
iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

1 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Kapitel 2 Motivation
albion.eu www.tectrain.ch www.accso.de

< Kapitel 1 Grundlegendes zum Modul FLEX Kapitel 3 Modularisierung >

Kapitel 2 Motivation

FLEX Lehrplan

2 Motivation

Dauer: 120 Min Übungszeit: Keine

2.1 Begriffe und Konzepte

Verfügbarkeit, Zuverlässigkeit, Time-to-Market, Flexibilität, Vorhersagbarkeit, Reproduzierbarkeit, Homogenisierung der Stages, Internet
/Web-Scale, verteilte Systeme, Parallelisierbarkeit der Feature-Entwicklung, Evolution der Architektur (Build for Replacement),
Heterogenität, Automatisierbarkeit.

2.2 Lernziele

2.2.1 Was sollen die Teilnehmer können?

Architekturen können auf unterschiedliche Qualitätsziele hin optimiert werden. In diesem Modul lernen die Teilnehmer, wie sie flexible
Architekturen erstellen, die schnelles Deployment und damit schnelles Feedback aus der Anwendung des Systems erlauben.
Sie haben die Treiber für die Architektur-Typen verstanden, die in diesem Lehrplanmodul vermittelt werden, welche Konsequenzen
die Treiber für die Architekturen haben und wie die Wechselwirkung der Architekturen mit Organisation, Prozessen und Technologien
ist.
Sie haben die Tradeoffs der vorgestellten Architektur-Typen (mindestens Microservices, Self Contained Systems und Deployment
Monolithen) verstanden und können diese sowohl vermitteln als auch im Rahmen konkreter Projekte/Systementwicklungen
anwenden, um angemessene Architekturentscheidungen zu treffen.

2.2.2 Was sollen die Teilnehmer verstehen?

Auf die Fähigkeit, neue Features schnell in Produktion bringen zu können, hat die Architektur entscheidenden Einfluss.
Abhängigkeiten zwischen Komponenten, die von unterschiedlichen Entwicklungsteams verantwortet werden, beeinflussen die Dauer,
bis Software in Produktion gebracht werden kann, weil sie die Kommunikationsaufwände erhöhen und sich Verzögerungen
fortpflanzen.
Die Automatisierung von Aktivitäten (wie z. B. Test- und Deployment-Prozesse) erhöht die Reproduzierbarkeit, Vorhersagbarkeit und
Ergebnisqualität dieser Prozesse. Das kann zu einer Verbesserung des gesamten Entwicklungsprozesses führen.
Die Vereinheitlichung der verschiedenen Umgebungen (z. B. Entwicklung, Test, QA, Produktion) reduziert das Risiko von spät
entdeckten und (in anderen Umgebungen) nicht reproduzierbaren Fehlern aufgrund unterschiedlicher Konfigurationen.
Die Vereinheitlichung und Automatisierung sind wesentliche Aspekte von Continuous Delivery.
Continuous Integration ist eine Voraussetzung für Continuous Delivery.
Eine geeignete Architektur ist die Voraussetzung für eine Parallelisierbarkeit der Entwicklung sowie die unabhängige Inbetriebnahme
von eigenständigen Bausteinen. Das können, müssen aber nicht „Services“ sein.

https://albion.eu/
http://www.tectrain.ch
http://www.accso.de
https://accso.atlassian.net/wiki/spaces/ISFLX/pages/132941383/Kapitel+1+Grundlegendes+zum+Modul+FLEX
https://accso.atlassian.net/wiki/spaces/ISFLX/pages/132941328/Kapitel+3+Modularisierung

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

2 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Einige Änderungsszenarien lassen sich leichter in monolithischen Architekturen umsetzen. Andere Änderungsszenarien lassen sich
leichter in verteilten Service-Architekturen umsetzen. Beide Ansätze können kombiniert werden.
Es gibt unterschiedliche Arten der Isolation mit unterschiedlichen Vorteilen. Beispielsweise kann der Ausfall auf eine Komponente
begrenzt werden oder Änderungen können auf eine Komponente begrenzt werden.
Bestimmte Arten der Isolation sind zwischen Prozessen mit Remote-Kommunikation deutlich einfacher umzusetzen.
Remote-Kommunikation hat aber Nachteile – z. B. viele neue Fehlerquellen.

2.2.3 Was sollen die Teilnehmer kennen?

Gesetz von Conway
Partitionierbarkeit als Qualitätsmerkmal
Durchlaufzeiten durch die IT-Wertschöpfungskette als Wettbewerbsfaktor
Aufbau einer Continuous-Delivery-Pipeline
Die verschiedenen Test-Phasen in einer Continuous-Delivery-Pipeline

2.3 Referenzen

Jez Humble, David Farley: Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation,
Addison-Wesley, 2010, ISBN 978-0-32160-191-9
Eberhard Wolff: Continuous Delivery: Continuous Delivery: Der pragmatische Einstieg, dpunkt, 2014, ISBN 978-3-86490-208-6
Jez Humble, Barry O'Reilly, Joanne Molesky: Lean Enterprise: Adopting Continuous Delivery, DevOps, and Lean Startup at Scale, O’
Reilly 2014, ISBN 978-1-44936-842-5

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

3 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Inhalte

Kapitel 2 Motivation
(A) Architekturarbeit: Design für Anforderungen

1. Architekturarbeit mit der Architekturbrezel
2. Die Architektur muss hinsichtlich Qualitätsattributen optimiert werden - abhängig von den Anforderungen
3. Typische Tradeoffs
4. Schlüsselprinzip 1: Aufteilung in kleinere Teile - Die Notwendigkeit von Modularisierung, Partitionierung und Entkopplung auf allen
Ebenen
5. Schlüsselprinzip 2: Frühzeitige und reproduzierbare Testergebnisse - Der Bedarf für (Test-)Automatisierung und einfachen und immer-
gleichen Setups

(B) ISO 25010: Definition der Qualitätseigenschaften

1. Warum Qualitätseigenschaften?
2. Qualitätsmodell der ISO 25010
3. Überblick über Qualitätseigenschaften, aus der ISO-Norm (Englisch)
4. ISO-25010 - Update von 2023
5. Qualitätsszenarien

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

4 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

(A) Architekturarbeit: Design für Anforderungen

1. Architekturarbeit mit der Architekturbrezel

In einem iterativen und fortlaufenden Prozess werden Anforderungen an die Software gesammelt, priorisiert und in eine Architektur umgesetzt
(einschließlich Feedback und Reflexion).

Input und Feedback kommen von verschiedenen Stakeholdern (Entwicklungsteam, Benutzer, Business, Betrieb, Sicherheitsteam, Management
etc.).

Der Gesamtprozess lässt sich am besten mit der "Architekturbrezel" darstellen, siehe nachstehendes Bild. Dabei ist insbesondere Wert auf einen
effizienten effektiven Gesamtprozess zu legen, um die Durchlaufzeiten durch die IT-Wertschöpfungskette gezielt zu optimieren. und

Abbildung: "Architekturbrezel"
(Quelle: Stefan Toth, "Vorgehensmuster für Softwarearchitektur. Kombinierbare Praktiken in Zeiten von Agile und Lean")

2. Die Architektur muss hinsichtlich Qualitätsattributen optimiert werden - abhängig von den Anforderungen

Anforderungen sind typischerweise Qualitätsattribute - oder lassen sich auf diese zurückführen, wie weiter unten (und im Rest der FLEX-
Schulung) ausführlich beschrieben wird.

Solche Anforderungen müssen spezifiziert werden - je präziser, desto besser. Je messbarer, desto besser. Es ist eine der - wenn nicht die -
wichtigste(n) Aufgabe(n) eines Architekten, relevante Anforderungen und Informationen zu sammeln, zu konsolidieren, zu verstehen und diese
im architektonischen Entwurf umzusetzen.

Manchmal sind Anforderungen nicht einfach zu messen oder zu vage wie z.B. Verfügbarkeit, Zuverlässigkeit, Time-to-Market, Flexibilität,
Vorhersagbarkeit, Reproduzierbarkeit, Homogenisierung der Stages, Internet/Web-Scale, verteilte Systeme, Parallelisierbarkeit der Feature-
Entwicklung, Evolution der Architektur (Build for Replacement), Heterogenität, Automatisierbarkeit.

Was diese Begriffe genau bedeuten und wie sie in der Software und ihrer Architektur angegangen werden, ist aber entscheidend. Präzisierung
über Qualitätsmerkmale ist nötig, siehe unten in Kapitel 2, Abschnitt (B).

3. Typische Tradeoffs

Architektonische Tradeoffs und Kompromisse beziehen sich auf die Entscheidungen, die während des Entwurfs und der Entwicklung einer
Softwarearchitektur getroffen werden, um konkurrierende Ziele und Beschränkungen auszugleichen. Bei diesen Kompromissen geht es darum,
zwischen verschiedenen Designoptionen zu wählen, die unterschiedliche Vor- und Nachteile haben. Einige häufige architektonische
Kompromisse sind:

Info
Stefan Toth: "Vorgehensmuster für Softwarearchitektur. Kombinierbare Praktiken in Zeiten von Agile und Lean". https://www.hanser-elibrary.
com/doi/book/10.3139/9783446460096

https://www.hanser-elibrary.com/doi/book/10.3139/9783446460096
https://www.hanser-elibrary.com/doi/book/10.3139/9783446460096

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

5 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Flexibilität vs. Einfachheit: Ein sehr flexibles System kann komplexer und schwieriger zu verstehen und zu warten sein als ein "einfaches"
System, das z.B. als Monolith ohne Architekturprinzipien und Trennung von Zuständigkeiten implementiert ist. Andererseits ist ein solches
"einfaches" System möglicherweise nicht in der Lage, alle Anforderungen bzw. wechselnde Bedürfnisse ausreichend gut zu erfüllen.
Security vs. Benutzerfreundlichkeit: Die Verbesserung der Sicherheit kann dazu führen, dass ein System weniger gut benutzbar ist, und
umgekehrt. So kann beispielsweise das Hinzufügen zusätzlicher Authentifizierungs- oder Verschlüsselungsfunktionen ein System zwar
sicherer, aber auch weniger benutzerfreundlich machen.
Kosten vs. Qualität: Manchmal stehen Kosten und Qualität in einem umgekehrten Verhältnis zueinander. Die Implementierung hochwertiger
Funktionen oder die Verwendung teurer Technologien kann die Kosten des Projekts steigern., umgekehrt aber notwendig sein, um die
geforderte Qualität der Software zu erreichen oder sie zu erhöhen.
Anpassbar vs. von der Stange ("Customizable vs off-the-shelf"): Die Verwendung von Off-the-Shelf-Komponenten kann Zeit und Geld
sparen, aber die Flexibilität des Systems einschränken. Eine maßgeschneiderte Lösung ist zwar flexibler, kann aber auch langfristig teurer
und zeitaufwändiger sein.

Diese Kompromisse sind oft ein Balanceakt zwischen den Zielen der Software, den Rahmenbedingungen und Beschränkungen von Produkt oder
Projekt und den Bedürfnissen der Stakeholder.

4. Schlüsselprinzip 1: Aufteilung in kleinere Teile - Die Notwendigkeit von Modularisierung, Partitionierung und Entkopplung auf allen
Ebenen

Die Zerlegung eines Problems in kleinere Teile, auch bekannt als Dekomposition (auch Partitionierung, Teile&Herrsche, Divide&Conquer), ist ein
wesentlicher Aspekt von Softwareentwicklung und -architektur, da sie dazu beitragen kann, die Komplexität zu bewältigen und den
Gesamtentwurf des Systems zu verbessern. Durch die Aufteilung eines großen Problems in kleinere, besser handhabbare Teile können die
Entwickler das Problem besser verstehen und lösen und ein besser wartbares und flexibleres System schaffen.

Die Aufteilung eines Systems in kleinere, unabhängige Komponenten oder Module ist entscheidend: Durch eine solche Partitionierung können
Entwickler ein modulare(re)s Design erstellen, das einfach(er) zu verstehen, zu testen und zu warten ist. Die Partitionierung kann auch zur
Verbesserung der Skalierbarkeit beitragen, da bestimmte Teile des Systems unabhängig voneinander skaliert werden können. Die Entkopplung
ist die zentrale Voraussetzung für die Erfüllung dieser Anforderung.

Gründe, warum Dekomposition in der Softwareentwicklung und -architektur wichtig ist:

Modularität und Modularisierung: Die Dekomposition ermöglicht es Entwicklern, modulare, einzelne Komponenten zu erstellen, die in
verschiedenen Teilen des Systems wiederverwendet werden können. Dies erhöht die Flexibilität und Wartbarkeit des Systems und verkürzt
die Gesamtentwicklungszeit.
Leichter Durch die Aufteilung eines großen Problems in kleinere Teile wird es für die Entwickler einfacher, das Problem und die verständlich:
Lösung zu verstehen. Jeder kleinere Teil kann unabhängig untersucht, entworfen und implementiert werden.
Leichter zu Wenn ein Problem in kleinere Komponenten aufgeteilt wird, ist es einfacher, jede Komponente einzeln zu testen, wodurch testen:
Fehler schneller erkannt und behoben werden können.
Skalierbarkeit: Dekomposition kann dazu beitragen, ein System skalierbar zu machen, wenn so Entwickler neue Funktionen hinzufügen oder
bestimmte Teile des Systems unabhängig voneinander skalieren können.
Klare und Scoping: Die Zerlegung eines Problems in kleinere Teile trägt dazu bei, die Verantwortung jeder Verantwortlichkeiten
Komponente klar zu definieren, was die Identifizierung und Behebung von Fehlern erleichtern und die Gesamtqualität des Systems
verbessern kann.
Deployment und Releases kleinerer, voneinander unabhängiger Einheiten sind möglich, der Release-Prozesses wird flexibler.

Dekomposition ist das Kernprinzip einer stabilen und handhabbaren Architektur, bei der die Funktionalität in kleine, unabhängige Teile
(Komponenten, Dienste usw.) aufgeteilt wird, die unabhängig voneinander entwickelt, eingesetzt und skaliert werden können.

Es ist wichtig zu beachten, dass die Dekomposition immer einen Balanceakt darstellt: Eine zu starke Dekomposition führt i.d.R. zu erhöhter
Komplexität und erhöhtem Koordinationsaufwand, während eine zu geringe Dekomposition dazu führt, dass das System schwer zu verstehen, zu
testen und weiterzuentwickeln ist.

5. Schlüsselprinzip 2: Frühzeitige und reproduzierbare Testergebnisse - Der Bedarf für (Test-)Automatisierung und einfachen und
immer-gleichen Setups

Frühzeitiges und reproduzierbares Testen ist bei der Software-Entwicklung und -Architektur hilfreich, da es wertvolle Informationen über die
Funktionalität und Qualität des Systems liefert und dabei hilft, Fehler frühzeitig im Entwicklungsprozess zu erkennen und zu beheben.

Durch erkennen und beheben Entwickler Fehler frühzeitig, bevor sie in späteren Phasen schwieriger und teurer zu frühzeitiges Testen
beheben sind. Dies trägt dazu bei, die Gesamtqualität des Systems zu verbessern und verringert das Risiko, dass bei Änderungen am
System neue Fehler entstehen.
Die ist beim Testen von Software essentiell, denn nur sie garantiert Entwicklern, Fehler und Testergebnisse Reproduzierbarkeit
nachzustellen und sicherzustellen, dass ein Fehler behoben ist und das System korrekt funktioniert. Außerdem können die Entwickler so das
System unter verschiedenen Bedingungen testen und sicherstellen, dass es sich wie erwartet verhält. Insbesondere in einem verteilten
System sind integrative Tests nur schwer und aufwändig reproduzierbar umzusetzen (siehe Kapitel 4, Abschnitt (I)).
Die von Tests hilft enorm, um sicherzustellen, dass die Tests schnell und mit möglichst wenigen manuellen Eingriffen Automatisierung
durchgeführt werden können. Die Automatisierung ermöglicht, Tests mehrfach, wiederholbar und in verschiedenen Umgebungen
auszuführen, um insgesamt sicherzustellen, dass das System korrekt funktioniert. Außerdem können die Entwickler so Tests in
verschiedenen Phasen des Entwicklungsprozesses durchführen, z. B. wenn neuer Code übergeben wird oder neue Funktionen hinzugefügt
werden.

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

6 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Einfache und gleiche (oder zumindest ähnliche) sind wichtig, um die Durchführung von Tests zu erleichtern und so Test-Setups
sicherzustellen, dass die Tests in gleichen/ähnlichen Umgebungen durchgeführt werden wie die, in denen das System eingesetzt werden soll
(Beispiel: Prä-Produktionsumgebung - hinsichtlich Verhalten, Sizing der Umgebung, Verhalten, Konfigurationen). Automatisierte, leicht
reproduzierbare und ähnliche Test-Setups ermöglichen, Probleme frühzeitig und mit minimalem Aufwand zu erkennen und sicherzustellen,
dass das System korrekt funktioniert und in der Produktion zuverlässig ist.

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

7 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

(B) ISO 25010: Definition der Qualitätseigenschaften

1. Warum Qualitätseigenschaften?

Der Entwurf einer Software-Architektur ist kein Selbstzweck. Sie muss stattdessen Qualitätseigenschaften (veralteter Begriff: nicht-funktionale
Anforderungen) umsetzen. Es gibt verschiedene Quallitätsmodelle wie z.B. die ISO-Norm 25010, die solche Qualitätseigenschaften
kategorisieren und herunterbrechen auf standardisierte Begriffe.

Damit wird ein Standard etabliert, mit dem Begriffe wie "Sicherheit", "Performance", "Wartbarkeit" etc. bestmöglich - wenn auch nicht ideal - in
eine klar definierte und im besten Falle messbare Form gebracht werden.

Eine "flexible Architektur" muss diese Qualitätseigenschaften beachten und Trade-offs zwischen ihnen priorisiert umsetzen. Eine konkrete
Messbarkeit kann z.B. über Qualitätsszenarien erfolgen.

2. Qualitätsmodell der ISO 25010

ISO/IEC 25010 ist eine internationale Norm, die einen gemeinsamen Rahmen für die Beschreibung und Spezifikation der Qualitätseigenschaften
(-merkmale, -attribute) von Softwaresystemen bietet.

Die ISO-Norm definiert somit eine Reihe von Qualitätseigenschaften und Untereigenschaften, die üblicherweise zur Bewertung der Qualität von
Software verwendet werden, einschließlich Funktionalität, Leistung, Benutzerfreundlichkeit, Zuverlässigkeit und Sicherheit.

3. Überblick über Qualitätseigenschaften, aus der ISO-Norm (Englisch)

Abbildung: ISO25010 , 2023 - Norm für Qualitätseigenschaften, EN
(Quelle:)https://iso25000.com/images/figures/iso_25010_en.png

Info
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

https://de.wikipedia.org/wiki/ISO/IEC_9126

https://iso25000.com/images/figures/iso_25010_en.png
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?start=0
https://de.wikipedia.org/wiki/ISO/IEC_9126

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

8 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Quality
Attribute,
aus
ISO25010
(EN), 2023

Qualitätseigenschaft

(DE, eigene
Übersetzung)

ISO25010 Description (EN) Typ

Ausführungsquali
tät (zur Laufzeit
beobachtbar),
"execution
quality"

Evolutionsqualitä
t (manifestiert in
der Struktur),
"evolution
quality"

Functional
Suitability

Funktionalität This characteristic represents the degree to which a product or system provides
functions that meet stated and implied needs when used under specified
conditions.

Functional
completeness

Funktionale
Vollständigkeit

Degree to which the set of functions covers all the specified tasks and user objectives. Ausführungsqualität

Functional
correctness

Funktionale Korrektheit,
Richtigkeit

Degree to which a product or system provides the correct results with the needed degree
of precision.

Ausführungsqualität

Functional
appropriateness

Funktionale
Angemessenheit

Degree to which the functions facilitate the accomplishment of specified tasks and
objectives.

Ausführungsqualität

Performance
efficiency

Performanz, Effizienz This characteristic represents the performance relative to the amount of
resources used under stated conditions.

Time behaviour Zeitverhalten Degree to which the response and processing times and throughput rates of a product or
system, when performing its functions, meet requirements.

Ausführungsqualität

Resource
utilization

Verbrauchsverhalten Degree to which the amounts and types of resources used by a product or system, when
performing its functions, meet requirements.

Ausführungsqualität

Capacity Leistungsfähigkeit Degree to which the maximum limits of a product or system parameter meet
requirements.

Ausführungsqualität

Compatibility Kompatibilität Degree to which a product, system or component can exchange information with
other products, systems or components, and/or perform its required functions
while sharing the same hardware or software environment.

Co-existence Ko-Existenz Degree to which a product can perform its required functions efficiently while sharing a
common environment and resources with other products, without detrimental impact on
any other product.

Ausführungsqualität

Interoperability Interoperabilität Degree to which two or more systems, products or components can exchange
information and use the information that has been exchanged.

Ausführungsqualität

Interaction
capability

Degree to which a product or system can be interacted with by specified users to
exchange information ia the user interface to complete specific tasks in a variety
of contexts of use.

Appropriatenes
s
recognizability

Erkennbarkeit der
Angemessenheit

Appropriateness recognizability - Degree to which users can recognize whether a product
or system is appropriate for their needs.

Ausführungsqualität

Learnability Erlernbarkeit Learnability - Degree to which the functions of a product or system can be learnt to be
used by specified users within a specified amount of time.

Ausführungsqualität

Operability Bedienbarkeit Operability - Degree to which a product or system has attributes that make it easy to
operate and control.

Ausführungsqualität

User error
protection

Schutz vor
Fehlbedienung

User error protection. Degree to which a system prevents users against operation errors. Ausführungsqualität

User
engagement

Benutzerengagement Degree to which a user interface presents functions and information in an inviting and
motivating manner encouraging continued interaction.

Ausführungsqualität

Inclusivity Inklusivität Degree to which a product or system can be used by people of various backgrounds
(such as people of various ages, abilities, cultures, ethnicities, languages, genders,
economic situations, etc.).

Ausführungsqualität

User
assistance

Benutzerunterstützung Degree to which a product can be used by people with the widest range of characteristics
and capabilities to achieve specified goals in a specified context of use.

Ausführungsqualität

Self-
descriptiveness

Selbstbeschreibungsfähi
gkeit

Degree to wich a product presents appropriate information, where needed by the user, to
make its capabilities and use immediately obvious to the user without excessive
interactions with a product or other resources (such as user documentation, help desks or

Ausführungsqualität

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

9 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

other users).

Reliability Zuverlässigkeit Degree to which a system, product or component performs specified functions
under specified conditions for a specified period of time.

Faultnessless Fehlerfreiheit Degree to which a system, product or component meets needs for reliability under normal
operation.

Ausführungsqualität

Availability Verfügbarkeit Degree to which a system, product or component is operational and accessible when
required for use.

Ausführungsqualität

Fault tolerance Fehlertoleranz Degree to which a system, product or component operates as intended despite the
presence of hardware or software faults.

Ausführungsqualität

Recoverability Wiederherstellbarkeit Degree to which, in the event of an interruption or a failure, a product or system can
recover the data directly affected and re-establish the desired state of the system.

Ausführungsqualität

Security Informationssicherheit Degree to which a product or system protects information and data so that
persons or other products or systems have the degree of data access appropriate
to their types and levels of authorization.

Confidentiality Vertraulichkeit Degree to which a product or system ensures that data are accessible only to those
authorized to have access.

Ausführungsqualität

Integrity Integrität Degree to which a system, product or component prevents unauthorized access to, or
modification of, computer programs or data.

Ausführungsqualität

Non-
repudiation

Nichtabstreitbarkeit Degree to which actions or events can be proven to have taken place so that the events
or actions cannot be repudiated later.

Ausführungsqualität

Accountability Verfolgbarkeit Degree to which the actions of an entity can be traced uniquely to the entity. Ausführungsqualität

Authenticity Authentizität, Echtheit,
Glaubwürdigkeit

Degree to which the identity of a subject or resource can be proved to be the one claimed. Ausführungsqualität

Resistance Widerstand Degree to which the product or system sustains operations while under attack from a
malicious actor.

Ausführungsqualität

Maintainability Änderbarkeit This characteristic represents the degree of effectiveness and efficiency with
which a product or system can be modified to improve it, correct it or adapt it to
changes in environment, and in requirements.

Modularity Modularität Degree to which a system or computer program is composed of discrete components
such that a change to one component has minimal impact on other components.

Evolutionsqualität

Reusability Wiederverwendbarkeit Degree to which an asset can be used in more than one system, or in building other
assets.

Evolutionsqualität

Analysability Analysierbarkeit Degree of effectiveness and efficiency with which it is possible to assess the impact on a
product or system of an intended change to one or more of its parts, or to diagnose a
product for deficiencies or causes of failures, or to identify parts to be modified.

Evolutionsqualität

Modifiability Modifizierbarkeit Degree to which a product or system can be effectively and efficiently modified without
introducing defects or degrading existing product quality.

Evolutionsqualität

Testability Prüfbarkeit, Testbarkeit Degree of effectiveness and efficiency with which test criteria can be established for a
system, product or component and tests can be performed to determine whether those
criteria have been met.

Ausführungsqualität
/

Evolutionsqualität

Flexibility Flexibilität Degree of effectiveness and efficiency with which a system, product or
component can be transferred from one hardware, software or other operational
or usage environment to another.

Adaptability Anpassbarkeit Degree to which a product or system can effectively and efficiently be adapted for
different or evolving hardware, software or other operational or usage environments.

Ausführungsqualität
/

Evolutionsqualität

Scalability Skalierbarkeit Degree to which a product can handle growing or shrinking workloads or to adapt its
capacity to handle variability.

Ausführungsqualität

Installability Installierbarkeit Degree of effectiveness and efficiency with which a product or system can be
successfully installed and/or uninstalled in a specified environment.

Ausführungsqualität

Replaceability Austauschbarkeit Degree to which a product can replace another specified software product for the same
purpose in the same environment.

Ausführungsqualität

Safety Betriebssicherheit This characteristic represents the degree to which a product under defined
conditions to avoid a state in which human life, health, property, or the
environment is endangered.

Operational
Constraint

Betriebseinschränkung Degree to which a product or system constrains its operation to within safe parameters or
states when encountering operational hazard.

Ausführungsqualität

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

10 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Risk
Identification

Risiko-Identifikation Degree to which a product can identify a course of events or operations that can expose
life, property or environment to unacceptable risk.

Ausführungsqualität

Fail Safe Fehlertoleranz Degree to which a product can automatically place itself in a safe operating mode, or to
revert to a safe condition in the event of a failure.

Ausführungsqualität

Hazard
Warning

Risiko- oder
Gefahrenhinweis

Degree to which a product or system provides warnings of unacceptable risks to
operations or internal controls so that they can react in sufficient time to sustain safe
operations.

Ausführungsqualität

Safe
Integration

Sicherheitsgerechte
Integration

Degree to which a product can maintain safety during and after integration with one or
more components.

Ausführungsqualität

4. ISO-25010 - Update von 2023

Die alte ISO-Norm von 2011 (hatte damals ISO 9126 ersetzt) hat einige Schwächen, die oft kritisiert werden ("zu sperrig", "da fehlen relevante
Eigenschaften" wie Safety, "strikte Hierarchie ist fraglich", "praktischer Nutzen fraglich", "wie kann man das konstruktiv nutzen?", siehe Gernot
Starkes Blogbeitrag).

Mit der neuen ISO-25010 von November 2023 sind einige Verbesserungen und Änderungen ggü. 2011 dazugekommen, darunter:

a) Neue Hauptkategorie "Safety" wurde aufgenommen:

"Safety" meint Betriebssicherheit, d.h. den Schutz von Mensch und Umwelt vor physischem Schaden.
"Security" betriebt die Informationssicherheit und damit in erster Linie den Schutz der Daten vor unberechtigtem Zugriff und Datenmissbrauch.

b) "Flexibility" (Flexibilität) hat "Portability" (Übertragbarkeit) ersetzt.

c) "Scalability" (Skalierbarkeit) wurde neu aufgenommen, bei "Flexibility".

5. Qualitätsszenarien

Mit lassen sich die (sonst abstrakten und schwammigen) Qualitätsanforderungen gut beschreiben und machen die Qualitätsszenarien
Anforderungen verfolgbar und messbar. Ein Qualitätsszenario besteht aus

Quelle des Stimulus, und Stimulus
betroffenes Artefakt
dessen Antwort, und Metrik für die Antwort
Kontext / Umgebung

Abbildung: Qualitätsszenario
(Quelle: , Folie 14)https://esb-dev.github.io/mat/saa-qua-bh.pdf

Beispiel, verkürzt (von)https://quality.arc42.org/

Stimulus: An authenticated user requests generation of the daily sales report in PDF format via the graphical user interface.
Metrik: The system generates this report in less than 10 seconds.

Gernot Starke: "Shortcomings of ISO 25010", https://www.innoq.com/en/articles/2023/02/iso-25010-shortcomings/

Info
Rick Kazman, Paul Clements, Len Bass Software Architecture in Practice, Third Edition

Qualitätsmodell (und Beispiel-Szenarien) von arc42: https://quality.arc42.org/

Software Architektur im Stream, Video zu "Qualitätsszenarien"

https://esb-dev.github.io/mat/saa-qua-bh.pdf
https://quality.arc42.org/
https://www.innoq.com/en/articles/2023/02/iso-25010-shortcomings/
https://quality.arc42.org/

	Kapitel 2 Motivation

