity of a subject or resource can be proved to be the one claimed.

Degree to which the product or system sustains operations while under attack from a
malicious actor.

This characteristic represents the degree of effectiveness and efficiency with
which a product or system can be modified to improve it, correct it or adapt it to
changes in environment, and in requirements.

Degree to which a system or computer program is composed of discrete components
such that a change to one component has minimal impact on other components.

Degree to which an asset can be used in more than one system, or in building other
assets.

Degree of effectiveness and efficiency with which it is possible to assess the impact on a
product or system of an intended change to one or more of its parts, or to diagnose a
product for deficiencies or causes of failures, or to identify parts to be modified.

Degree to which a product or system can be effectively and efficiently modified without
introducing defects or degrading existing product quality.

Degree of effectiveness and efficiency with which test criteria can be established for a
system, product or component and tests can be performed to determine whether those
criteria have been met.

Degree of effectiveness and efficiency with which a system, product or
component can be transferred from one hardware, software or other operational
or usage environment to another.

Degree to which a product or system can effectively and efficiently be adapted for
different or evolving hardware, software or other operational or usage environments.

Degree to which a product can handle growing or shrinking workloads or to adapt its
capacity to handle variability.

Degree of effectiveness and efficiency with which a product or system can be
successfully installed and/or uninstalled in a specified environment.

Degree to which a product can replace another specified software product for the same
purpose in the same environment.

This characteristic represents the degree to which a product under defined
conditions to avoid a state in which human life, health, property, or the
environment is endangered.

Degree to which a product or system constrains its operation to within safe parameters or
states when encountering operational hazard.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Ausfiihrungsqualitat

Ausfiihrungsqualitat

Ausfiihrungsqualitét

Ausfiihrungsqualitét

Ausfiihrungsqualitét

Ausfiihrungsqualitét

Ausfiihrungsqualitat

Ausfiihrungsqualitéat

Ausfiihrungsqualitéat

Ausfiihrungsqualitéat

Evolutionsqualitat

Evolutionsqualitat

Evolutionsqualitat

Evolutionsqualitat
Ausfiihrungsqualitét
/

Evolutionsqualitat

Ausfiihrungsqualitéat
/

Evolutionsqualitat

Ausfiihrungsqualitét

Ausfiihrungsqualitét

Ausfiihrungsqualitét

Ausfiihrungsqualitét

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Risk Risiko-Identifikation Degree to which a product can identify a course of events or operations that can expose Ausfiihrungsqualitét
Identification life, property or environment to unacceptable risk.
Fail Safe Fehlertoleranz Degree to which a product can automatically place itself in a safe operating mode, or to Ausfiihrungsqualitat
revert to a safe condition in the event of a failure.
Hazard Risiko- oder Degree to which a product or system provides warnings of unacceptable risks to Ausfiihrungsqualitat
Warning Gefahrenhinweis operations or internal controls so that they can react in sufficient time to sustain safe
operations.
Safe Sicherheitsgerechte Degree to which a product can maintain safety during and after integration with one or Ausfiihrungsqualitéat
Integration Integration more components.

4.1S0-25010 - Update von 2023

) Gernot Starke: "Shortcomings of ISO 25010", https://www.innog.com/en/articles/2023/02/iso-25010-shortcomings/

Die alte ISO-Norm von 2011 (hatte damals ISO 9126 ersetzt) hat einige Schwéchen, die oft kritisiert werden (“zu sperrig", "da fehlen relevante
Eigenschaften" wie Safety, "strikte Hierarchie ist fraglich", "praktischer Nutzen fraglich", "wie kann man das konstruktiv nutzen?", siehe Gernot

Starkes Blogbeitrag).

Mit der neuen 1SO-25010 von November 2023 sind einige Verbesserungen und Anderungen ggii. 2011 dazugekommen, darunter:
a) Neue Hauptkategorie "Safety" wurde aufgenommen:

® "Safety" meint Betriebssicherheit, d.h. den Schutz von Mensch und Umwelt vor physischem Schaden.
® "Security" betriebt die Informationssicherheit und damit in erster Linie den Schutz der Daten vor unberechtigtem Zugriff und Datenmissbrauch.

b) "Flexibility" (Flexibilitat) hat "Portability" (Ubertragbarkeit) ersetzt.

c) "Scalability" (Skalierbarkeit) wurde neu aufgenommen, bei "Flexibility".
5. Qualitatsszenarien

Info
Rick Kazman, Paul Clements, Len Bass Software Architecture in Practice, Third Edition

Qualitatsmodell (und Beispiel-Szenarien) von arc42: https://quality.arc42.org/

Software Architektur im Stream, Video zu "Qualitatsszenarien"

Mit Qualitatsszenarien lassen sich die (sonst abstrakten und schwammigen) Qualitatsanforderungen gut beschreiben und machen die
Anforderungen verfolgbar und messbar. Ein Qualitatsszenario besteht aus

Quelle des Stimulus, und Stimulus
betroffenes Artefakt
dessen Antwort, und Metrik fir die Antwort

°
°
°
® Kontext/ Umgebung

o Y
————— | Artifact | ———»
Stimulus Response
\ J /
Environment Response

Source

of Stimulus Measure

Abbildung: Qualitatsszenario
(Quelle: https://esb-dev.github.io/mat/saa-qua-bh.pdf , Folie 14)

Beispiel, verkirzt (von https://quality.arc42.org/)

® Stimulus: An authenticated user requests generation of the daily sales report in PDF format via the graphical user interface.
® Metrik: The system generates this report in less than 10 seconds.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 10

https://esb-dev.github.io/mat/saa-qua-bh.pdf
https://quality.arc42.org/
https://www.innoq.com/en/articles/2023/02/iso-25010-shortcomings/
https://quality.arc42.org/

	Kapitel 2 Motivation

