iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Kapitel 6 Betrieb, Ueberwachung und Fehleranalyse

albion.eu www.tectrain.ch

A 4Ls0n 1eC

STRATEGY TO CAPABILITY t ra | n

< Kapitel 5 Installation und Roll Out

Kapitel 6 Betrieb, Ueberwachung und Fehleranalyse

© £ EX Lehrplan

6 Betrieb, Uberwachung und Fehleranalyse

Dauer: 90 Min Ubungszeit: 30 Min

6.1 Begriffe und Konzepte

Monitoring, Operations, Logging, Tracing, Metrics.
6.2 Lernziele

6.2.1 Was sollen die Teilnehmer kbnnen?

www.accso.de

== ACCSO

Kapitel 7 Case Study >

® Die Teilnehmer sollen ein Konzept grob skizzieren und verstehen kénnen, auf dessen Basis ein System uberwacht werden kann d. h.
den aktuellen Status zu beurteilen, Fehler und Abweichungen vom normalen Betrieb mdglichst zu vermeiden oder zumindest so friih

wie moglich zu erkennen zu behanden.

® Dabei kdnnen sie abhéngig vom konkreten Projekt-Szenario den Fokus im Konzept auf Logging, Monitoring und die dazu

notwendigen Daten legen.

® Die Teilnehmer sollen Architekturvorgaben so treffen kénnen, dass der Einsatz geeigneter Werkzeuge bestmdglich unterstitzt wird,

dabei jedoch angemessen mit Systemressourcen umgegangen wird.

6.2.2 Was sollen die Teilnehmer verstehen?

® Logging und Monitoring kann sowohl fachliche als auch technische Daten enthalten.

® Die richtige Auswahl von Daten ist zentral fiir ein zuverléassiges und sinnvolles Monitoring und Logging.
® Damit Systeme, insbesondere solche, die sich aus vielen einzelnen Teilsystemen zusammensetzen, betreibbar sind, muss die

Unterstiitzung des Betriebs mit hoher Prioritat Bestandteil der Architekturkonzepte sein.

® Damit eine moglichst hohe Transparenz erreicht wird, mussen sehr viele Daten erfasst, aber auch zielgruppengerecht voraggregiert

und auswertbar gemacht werden.

® Die Teilnehmer sollen verstehen, welche Informationen sie aus Log-Daten und welche sie (besser) durch Instrumentierung des

Codes mit Metrik-Sonden beziehen kdnnen.

® Die Teilnehmer sollen verstehen, wie eine typische zentralistische Logdaten-Verwaltung aufgebaut ist und welche Auswirkungen sie

auf die Architektur hat.

® Die Teilnehmer sollen verstehen, wie eine typische zentralistische Metriken-Pipeline aufgebaut ist (Erfassen, Sammeln & Samplen,
Persistieren, Abfragen, Visualisieren) und welche Auswirkungen sie auf die Architektur hat (Performance-Overhead,

Speicherverbrauch,...).

® Die Teilnehmer sollen die unterschiedlichen Mdglichkeiten von Logging, Monitoring und einer Operations DB (siehe M. Nygard,
Release IT!) verstehen, was man wofir einsetzt und wie man diese Werkzeuge sinnvoll kombiniert.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 1


https://albion.eu/
http://www.tectrain.ch
http://www.accso.de
https://accso.atlassian.net/wiki/spaces/ISFLX/pages/132941304/Kapitel+5+Installation+und+Roll+Out
https://accso.atlassian.net/wiki/spaces/ISFLX/pages/132941348/Kapitel+7+Case+Study+Flexinale

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

o 6.2.3 Was sollen die Teilnehmer kennen?

® \Werkzeuge fir zentralistische Logdaten-Verwaltung

® \Werkzeuge fir zentralistische Metriken-Verarbeitung

® Unterscheidung zwischen Geschafts-, Anwendungs- und Systemmetriken

® Bedeutung wichtiger, werkzeugunabhéangiger System- und Anwendungsmetriken

6.3 Referenzen

® Eberhard Wolff: Continuous Delivery: Continuous Delivery: Der pragmatische Einstieg, dpunkt, 2014, ISBN 978-3-86490-208-6

® Michael Nygard: Release It!: Design and Deploy Production-Ready Software, Pragmatic Programmers, 2007, ISBN 978-0-97873-921-
8

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 2



iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

Inhalte

® Kapitel 6 Betrieb, Ueberwachung und Fehleranalyse

MGV
* (B

Anforderungen - "Design for Operations"

1. Design for Operations

2. Was sind die Hauptunterschiede zwischen Monolithen, Modulithen und verteilten Systemen in Bezug auf betriebliche Aspekte?
3. Auswirkungen eines "betriebsorientierten” Entwurfs auf die Anwendung: Wie kann man den Code sauber halten?

Betrieb der Anwendung

1. Betriebsaufgaben

2. Monitoring, Logging, Tracing

3. Typische Aufgaben im Betrieb flr 1st, 2nd und 3rd Level Support
4. Zustandigkeiten des "Fachlichen" und "Technischen" Betriebs

® (C) Service Level Agreements, Incident Metrics

)
* B

G

* (©

* H

1. SLAs

2. Best Practices fiir das Monitoring von Performance und Verflgbarkeit
3. Uptime und Verfugbarkeit

3. Verfugbarkeit, Verfugbarkeitsklassen

4. Mean Time To Failure

5. Mean Time To Repair

Restart

1. Geplanter Restart
2. Ungeplanter Restart nach Fehler oder Crash der Anwendung
Monitoring

1. Was ist Monitoring?

2. Wie lassen sich Fehler und unerwiinschte Situationen beim Monitoring feststellen? Konkrete Fehlerszenarien vs. lang anhaltende
Trends

3. Uberblick tiber niitzliche Uberwachungs- und Betriebstools, insbesondere im Hinblick auf Java- und Spring-Boot-Anwendungen
4. Prometheus, Grafana und Micrometer fiir Java/Spring-Boot-Anwendungen kombinieren und einrichten

Logging, Tracing, Metrics

1. Logging

2. Tracing und Unterscheide im Vergleich zu Logging

3. Wann wird aktiv protokolliert, wann passiv uberwacht?

5. Was bedeutet die Verwendung solcher Metriken und Logging- und Tracing-Tools fur das Design einer Anwendung?

6. Auswirkungen und Folgen, Vor- und Nachteile, fir das Laufzeitverhalten der Anwendung beim Einsatz solcher Techniken

7. Wichtige Systemmetriken fiir Zustands- und Performance-Uberwachung von Anwendungen

8. DORA Metriken

9. Sammeln und Korrelieren der Log-Ausgaben: Empfohlene Tools fur Spring-Boot-Anwendungen

10. Verbreitete Tools fur die zentrale Verwaltung von Protokolldaten

11. Verbreitete Tools fur die zentrale Verwaltung von Metriken

12. Logging-Frameworks flr Java- und Spring-Boot-Anwendungen

Operations Database

1. Operations Database (Michael Nygard)
2. Analyse-Tracing und Metrik-Tools von der Applikation trennen
Cloud

1. Cloud-Native Design, typische Stacks und Patterns
2. Betriebstools, die in Cloud-Umgebungen wie AWS, Azure und Google Cloud verwendet werden
3. Cloud und laaS

4. laaS, PaaS, SaaS

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 3



iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

(A) Anforderungen - "Design for Operations"

1. Design for Operations

Im Design von Anwendungen muss der fachliche wie technische Betrieb von Tag 1 an mitgedacht werden. Dabei sind insbesondere die
folgenden Aspekte zu beriicksichtigen:

Skalierbarkeit: Die Fahigkeit des Systems, eine wachsende Zahl von Benutzern oder Anfragen ohne Leistungseinbuf3en zu bewaltigen.
Verfligbarkeit: Der Prozentsatz der Zeit, in der das System betriebsbereit und fur die Benutzer zuganglich ist.

Ausfallsicherheit: Die Fahigkeit des Systems, sich von Ausfallen zu erholen und den Betrieb aufrechtzuerhalten.

Leistung: Die Geschwindigkeit und Reaktionsféhigkeit des Systems auf Benutzeranfragen.

Sicherheit: Die Fahigkeit des Systems, vor unbefugtem Zugriff, VerstéRen und Datenverlusten zu schitzen.

Nachvollziehbarkeit: Die Fahigkeit, die Leistung, Nutzung und Fehlerprotokolle des Systems zu Uiberwachen, um Probleme zu erkennen und
zu beheben.

® Testbarkeit und Automatisierung: Die Fahigkeit, Aufgaben und Prozesse und Tests zu automatisieren, um menschliche Eingriffe zu
reduzieren und die Effizienz zu verbessern.

Es ist auch wichtig zu Gberlegen, wie das System langfristig eingesetzt, verwaltet und gewartet werden soll. Dazu gehéren Faktoren wie einfache
Bereitstellung, Aufriistbarkeit und die Verfiigbarkeit von Dokumentation und Support.

Flexibilitat durch Modularisierung und vor allem Verteilung in Services hat seinen Preis, vor allem in Form erhéhter Aufwénde im Betrieb. Ein
verteiltes System ist flexibel und skalierbar, l&sst sich aber nur mit erhdhten Aufwanden betreiben, weswegen Automatisierung,
Fehlerkorrekturen, Nachvollziehbarkeit etc. hier direkt mit gedacht werden mussen. Besonders relevante Qualitatseigenschaften sind dabei
Skalierbarkeit, Verfugbarkeit, Zuverlassigkeit, Fragen von Konsistenz und Sicherheit, Performance und Durchsatz. Hier gilt es, im
Anforderungsprozess auch direkt von Seiten des Betriebs zu erheben, abzustimmen, zu implementieren und zu testen.

2. Was sind die Hauptunterschiede zwischen Monolithen, Modulithen und verteilten Systemen in Bezug auf betriebliche Aspekte?
Die Hauptunterschiede zwischen Monolithen, Modulithen und verteilten Systemen in Bezug auf den Betrieb sind folgende:

® Monolith: In einer monolithischen Architektur sind alle Komponenten des Systems eng integriert und werden zusammen als eine Einheit
eingesetzt, damit auch als Einheit betrieben.

® Modulith: In einer Modulith-Architektur besteht das System aus mehreren lose gekoppelten Modulen, aber alle Module werden zusammen
als eine Einheit eingesetzt. Ein Modulith verhalt sich damit im Betrieb wie ein Monolith.

® Verteiltes System: In einer verteilten Architektur besteht das System aus mehreren unabhéngigen Knoten, die Uber ein Netz kommunizieren.

Die typischen Betriebsaufgaben unterscheiden sich in der Komplexitat und im Umfang:

* Deployment, Skalierung, Uberwachung, Erfassung von Metriken, Updates, Support ist in einem monolithischen System leichter.
® Dagegen skaliert es in der Regel nicht (so gut, siehe auch Scale Up vs Out unten).
® Auch ist die Verfligbarkeit eines Monolithen begrenzt.

3. Auswirkungen eines "betriebsorientierten" Entwurfs auf die Anwendung: Wie kann man den Code sauber halten?

Das Design von betrieblichen Aspekten hat einen Einfluss auf die Codestrukturen und -qualitat einer Anwendung. Ein gut konzipiertes
System, das die oben aufgefihrten Qualitatsmerkmale bericksichtigt, ist robuster, zuverlassiger und wartungsfreundlicher.

Typische Methoden, um den Code dennoch "sauber" zu halten, sind:

® Verwendung eines modularen Designs, bei dem verschiedene Funktionen in unterschiedliche Module oder Komponenten aufgeteilt werden,
die unabhéngig voneinander leicht verstanden, getestet und gewartet werden kénnen.

® Dies kann auch dazu beitragen, die Skalierbarkeit und Wartbarkeit zu verbessern, da es einfacher ist, Funktionen hinzuzufigen oder zu
ersetzen, ohne den Rest des Systems zu beeintrachtigen.

* AulRerdem ist es hilfreich, klare und konsistente Namenskonventionen zu verwenden, einen einheitlichen Codestil zu befolgen und
automatisierte Tools zur Uberpriifung der Codequalitat und von Fehlern einzusetzen.

Dabei sollte man den fachlichen Business Code von technischen Details und betrieblichen Funktionen trennen, wie z. B. tber:

® Die aspektorientierte Programmierung (AOP) ist ein Programmierparadigma, das die Trennung von bergreifenden Belangen wie
Protokollierung, Sicherheit und Fehlerbehandlung von der Kerngeschéftslogik einer Anwendung erméglicht. AOP kann dazu beitragen, den
Code sauber zu halten, indem es die Identifizierung und Verwaltung dieser querschnittlichen Belange ermdéglicht und die Menge an
dupliziertem Code reduziert.

® Das Konzept von Interceptoren kann ebenfalls helfen, den Code sauber zu halten, in dem an zentraler Stelle Ubergreifende Funktionen wie
Protokollierung und Sicherheit zentralisiert und wiederverwendbar implementiert sind und nicht den fachlichen Code "verschmutzen".

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 4



iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

AOP und Interceptoren sind mit Bedacht einzusetzen. Die "Magie" hinter solchen Strukturen passiert erst zur Laufzeit, z.B. per Reflection oder
Dynamic Proxies. Damit lassen sich die nétigen Abhéngigkeiten nicht (immer) erkennen, wenn z.B. statische Code-Analysen oder -Reviews
erfolgen. Auch die Analyse von Fehlern (z.B. Uber Stacktraces) ist aufwendiger.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 5



iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

(B) Betrieb der Anwendung

1. Betriebsaufgaben

In Bezug auf DevOps und cross-funktionale Teams ist es Ublich, dass die Verantwortung fur diese Aufgaben unter den Teammitgliedern
aufgeteilt wird (siehe Kapitel 5 (B)).

So kdnnen beispielsweise Entwickler fir das Schreiben von Code verantwortlich sein, der sich leicht iberwachen und automatisieren lasst,
wahrend sich Betriebsingenieure auf die Implementierung von Uberwachungs- und Automatisierungstools konzentrieren kénnen. Dariiber hinaus
ist es Ublich, dass ein Team einen zentralen Ansprechpartner fur alle betriebsbezogenen Aufgaben hat, der dafur verantwortlich ist, dass alle
Aufgaben ausgefiihrt werden und dass eine klare Kommunikation und Koordination im Team stattfindet. Wichtig ist auch ein klarer Prozess fur
das Management von Betriebs-Incidents, und das Team sollte klare Rollen und Verantwortlichkeiten fiir Notfélle festlegen.

Der Betrieb einer Anwendung umfasst in der Regel eine Vielzahl von Betriebsaufgaben, um sicherzustellen, dass die Anwendung reibungslos
lauft und die Anforderungen der Benutzer erfillt, darunter:

® Maintenance/Wartung: RegelmaRiges Einspielen von Updates und Sicherheitspatches fir die Anwendung und ihre Abhangigkeiten.

® Das Deployment umfasst in der Regel das Deployment der gesamten Anwendung auf einen neuen Server oder das Update der Anwendung
auf einem vorhandenen Server.

* Uberwachung, siehe unten

® Backup und Recovery: RegelmaRige Sicherung der Anwendungsdaten und Konfiguration von Disaster-Recovery-Verfahren.

® Skalierung: Verwaltung der Kapazitat der Anwendung zur Bewadltigung einer steigenden Last, z. B. durch Hinzufligen weiterer Server oder
Anpassung der Anwendungskonfiguration.

® Automatisierung: Automatisierung sich wiederholender Aufgaben, wie z. B. Bereitstellungen und Backups, ist sinnvoll, um die Effizienz zu
steigern und das Risiko menschlicher Fehler zu verringern.

® Fehlersuche: Untersuchung und Behebung von Problemen, die in der Anwendung auftreten, z. B. Bugs und Leistungsengpéasse.

® Unterstlitzung: 1st, 2nd, 3rd Level Support - siehe unten

2. Monitoring, Logging, Tracing
Fiir die Uberwachung des Systems kommen v.a. zum Einsatz:
Monitoring:

* Kontinuierliche Uberwachung der Leistung der Anwendung, einschlieRlich CPU- und Speichernutzung, Antwortzeiten und Fehlerraten.
® Dies schliesst technische Kennzahlen wie auch fachliche Kennzahlen (KPIs) mit ein.
® In der Regel wird Monitoring durchgefuhrt als Mischung aus

® Kurzfrist- (aktuelle Ereignisse, aktuelles Systemverhalten) und
* |angfristdarstellung (Verhalten und Anderungen tber langeren Zeitraum wie Stunden oder Tage hinweg).

Logging:

® In einer Anwendung umfasst das Logging in der Regel das Sammeln und Speichern von Informationen Uber das Verhalten und die Leistung
der Anwendung.

® Dies kann Informationen wie Anwendungsprotokolle, Systemprotokolle und Zugriffsprotokolle umfassen.

® Logs werden zur Fehlersuche, Fehlerbehebung und Priifung verwendet.

® Diese Logs werden in der Regel an einem zentralen Ort gespeichert, z. B. auf einem Protokollserver oder in einer Datenbank.

Tracing:

® In einer Anwendung umfasst das Tracing in der Regel die Verfolgung des Flusses einer Anfrage durch die Anwendung und die Identifizierung
von Engpassen oder Fehlern.

® Dies kann Informationen wie Anforderungs- und Antwortzeiten und Call Stacks umfassen.

® Tracing kann zum Debugging, zur Fehlerbehebung und zur Leistungsoptimierung verwendet werden.

® Die Traces werden in der Regel an einem zentralen Ort gespeichert, z. B. auf einem Trace-Server oder in einer Datenbank

3. Typische Aufgaben im Betrieb fur 1st, 2nd und 3rd Level Support
Der 1st-Level-Support ist die erste Anlaufstelle fir Benutzer, die Probleme mit der Anwendung oder dem System haben. Seine Hauptaufgaben:

® Beantwortung von Benutzeranfragen und Behebung von grundlegenden Problemen
® Sammeln von Informationen Uber das Problem und ggf. Weiterleitung an das zustandige Team
® Bereitstellung von grundlegenden Anweisungen und Anleitungen fir die Nutzung der Anwendung oder des Systems

Der 2nd-Level-Support ist fur die Bearbeitung komplexerer Probleme zusténdig, die vom 1st-Level-Support nicht geldst werden. Seine
Hauptaufgaben:

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 6



iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Fehlersuche und Behebung fortgeschrittener technischer Probleme
Bereitstellung von technischem Fachwissen und Anleitung fir den 1st-Level-Support
Untersuchen und Diagnostizieren von Problemen

L]
L]
L]
® Koordinierung mit anderen Teams oder Anbietern zur L6sung von Problemen

Der 3rd-Level-Support ist fir die Bearbeitung der komplexesten Probleme und deren Behebung an der Wurzel zusténdig. Seine Hauptaufgaben:

® Bereitstellung von fundiertem technischem Fachwissen und Anleitung fur den 2nd-Level-Support

® Untersuchung und Behebung von Problemen an der Wurzel
® Entwicklung und Umsetzung von Lésungen, um zu verhindern, dass ahnliche Probleme in Zukunft auftreten

® Mitwirkung an der Konzeption und Implementierung neuer Systeme und Anwendungen

Die Support-Level "verschwimmen" im typischen DevOps-Organiationsmodell, insbesondere zwischen 2nd- und 3rd-Level-Support, da dort cross-
funktional zusammengearbeitet wird - sowohl zwischen Betrieb und Entwicklung als auch zwischen technischem und fachlichem Betrieb.

4. Zustandigkeiten des "Fachlichen" und "Technischen" Betriebs

Der Betrieb ist dafir verantwortlich, dass das Tagesgeschéft eines Unternehmens reibungslos und effizient ablauft. Dazu gehéren die
Verwaltung und Wartung der Systeme und Prozesse, die das Unternehmen unterstiitzen, sowie die Uberwachung der Mitarbeiter und

Ressourcen, die fur die Durchfihrung dieser Aktivitaten bendtigt werden.

® Dabei bezieht sich der "Fachliche Betrieb" auf den funktionalen oder technischen Betrieb des Unternehmens, wie z. B. das Management

von Geschéftsprozessen, Kundendienst und die Koordination von Ressourcen.
® Hingegen umfasst der "Technische Betrieb" die technischen oder IT-nahen Betriebsaufgaben des Unternehmens, z. B. die Verwaltung von

IT-Systemen und -Infrastruktur, einschlieBlich Hardware, Software und Netzwerken.

Solche Aufgaben kdnnen in einem klassischen Betriebsteam umgesetzt und ausgefiihrt werden (z.B. bei grof3en, formal operierenden
Unternehmen und Behdrden). Alternativ ist sind Platform Engineering und Dev Teams im Sinne von DevOps fur den Betrieb der Anwendung
verantwortlich (“You build it, you run it").

An den inhaltlichen Aufgaben andert sich nichts durch ein anderes organisatorisches Modell - die Aufgaben werden nur anders, in modernen
Organisationen kollaborativ und gemeinsam (“cross-funktional”) geldst.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten



iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

(C) Service Level Agreements, Incident Metrics

Info
https://www.atlassian.com/incident-management/kpis/common-metrics

https://www.informatik-aktuell.de/betrieb/verfuegbarkeit/hochverfuegbarkeit-und-downtime-eine-einfuehrung.html

https://www.informatik-aktuell.de/betrieb/verfuegbarkeit/hochverfuegbarkeit-und-downtime-metriken.html

1.SLAs

Service Level Agreements (SLAs) sind Vereinbarungen zwischen dem Anbieter eines Dienstes (z. B. einer Anwendung) und dem Kunden, in
denen festgelegt wird, welche Leistungen der Kunde erwarten kann. Zu den typischen SLAs einer Anwendung im Betrieb gehéren:

® Verfugbarkeit: Der prozentuale Anteil der Zeit, in der die Anwendung zuganglich und betriebsbereit ist, oft auf monatlicher oder jahrlicher
Basis gemessen.

® Reaktionszeit: Die Zeit, die die Anwendung bendtigt, um auf eine Benutzeranfrage zu reagieren, oft gemessen in Sekunden oder
Millisekunden.

¢ Durchsatz: Die Anzahl der Anfragen, die die Anwendung pro Sekunde oder pro Minute bearbeiten kann.

* Wiederherstellungszeit: Die Zeit, die die Anwendung bendtigt, um sich von einem Fehler oder Ausfall zu erholen, oft in Minuten oder
Stunden gemessen.

® Sicherheit: Das Maf} an Sicherheit, das die Anwendung bietet, z. B. die Einhaltung von Industriestandards oder Zertifizierungen.

® Support: Das Mal3 an Unterstitzung, das den Kunden geboten wird, z. B. die Verfugbarkeit eines Helpdesks oder die Reaktionszeit auf
Support-Anfragen.

SLAs sind fur den Betrieb wichtig, weil sie eine klare und messbare Mdglichkeit bieten, die Leistung einer Anwendung zu bewerten und Bereiche
zu identifizieren, in denen Verbesserungen nétig sind. AuRerdem bieten sie den Kunden die Moglichkeit, den Anbieter fur die Qualitat der
erbrachten Leistungen zur Rechenschaft zu ziehen.

2. Best Practices fur das Monitoring von Performance und Verfugbarkeit
Diese Best Practices empfehlen sich fir das Monitoring von Performance und Verfugbarkeit:

* Uberwachung wichtiger technischer Leistungsindikatoren wie Antwortzeiten, Fehlerraten und Ressourcenauslastung. Dies hilft, Probleme
der Anwendung schnell und friihzeitig zu erkennen und zu beheben.

® Verwendung eines zentralen Logging-Systems, um Protokolldaten aus allen Teilen der Anwendung zu sammeln und zu aggregieren. Dies
erleichtert das Durchsuchen und Analysieren von Protokolldaten sowie das Erkennen von Mustern und Trends im Verhalten der Anwendung.

® (Automatisierte) Alerts zur Benachrictigung, wenn bestimmte Schwellenwerte tiberschritten werden oder bestimmte Ereignisse eintreten. So

werden sich anbahnende Probleme schneller erkannt und Ausfallzeiten minimiert.

Hilfreich kann auch eine Kombination aus synthetischer und realer Benutzeriiberwachung sein, um ein vollstandiges Bild von der

Leistung und Verfiigbarkeit der Anwendung zu erhalten. Die synthetische Uberwachung simuliert reale Benutzerinteraktionen mit der

Anwendung, wéahrend die reale Uberwachung Daten aus tatséachlichen Benutzerinteraktionen verwendet.

® Einsatz eines Monitoring-Tools, das verschiedene Datentypen wie Protokolle, Traces und Metriken korreliert und die Daten in Echtzeit
analysieren kann. Es sollte flexibel und erweiterbar sein und sich leicht mit anderen Systemen und Tools integrieren lassen.

® |dealerweise lassen sich die Monitoring-Informationen auf einem gemeinsamen Dashboard darstellen und aggregieren.

Weiterhin:

® Ein Sicherheitsplan sollte vorhanden sein, der die Uberwachung verdachtiger Aktivitaten, insbesondere Zugriffe, und von
Sicherheitsverletzungen umfasst.

® Ein Plan fiir die Skalierung sollte vorhanden sein, einschlieRlich der Uberwachung der Ressourcen und der Leistung der Server sowie des
Zustands des Netzwerks und der zugrunde liegenden Infrastruktur. Idealerweise ist das bei dynamischer Skalierung automatisiert gelost.

* Ein Notfallplan sollte vorhanden sein, der alle Uberwachungssysteme umfasst, die Ausfalle erkennen und beheben kénnen.

3. Uptime und Verfugbarkeit
Uptime und Verfligbarkeit sind zwei verwandte, aber unterschiedliche Messgroéf3en fiur die Leistung einer Anwendung.

® Die Uptime bezieht sich auf die Zeit, in der eine Anwendung betriebsbereit ist, d.h. zuganglich und einsatzfahig. Sie wird in der Regel als
Prozentsatz der Gesamtzeit ausgedriickt und ist ein MaR fiir die Zuverlassigkeit einer Anwendung. Wenn eine Anwendung beispielsweise
eine Uptime von 99,9 % hat, bedeutet dies, dass sie nur 0,1 % der Zeit nicht verfigbar ist.

* Die Verfugbarkeit hingegen ist ein MaR fur die Nutzbarkeit einer Anwendung. Dabei wird nicht nur die Zeit beruicksichtigt, in der eine
Anwendung verfligbar ist, sondern auch die Zeit, die die Anwendung benétigt, um auf Benutzeranfragen zu reagieren. Sie wird in der Regel
auch als Prozentsatz der Gesamtzeit ausgedriickt. Wenn eine Anwendung beispielsweise eine Verfugbarkeit von 99,9 % hat, bedeutet dies,
dass sie nur 0,1 % der Zeit nicht verfugbar ist oder nicht reagiert.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 8


https://www.atlassian.com/incident-management/kpis/common-metrics
https://www.informatik-aktuell.de/betrieb/verfuegbarkeit/hochverfuegbarkeit-und-downtime-eine-einfuehrung.html
https://www.informatik-aktuell.de/betrieb/verfuegbarkeit/hochverfuegbarkeit-und-downtime-metriken.html

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

Der Unterschied zwischen Uptime und Verfuigbarkeit besteht also darin, dass eine Anwendung zwar verfugbar sein kann, aber aufgrund von
Leistungsproblemen nicht genutzt werden kann, z. B. wenn die Antwortzeit hoch ist oder der Dienst langsam ist, so dass er fur den Benutzer
nicht nutzbar ist.

Sowohl die Uptime als auch die Verfiigbarkeit sind wichtige MaRstébe fur die Leistung einer Anwendung im Betrieb. Hohe Uptime und
Verfugbarkeit sind entscheidend, um sicherzustellen, dass eine Anwendung zuverlassig und fur die Benutzer zugénglich ist.

3. Verfugbarkeit, Verfugbarkeitsklassen

Die Availability / Verfugbarkeit ist ein MaR dafir, wie oft ein System oder eine Komponente in der Lage ist, seine beabsichtigte Funktion zu
erflllen.

Verfugbarkeit ist ein Verhaltnis zwischen der Zeit, in der das System oder die Komponente betriebsbereit ist, und der Gesamtzeit. Sie wird als
Prozentwert ausgedriickt, wobei ein Wert von 100 % bedeutet, dass das System oder die Komponente immer betriebsbereit ist.

Availability ;= MTTF / (MTTF + MTTR)

Es ist wichtig zu beachten, dass diese Formel davon ausgeht, dass die Ausfallrate im Laufe der Zeit konstant ist und das System oder die
Komponente nur einmal ausfallen kann, und dass das System reparierbar ist. In Wirklichkeit kdnnen Systeme mehrfach ausfallen und ihre
Ausfallrate kann sich im Laufe der Zeit &ndern. Auf3erdem bericksichtigt die Formel keine anderen Faktoren wie die Komplexitéat der Reparatur
oder die Verfugbarkeit von Ersatzteilen. Daher ist es wichtig, diese Formel als grobe Schétzung zu verwenden und andere Faktoren zu
berticksichtigen, die die Verfugbarkeit des Systems oder der Komponente beeinflussen kdnnten.

Info
https://www.recast-it.com/themen/verfuegbarkeitsklassen/

Uber die Verfiigharkeitszahl Iasst sich ein System in eine Verfiigbarkeitsklasse (VK) einteilen, in das sog. 9er-System: Je mehr Neuer in der
Prozentangabe (99%, 99,9%, ... 99, 9999%, ...), desto weniger Ausfallzeit pro Jahr. Es gibt alternative Kategorisierungen des BSI bzw. als Availa
bility Environment Classification.

4. Mean Time To Failure

Mean Time To Failure (MTTF) ist ein MaB fur die Zuverl&assigkeit eines Systems oder einer Komponente. Sie beschreibt die durchschnittlich
e Zeit, in der ein System oder eine Komponente erwartungsgeman ohne Ausfall funktioniert. MTTF wird normalerweise in Stunden, Tagen
oder Jahren gemessen.

Der MTTF-Wert wird berechnet, indem die Zeit zwischen den Ausféllen eines Systems oder einer Komponente gemessen und dann der
Durchschnitt dieser Werte gebildet wird. Dieser Wert wird als Vorhersage fiir die erwartete Lebensdauer des Systems oder der Komponente
verwendet. Er gibt eine Vorstellung davon, wie lange das System oder die Komponente voraussichtlich halten wird, wobei davon ausgegangen
wird, dass die Ausfallrate im Laufe der Zeit konstant ist.

MTTF ist dabei ein statistisches MaR, das die Art des Ausfalls nicht berticksichtigt und keine Informationen uber den Zeitrahmen liefert, in dem
ein Ausfall wahrscheinlich eintreten wird. Sie berlicksichtigt auch nicht die Mdglichkeit von Mehrfachausfallen. Daher sollte sie in Kombination mit
anderen Messgrof3en verwendet werden, um ein vollstédndigeres Bild der Zuverléassigkeit des Systems oder der Komponente zu erhalten.

5. Mean Time To Repair

Mean Time To Repair (MTTR) ist ein Maf fir die Wartungsfahigkeit eines Systems oder einer Komponente. Es handelt sich um die durchsc
hnittliche Zeit, die fur die Reparatur eines Systems oder einer Komponente benétigt wird, nachdem ein Fehler aufgetreten ist. MTTR wird
normalerweise in Stunden, Tagen oder Jahren gemessen.

Der MTTR-Wert wird berechnet, indem die Zeit gemessen wird, die fur die Reparatur eines Systems oder einer Komponente nach dem
Auftreten eines Fehlers bendtigt wird, und dann der Durchschnitt dieser Werte genommen wird. Dieser Wert wird als Vorhersage fur die zu
erwartende Ausfallzeit des Systems oder der Komponente verwendet, wobei davon ausgegangen wird, dass die Ausfallrate im Laufe der Zeit
konstant ist. Er gibt eine Vorstellung davon, wie lange das System oder die Komponente nach einem Ausfall voraussichtlich auf3er Betrieb sein
wird, und er ist ein Indikator dafir, wie schnell das System oder die Komponente wieder in den Normalbetrieb Gberflihrt werden kann.

Auch die MTTR ist ein statistisches MaR, das die Komplexitat der Reparatur oder die Verfligbarkeit von Ersatzteilen nicht beriicksichtigt und
keine Informationen Uber den Zeitrahmen liefert, in dem eine Reparatur wahrscheinlich durchgefiihrt werden kann. Sie bericksichtigt auch nicht
die Méglichkeit von Mehrfachausfallen. Daher sollte sie in Kombination mit anderen Metriken verwendet werden, um ein vollstandigeres Bild zu
erhalten.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 9


https://www.recast-it.com/themen/verfuegbarkeitsklassen/

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

(D) Restart

1. Geplanter Restart

Der Restart einer Anwendung ist von entscheidender Bedeutung, da erst in vielen Fallen erst dadurch Aktualisierungen, Fehlerbehebungen und
andere Anderungen wirksam werden kénnen.

Um sicherzustellen, dass die Restart-Zeit so kurz wie méglich ist, gibt es mehrere Best Practices und Strategien, die angewendet werden
kénnen:

® Die Architektur sollte zustandslos sein: Zustandslose Anwendungen kdnnen leicht neu gestartet werden, ohne dass Daten verloren gehen.
Dies macht es einfacher, die Anwendung nach einem Neustart schnell wieder online zu bringen.

® Implementierung einer rollenden Aktualisierungsstrategie: Mit einer rollenden Aktualisierungsstrategie kann eine Anwendung auf einem
Server nach dem anderen aktualisiert werden (siehe Kapitel 5 (F), 8.).

® Containerisierung ermdglicht eine schnellere und effizientere Bereitstellung von Anwendungen. Sie ermdglicht auch eine einfache
Skalierung von Anwendungen und erleichtert es, die Anwendung nach einem Neustart schnell wieder online zu bringen.

® Load Balancer leiten den Datenverkehr an die verfugbaren Instanzen der Anwendung weiter, was einen schnelleren Neustart ermdglicht,
indem die Last auf mehrere Instanzen verteilt wird.

® Der Neustartprozess muss getestet und getibt werden, um mogliche Probleme nicht erst im echten Betrieb zu erkennen.

* Die Uberwachung der Systemleistung wahrend des Neustarts hilft, Engpéasse zu erkennen, die zu Verzégerungen beim Neustart fiihren
kdnnen.

2. Ungeplanter Restart nach Fehler oder Crash der Anwendung

Der Neustart einer Anwendung nach einem Fehler oder Absturz ist entscheidend, damit nach Behebung des Fehlers die Anwendung
weiterlaufen kann.

Das sind einige Strategien, die einen schnellen und effizienten Neustart nach einem Fehler oder Absturz gewabhrleisten:

® Einen automatischer Neustart einrichten, um die Anwendung nach einem Absturz oder Fehler automatisch wieder online zu bringen. Dies
kann mit Tools wie systemd unter Linux oder launchd unter macOS erfolgen.

* Monitoring der Anwendung, Logging, Tracing: Eine ausreichende Protokollierung und Uberwachung der Anwendung kann dazu beitragen,
die Ursache des Absturzes oder Fehlers schneller zu ermitteln und entsprechende MaRhahmen zu ergreifen.

® Verwendung von Mechanismen zur Fehlerbehandlung: Die Implementierung von Mechanismen zur Fehlerbehandlung im Anwendungscode
kann helfen, Abstiirze zu verhindern und Fehler schneller zu beheben. Vgl. Resilience-Patterns in Kapitel 8.

® Einen Notfallwiederherstellungsplan erstellen - als Reihe von Verfahren und Richtlinien fir die Wiederherstellung einer Anwendung nach
einem Absturz oder Fehler. Ein solcher Plan kann dazu beitragen, Ausfallzeiten zu minimieren und eine schnelle Wiederherstellung zu
gewahrleisten.

® Selbstheilungsmechanismen kénnen Fehler oder Abstiirze automatisch erkennen und beheben, ohne dass ein manuelles Eingreifen
erforderlich ist.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 10



iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

(E) Monitoring

1. Was ist Monitoring?

Monitoring im Betrieb bezieht sich auf den Prozess der Erfassung und Analyse von Daten tber die Leistung, Nutzung und den Zustand
einer Anwendung oder eines Systems. Diese Daten kdnnen verwendet werden, um Probleme zu erkennen, die Leistung zu messen und die
Kapazitat und Skalierung zu planen.

Es gibt verschiedene Arten des Monitorings, die je nach Anwendung und den Anforderungen des Unternehmens eingesetzt werden kénnen:

® Leistungsuberwachung: Diese Art des Monitorings konzentriert sich auf die Leistung einer Anwendung oder eines Systems, einschlie3lich
Metriken wie Antwortzeit, Durchsatz und Ressourcennutzung (z. B. CPU, Speicher, Netzwerk).

* Uberwachung der Verfiigbharkeit: Diese Art des Monitorings konzentriert sich auf die Verfiigbarkeit einer Anwendung oder eines Systems,
einschlieBlich Metriken wie Betriebszeit, Ausfallzeit und Reaktionszeit.

* Log-Uberwachung: Diese Art des Monitorings konzentriert sich auf die Analyse der von einer Anwendung oder einem System erzeugten
Protokolldateien, einschlief3lich Fehlern, Warnungen und anderen Ereignissen.

* Ereignis-Uberwachung: Diese Art des Monitorings konzentriert sich auf die Verfolgung bestimmter Ereignisse oder Bedingungen, die
innerhalb einer Anwendung oder eines Systems auftreten.

Monitoring kann mit verschiedenen Tools durchgefiihrt werden, z. B. mit Protokollanalysatoren, Software fiir die Leistungsiiberwachung und
speziellen Uberwachungsplattformen.

® Die gesammelten Daten kdnnen in Dashboards visualisiert werden.

® Es konnen Alerts eingerichtet werden, um zu benachrichtigen, wenn bestimmte Schwellenwerte erreicht werden
® Sie kénnen zur Fehlerbehebung, zur Erkennung von Trends und Kapazitatsproblemen verwendet werden

® Sie k6nnen zur Planung kiinftiger Upgrades und Skalierungen verwendet werden.

Dabei ist es wichtig, zwischen Echtzeitiiberwachung und historischer Uberwachung zu unterscheiden: Die Echtzeit-Uberwachung dient dazu,
Probleme sofort zu erkennen und darauf zu reagieren, wéhrend die historische Uberwachung es erméglicht, die vergangene Performance zu
analysieren und dadurch Trends zu erkennen.

2. Wie lassen sich Fehler und unerwiinschte Situationen beim Monitoring feststellen? Konkrete Fehlerszenarien vs. lang anhaltende
Trends

Es gibt verschiedene Mdglichkeiten, Fehler und unerwiinschte Situationen durch Monitoring zu ermitteln:

1. Fehlerprotokolle, die von einer Anwendung oder einem System erzeugt werden, kdnnen analysiert werden, um bestimmte Fehler und
Ausnahmen zu identifizieren, die aufgetreten sind. Diese Protokolle kdnnen detaillierte Informationen iiber die Ursache eines Fehlers
liefern und zur Fehlersuche und -behebung verwendet werden.

2. Leistungsmetriken wie Antwortzeit, Durchsatz und Ressourcennutzung kénnen tberwacht werden, um Probleme zu identifizieren, die
die Leistung einer Anwendung oder eines Systems beeintrachtigen kdnnen. Wenn beispielsweise die Antwortzeit einer Anwendung
deutlich ansteigt, kann dies ein Hinweis auf ein Problem mit der Anwendung oder der zugrunde liegenden Infrastruktur sein.

3. Warnungen koénnen eingerichtet werden, um zu benachrichtigen, wenn bestimmte Bedingungen oder Schwellenwerte erreicht werden.
Wenn beispielsweise die CPU-Auslastung eines Servers einen bestimmten Schwellenwert Gberschreitet, kann ein Alert an das
Betriebsteam gesendet werden, damit dieses Malinahmen ergreift.

4. Mit Hilfe statistischer Analyse lassen sich Muster oder Trends in den Daten erkennen, die auf ein zugrunde liegendes Problem
hindeuten kénnen. Wenn zum Beispiel die Anzahl der Fehler in einer Anwendung im Laufe der Zeit zunimmt, weist dies auf ein
grundliegendes Problem hin.

Dabei ist zu unterscheiden:

® Konkrete Fehlerszenarien beziehen sich auf spezifische, isolierte Ereignisse, die innerhalb einer Anwendung oder eines Systems auftreten.
Diese Art von Fehlern sind in der Regel leicht zu identifizieren und zu beheben, da sie oft eine klare Ursache und Wirkung haben.

® Lang anhaltende Trends beziehen sich auf Muster oder Trends, die Uber einen langeren Zeitraum hinweg auftreten. Diese Art von Fehlern
ist unter Umstanden schwieriger zu erkennen, da sie nicht sofort offensichtlich sind, aber sie kbnnen erhebliche Auswirkungen auf die
Leistung und Verfugbarkeit einer Anwendung haben. Es ist wichtig, die Daten im Zeitverlauf zu analysieren, um diese Trends zu erkennen
und geeignete MalRnahmen zu ergreifen, um sie zu beheben.

Mit einer Kombination aus diesen Techniken lassen sich Fehler und unerwiinschte Situationen beim Monitoring am besten erkennen.

3. Uberblick tiber nutzliche Uberwachungs- und Betriebstools, insbesondere im Hinblick auf Java- und Spring-Boot-Anwendungen
Diese Uberwachungs- und Betriebswerkzeuge werden fiir Java- und Spring Boot-Anwendungen typischerweise verwendet:

® Spring Boot Actuator: Hierbei handelt es sich um ein integriertes Tool, das mit Spring Boot geliefert wird und mehrere Endpunkte fir
Monitoring und Verwaltung einer Spring Boot-Anwendung bereitstellt, z. B. Zustandsprifung, Metriken und Umgebungsinformationen.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 11



iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

* Java Management Extensions (JMX): JMX ist ein Java-Standard fiir die Verwaltung und Uberwachung von Java-Anwendungen und -
Ressourcen. JMX kann zur Uberwachung von Metriken wie Speichernutzung, Thread-Anzahl und CPU-Auslastung verwendet werden.

* Prometheus: Ein Uberwachungssystem und eine Zeitreihendatenbank, die Metriken von einer Vielzahl von Anwendungen, einschlieRlich
Java- und Spring Boot-Anwendungen, abrufen und fiir eine spatere Analyse speichern kann.

® Grafana: Grafana ist ein beliebtes Open-Source-Tool zur Visualisierung von Daten und kann verwendet werden, um Metriken aus
Prometheus und anderen Uberwachungssystemen in einem benutzerfreundlichen Format anzuzeigen.

® Fir das Logging bietet Spring Boot Unterstiitzung fir verschiedene Logging-Frameworks, wie z. B. Logback und Log4j.

4. Prometheus, Grafana und Micrometer fur Java/Spring-Boot-Anwendungen kombinieren und einrichten

Durch die Kombination von Micrometer, Prometheus und Grafana kann man eine Spring Boot-Anwendung in Echtzeit Uberwachen und Fehler
beheben und MalRnahmen ergreifen, wenn Probleme auftreten.

Prometheus, Grafana und Micrometer kdnnen zusammen verwendet werden, um Spring Boot-Anwendungen zu Uberwachen:

®* Micrometer ist eine Metrikbibliothek fiir Java, die Uber eine integrierte Unterstutzung fir den Export von Metriken nach Prometheus verflgt.
So kdnnen Metriken aus einer Spring Boot-Anwendung gesammelt und zur Speicherung und Analyse nach Prometheus exportiert werden.

* Prometheus ist ein Uberwachungssystem und eine Zeitseriendatenbank, die Metriken aus einer Vielzahl von Quellen, einschlieBlich
Micrometer, abrufen kann. Prometheus kann so konfiguriert werden, dass es Metriken aus einer Spring Boot-Anwendung abruft und sie fir

eine spatere Analyse speichert.
® Grafana ist ein beliebtes Open-Source-Tool zur Visualisierung von Daten. Es kann verwendet werden, um Metriken aus Prometheus in einem

benutzerfreundlichen Format anzuzeigen, wodurch Trends, Ausrei3er und andere Probleme leicht zu erkennen sind.

Damit eine Spring Boot-Anwendung Tools wie Prometheus und Grafana verwendet, ist folgendes tun:

® Anwendung
® Die passende Micrometer-Abhéngigkeit zur pom.xml- oder build.gradle-Datei des Projekts hinzufiigen. Um Prometheus-Unterstiitzung
einzubinden, wird micrometer-registry-prometheus benétigt.
® In der application.properties/.yml-Datei Konfigurationen fir den Export von Metriken an Prometheus hinzufugen.
® Mit Spring Boot Actuator den Endpunkt fur die Erfassung von Metriken aktivieren. Spring Boot Actuator bietet eine Reihe von Endpunkten
zur Uberwachung und Verwaltung einer Anwendung. Uber den Endpunkt /actuator/prometheus kénnen Metriken nach Prometheus
exportiert werden.
® Prometheus
® Einen Prometheus-Server einrichten, um Metriken der Anwendung zu sammeln.
® Prometheus so konfigurieren, dass es Metriken vom /actuator/prometheus-Endpunkt derAnwendung abgreift.
® Optional Alerts einrichten, um Nachrichten zu senden, wenn bestimmte Schwellenwerte Giberschritten werden, z. B. eine hohe
Speichernutzung oder hohe Fehlerraten.
® Grafana
® Grafana so konfigurieren, dass es sich mit dem Prometheus-Server verbindet und Metriken in Form von Graphen und Diagrammen

anzeigt.
® |n Grafana nun benutzerdefinierte Dashboards erstellen, die die fur die Anwendung wichtigsten Metriken anzeigen, z. B. CPU-Auslastung,

Speichernutzung und Antwortzeiten.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 12



iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

(F) Logging, Tracing, Metrics

1. Logging

Das Logging von Vorgangen bezieht sich auf das Sammeln, Speichern und Analysieren von Protokolldaten, die von einer Anwendung oder
einem System erzeugt werden. Protokolldaten kdnnen Informationen wie Anwendungsereignisse, Systemereignisse, Fehler, Warnungen und
Leistungskennzahlen enthalten. Die Protokollierung ist ein wichtiger Aspekt des Betriebs, da sie wertvolle Einblicke in das Verhalten und die
Leistung einer Anwendung oder eines Systems liefert und zur Fehlersuche und -behebung, zur Ermittlung von Trends und zur
Leistungsverbesserung verwendet werden kann.

Es gibt verschiedene Arten von Protokollen, die je nach Anwendung und den Anforderungen des Unternehmens gesammelt werden kénnen:

* Anwendungsprotokolle enthalten Informationen uber die Ereignisse, die innerhalb einer Anwendung auftreten, z. B. Benutzeraktionen,
Datenbankabfragen und Fehlermeldungen.

® Systemprotokolle enthalten Informationen uber Ereignisse, die innerhalb der zugrunde liegenden Infrastruktur auftreten, z. B.
Systemausfélle, Ressourcennutzung und Sicherheitsereignisse.

® Zugriffsprotokolle enthalten Informationen Uber die an eine Anwendung gestellten Anfragen, z. B. die IP-Adresse des Clients, die
Anfragemethode und den Antwortstatus.

® Audit-Protokolle enthalten Informationen Uber sicherheitsrelevante Ereignisse, die innerhalb einer Anwendung oder eines Systems
auftreten, z. B. Anmeldeversuche von Benutzern und Zugriff auf sensible Daten.

Protokolle kdnnen mit verschiedenen Tools gesammelt werden, z. B. mit Protokollanalysatoren, Protokollbibliotheken und speziellen
Protokollierungsplattformen. Die aggregierten Daten konnen in Dashboards visualisiert werden, und es lassen sich Warnmeldungen einrichten,
wenn bestimmte Bedingungen erflllt sind. Sie kénnen auch zur Fehlerbehebung, zur Ermittlung von Trends und zur Planung kinftiger Upgrades
und Skalierungen verwendet werden.

Die Protokollierungsstrategie muss gut definiert sein, einschlie3lich der Frage, was protokolliert werden soll, wie protokolliert werden soll
(Format, auf welchen Log-Level) und wo die Protokolle gespeichert werden sollen, um sicherzustellen, dass die Protokolldaten vollstandig, genau
und fur die Analyse leicht zugénglich sind. Zugleich muss man mit sensiblen Daten wie Benutzerdaten oder Passwortern sorgféltig umgehen, aus
Sicherheitsgriinden, aber auch um Datenschutzbestimmungen nicht zu verletzen.

Es gibt viele Metriken und KPls, die fir die Uberwachung verwendet werden kénnen. Welche am niitzlichsten sind, hangen von dem zu
liberwachenden System oder der Anwendung ab. Einige gangige Kategorien der Uberwachung sind:

® Health: Dazu gehoren Metriken, die den Gesamtstatus und das Wohlergehen des Systems anzeigen, wie CPU- und Speichernutzung,
Festplattenspeicher und Netzwerkkonnektivitat.

® Durchsatz: Diese Metriken messen die Leistung des Systems, z. B. Anfragen pro Sekunde, Antwortzeit und Fehlerquote.

®* Domanenspezifische Metriken: Hierbei handelt es sich um Metriken, die fur einen bestimmten Bereich spezifisch sind, z. B.
Finanztransaktionen, Kundenbindung oder Website-Traffic.

Es ist Ublich, Protokolle und Traces zu Uberwachen, um das Verhalten des Systems zu verstehen und auf Anomalien oder Fehler aufmerksam zu
machen.

2. Tracing und Unterscheide im Vergleich zu Logging

Tracing und Logging sind zwei verwandte, aber unterschiedliche Konzepte auf dem Gebiet der Softwareentwicklung und des Softwarebetriebs.

Ein Trace ist eine "Spur einer Anfrage durch das Gesamtsystem" (in einer langeren Zeitspanne), ein Logeintrag ein konkret auftretendes zu
protokollierendes Ereignis. Der Hauptunterschied zwischen Tracing und Logging besteht also darin, dass man im Betrieb Tracing fur die
Verfolgung des Flusses einer Anfrage durch ein verteiltes System heranzieht - Logging hingegen zur Protokollierung von auftretenden
Ereignissen:

® Logging bezieht sich auf den Prozess der Aufzeichnung von Informationen tber die Ausfuhrung einer Anwendung in einem strukturierten
Format, normalerweise in einer Datei oder einer Datenbank, zur spateren Analyse und Fehlerbehebung. So erstellte Logs enthalten
Informationen Uber aufgetretene Ereignisse, wie z. B. die Ausfihrung einer bestimmten Funktion, den Empfang einer Anfrage oder das
Auftreten eines Fehlers.

® Tracing hingegen ist eine Technik, mit der der Fluss einer Anfrage oder einer Transaktion durch ein verteiltes System verfolgt werden kann.
Es ermdglicht Entwicklern und Betriebsteams, den gesamten Fluss einer Anfrage zu sehen, vom Zeitpunkt ihrer Initiierung bis zu ihrer
Fertigstellung, einschlie3lich aller Dienste und Systeme, die sie auf ihrem Weg beruhrt. Tracing kann dabei helfen, Engpasse, Fehler und
andere Probleme zu identifizieren, die durch die Untersuchung von Protokolldateien allein nicht offensichtlich sind.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 13



iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

3. Wann wird aktiv protokolliert, wann passiv tiberwacht?

Passive Protokollierung und aktive Uberwachung sind zwei verschiedene Techniken, die zur Sammlung und Analyse von Daten (iber eine
Anwendung oder ein System verwendet werden kénnen.

® Bei der passiven Protokollierung werden die von einer Anwendung oder einem System erzeugten Protokolldaten gesammelt und fir eine
spatere Analyse gespeichert. Diese Technik wird in der Regel verwendet, um eine breite Palette von Daten lber das Verhalten und die
Leistung einer Anwendung zu sammeln, einschliel3lich Fehlern, Leistungsmetriken und Benutzeraktionen. Die passive Protokollierung ist
nitzlich, um Trends und Muster in den Daten zu erkennen, die auf ein zugrundeliegendes Problem hindeuten kénnten, und um Probleme zu
beheben.

* Aktive Uberwachung hingegen bezieht sich auf den Prozess der aktiven Untersuchung einer Anwendung oder eines Systems, um Daten
liber dessen Leistung, Verfligbarkeit und Zustand zu sammeln. Die aktive Uberwachung erfolgt in der Regel durch das gezielte (aktive)
Senden von Anfragen an bestimmte Endpunkte innerhalb einer Anwendung oder eines Systems und das Messen der Antwortzeit, des
Durchsatzes und anderer Metriken. Diese Technik ist niitzlich fiir die Uberwachung der Echtzeit-Performance einer Anwendung und firr die
Identifizierung und Behebung von Problemen, die sich auf die Verfugbarkeit oder Performance auswirken konnen. Aul3erdem lasst sich auf
diese Weise Uberpriifen, ob ein bestimmter Dienst, eine Komponente oder ein Endpunkt wie erwartet funktioniert.

5. Was bedeutet die Verwendung solcher Metriken und Logging- und Tracing-Tools fir das Design einer Anwendung?

Der Einsatz von Metriken, Logging- und Tracing-Tools kann sich erheblich auf das Design einer Anwendung auswirken, da die Anwendung so
instrumentiert werden muss, dass Daten aus verschiedenen Teilen des Systems erfasst werden kénnen.

® Instrumentierung: Die Anwendung muss so konzipiert sein, dass sie Metriken, Protokolle und Traces auf organisierte Weise ausgeben
kann. Dazu muss im Code dafiir gesorgt werden, dass diese Ereignisse an den entsprechenden Stellen geschrieben werden.

® Datenerfassung und -speicherung: Die Anwendung sollte so konzipiert sein, dass eine effiziente Erfassung und Speicherung der von der
Instrumentierung ausgegebenen Daten maglich ist. Dazu kann das Senden von Daten an Uberwachungswerkzeuge, Protokollierungssysteme
oder Datenspeicherldsungen gehoren.

® Datenanalyse: Die Anwendung sollte so konzipiert sein, dass eine einfache Analyse der erfassten Daten moglich ist, z. B. durch die
Verwendung von Dashboards oder Abfragesprachen. Eine Mdglichkeit ist beispielsweise die Verwendung von Request-IDs, um eine Anfrage
in den Logs identifiziereung und durch eine Anwendung hindurch verfolgen zu kénnen.

® [ntegration mit Alarmierungssystemen: Die Anwendung sollte auch so konzipiert sein, dass sie in Warnsysteme integriert werden kann, so
dass alle erkannten Probleme schnell an die zustandigen Stellen weitergeleitet werden kénnen.

6. Auswirkungen und Folgen, Vor- und Nachteile, fur das Laufzeitverhalten der Anwendung beim Einsatz solcher Techniken

Der Einsatz von Metriken, Logging- und Tracing-Techniken in einer Anwendung hat sowohl Vorteile als auch Nachteile.

Vorteile:

* Ermdglicht die Uberwachung des Systemzustands und der Systemleistung in Echtzeit
® Ermdglicht die schnellere Identifizierung und Lésung von Problemen
® Bietet wertvolle Einblicke in das Verhalten des Systems im Laufe der Zeit

Nachteile:

® Kann die Anwendung hinsichtlich der Ressourcennutzung (z. B. CPU und Speicher) zuséatzlich belasten Um die Leistung hoch zu halten, ist
es wichtig, den Overhead bei der Uberwachung und Protokollierung zu minimieren. Die Logdaten und -frequenz ist sorgfaltig zu wéhlen, effizi
ente Ldsungen fir die Datenerfassung und -speicherung missen verwendet werden. Idealerweise werden Log-Informationen asynchron
weggeschrieben.

¢ Kann den Code der Anwendung komplexer machen

® Kann Sicherheitsrisiken mit sich bringen, wenn sensible Daten protokolliert oder nachverfolgt werden Daher ist es wichtig, sicherzustellen,
dass sensible Daten wie Passwdrter nicht protokolliert oder nachverfolgt werden. Logs sollte nur mit geeigneter Authentifizierung
/Autorisierung zugreifbar sein.

® Dariber hinaus ist es wichtig, einen Plan fir die Verwaltung der erfassten Daten zu haben, einschlielich Aufbewahrungsrichtlinien und
Archivierungsstrategien, um sicherzustellen, dass die Daten nur so lange aufbewahrt werden, wie sie benétigt werden.

7. Wichtige Systemmetriken fiir Zustands- und Performance-Uberwachung von Anwendungen

Bei der Uberwachung von Zustands und Performance einer Java- und Spring-Boot-basierten Anwendung gibt es mehrere wichtige
Systemmetriken, die berucksichtigt werden sollten:

1. JVM-Metriken: Dazu gehdren Metriken wie die Heap- und Non-Heap-Speicherauslastung, GC-Aktivitéat (Garbage Collection) und Thread-
Anzahl. Diese Metriken geben Aufschluss tber die Speichernutzung und die Leistung der JVM.

2. CPU-Nutzung: Diese Metrik gibt Aufschluss Gber die CPU-Ressourcen, die die Anwendung verbraucht. Eine hohe CPU-Auslastung kann
darauf hindeuten, dass die Anwendung eine gro3e Menge an Berechnungen durchfiihrt oder dass sie auf Leistungsengpasse stof3t.

3. Speichernutzung: Diese Metrik gibt Aufschluss Uber die von der Anwendung beanspruchte Speichermenge.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 14



iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

4. Netzwerkaktivitat: Diese Metrik gibt Aufschluss tUber den Umfang des Netzwerkverkehrs, den die Anwendung erzeugt. Eine hohe
Netzwerkaktivitat kann darauf hinweisen, dass die Anwendung mit einer groBen Anzahl externer Dienste kommuniziert oder dass sie eine
groBe Menge an Netzwerkressourcen verbraucht.

5. Anfrage/Antwort-Metriken: Dazu gehdren Metriken wie Anforderungsrate, Fehlerrate und Antwortzeit. Diese Metriken geben Aufschluss
Uiber die Leistung der Anwendung bei der Verarbeitung eingehender Anfragen.

8. DORA Metriken

Info
https://www.leanix.net/en/wiki/vsm/dora-metrics

DORA steht fiir "The DevOps Research and Assessment Team". Als Google-Forschungsgruppe analysierte es die Leistung von DevOps-
Teams bei Softwareentwicklung und -bereitstellung mit diesen Metriken:

® Deployment-Frequenz: Bezieht sich auf die Haufigkeit erfolgreicher Software-Releases fir die Produktion.

* Vorlaufzeit fir Anderungen: Erfasst die Zeit zwischen dem Commit einer Code-Anderung und ihrem einsatzfahigen Zustand.

® MTTR: Misst die Zeit zwischen einer Unterbrechung aufgrund eines Deployments oder eines Systemausfalls und der vollstandigen
Wiederherstellung. Siehe Kapitel 8.

* Change Failure Rate: Gibt an, wie oft die Anderungen oder Hotfixes eines Teams zu Fehlern fiihren, nachdem der Code bereitgestellt wurde.

9. Sammeln und Korrelieren der Log-Ausgaben: Empfohlene Tools fur Spring-Boot-Anwendungen

Es gibt verschiedene Mdglichkeiten, die Logausgaben von Diensten zu sammeln und zu korrelieren, je nach den spezifischen Anforderungen
Ihrer Anwendung und Infrastruktur. Einige gangige Ansatze sind:

1. Zentralisiertes Logging: Bei diesem Ansatz werden alle Logmeldungen von verschiedenen Diensten an einen zentralen Server
gesendet, wo sie gesammelt, geparst und analysiert werden kénnen. Tools wie Elasticsearch, Logstash und Kibana (ELK-Stack) oder Gra
ylog sind eine gangige Wahl fur das zentralisierte Logging.

2. Verteiltes Tracing: Bei diesem Ansatz wird eine Anfrage verfolgt, wahrend sie durch verschiedene Dienste flie3t. Informationen tber die
Anfrage und die Antwort werden in einem zentralen Speicher gesammelt. Tools wie Zipkin, Jaeger und Appdash sind eine gangige Wahl
fur verteiltes Tracing.

3. Log-Aggregation: Bei diesem Ansatz wird ein Log-Aggregator-Tool verwendet, um Log-Daten aus mehreren Quellen zu sammeln und
eine einheitliche Ansicht zu bieten. Log-Aggregatoren wie Fluentd, Logagent und Logstash kdnnen die Logs parsen und an einen
zentralen Speicher, z. B. Elasticsearch, weiterleiten.

Fir Spring Boot-Anwendungen empfieht sich Spring Cloud Sleuth und Zipkin. Spring Cloud Sleuth ist ein Open-Source-Framework, das
verteiltes Tracing in Spring Boot-Anwendungen ermdglicht. Zipkin ist ein verteiltes Tracing-System, mit dem man Traces von Services sammeln,
durchsuchen und visualisieren kann.

AuRerdem bietet Spring Boot standardmafig Unterstutzung fur verschiedene Logging-Frameworks wie logback und log4j2, um die Logs zu
schreiben.

10. Verbreitete Tools fur die zentrale Verwaltung von Protokolldaten

1. Elasticsearch, Logstash und Kibana (ELK-Stack): Dieser Open-Source-Stack wird h&ufig fir Log-Management verwendet, da er die
Sammlung, Speicherung und Visualisierung von Protokolldaten ermdglicht.

2. Splunk: Hierbei handelt es sich um ein kommerzielles Tool zur Log-Management, das leistungsstarke Indizierungs- und Suchfunktionen
sowie die Moglichkeit bietet, benutzerdefinierte Dashboards und Warnmeldungen zu erstellen.

3. Fluentd: Hierbei handelt es sich um einen Open-Source-Tool, mit dem Protokolldaten gesammelt und an einen zentralen Ort zur
Speicherung und Analyse weitergeleitet werden kénnen.

4. Loggly: Hierbei handelt es sich um einen Cloud-basierten Log-Management-Service, der die Sammlung, Speicherung und Analyse von
Protokolldaten aus verschiedenen Quellen ermdglicht.

5. Graylog ist ein Open-Source-Tool fiir das Log-Management, das die Sammlung, Speicherung und Analyse von Protokolldaten aus
verschiedenen Quellen ermdglicht und tUber eine Webschnittstelle fur die Suche und Alarmierung verfiigt.

6. Papertrail ist ein Cloud-basierten Log-Management-Service, der das Sammeln, Speichern und Analysieren von Protokolldaten aus
verschiedenen Quellen mit einer Webschnittstelle fiir die Suche und Alarmierung ermdglicht.

11. Verbreitete Tools fur die zentrale Verwaltung von Metriken

1. Prometheus: Hierbei handelt es sich um ein Open-Source-System zur Sammlung und Speicherung von Metriken, das in Cloud-nativen
Umgebungen weit verbreitet ist. Es bietet eine leistungsstarke Abfragesprache und die Mdglichkeit, benutzerdefinierte Warnmeldungen zu
erstellen.

2. InfluxDB: Hierbei handelt es sich um eine Open-Source-Zeitreihendatenbank, die haufig zum Speichern und Abfragen von Metrikdaten
verwendet wird. Sie enthalt auch eine integrierte Abfragesprache und Warnfunktionen.

3. Grafana: Hierbei handelt es sich um ein Open-Source-Tool zur Visualisierung von Metriken, das zur Erstellung von benutzerdefinierten
Dashboards und Warnmeldungen verwendet werden kann. Es unterstitzt eine breite Palette von Datenquellen, einschlielich Prometheus
und InfluxDB.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 15


https://www.leanix.net/en/wiki/vsm/dora-metrics

iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

4. Datadog: Hierbei handelt es sich um eine Cloud-basierte Plattform fiir die Verwaltung und Uberwachung von Metriken, die die Sammlung,
Speicherung und Analyse von Metrikdaten aus verschiedenen Quellen ermdglicht. Sie verfigt auRerdem uber integrierte Funktionen zur
Alarmierung und Erkennung von Anomalien.

5. New Relic: Dies ist eine Cloud-basierte Plattform zur Leistungsiuberwachung und -analyse, die Echtzeiteinblicke in die Leistung einer
Anwendungen, Infrastruktur und Protokolle bietet.

6. Zabbix: Hierbei handelt es sich um eine Open-Source-Uberwachungsldsung, die die Erfassung, Speicherung und Analyse von
Metrikdaten ermdglicht. Sie umfasst auch eine integrierte Abfragesprache und Warnfunktionen.

7. Nagios: Hierbei handelt es sich um eine Open-Source-Uberwachungslésung, die die Uberwachung von Netzwerkdiensten und Hosts
ermdglicht. Sie umfasst Warnmeldungen und Berichtsfunktionen.

12. Logging-Frameworks fiir Java- und Spring-Boot-Anwendungen

1. Log4j: Log4j ist ein Java-basiertes Logging-Framework, das Teil des Apache Logging Services Project ist. Es ist weit verbreitet, flexibel
und gut konfigurierbar.

2. Logback: Logback ist ein Logging-Framework fir Java, das als Nachfolger des beliebten log4j-Frameworks gedacht ist. Es wurde
entwickelt, um schneller, zuverlassiger und flexibler als log4j zu sein.

3. Java Util Logging (JUL): JUL ist ein in Java eingebautes Logging-Framework, das einfach zu benutzen ist und grundlegende Logging-
Funktionen bietet.

4. SLF4J: SLF4J ist eine Fassade, bzw. Abstraktion fuir verschiedene Logging-Frameworks. Es ermdglicht, das gewlinschte Logging-
Framework erst zur Laufzeit einzubinden.

5. Der Standard-Logger von Spring Boot: Spring Boot verwendet Commons Logging flr sein internes Logging, kann aber leicht so
konfiguriert werden, dass jedes andere der oben genannten Logging-Frameworks verwendet wird.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 16



iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

(G) Operations Database

Info
Michael T. Nygard: "Release It!: Design and Deploy Production-Ready Software", Pragmatic Programmers, 2017

1. Operations Database (Michael Nygard)

Die Operations Database (OpsDB) ist ein Konzept, das von Michael Nygard in seinem Buch "Release It! Design and Deploy Production-Ready
Software" vorschlagt. Es handelt sich um eine Datenbank, in der Betriebsdaten wie Metriken, Protokollierung und Konfiguration gespeichert
werden, die von verschiedenen Teilen des Systems gesammelt werden.

Der Hauptzweck der OpsDB besteht darin, einen zentralen Ort fur die Speicherung und Analyse von Betriebsdaten bereitzustellen, die dann zur
Uberwachung des Zustands und der Leistung des Systems, zur Fehlerbehebung und fiir datengestiitzte Entscheidungen verwendet werden
kdnnen.

Die OpsDB ist so konzipiert, dass sie hochverfugbar und fehlertolerant ist und hohe Schreib- und Leselasten bewaltigen kann. Sie ist aul3erdem
so konzipiert, dass sie mit Tools wie SQL oder einer speziellen Abfragesprache leicht abgefragt und analysiert werden kann.

Einer der Hauptvorteile der OpsDB besteht darin, dass sie eine Trennung der operativen Daten von den eigentlichen Geschéaftsdaten
ermdglicht, was die Verwaltung und Analyse der Daten erleichtert. Dies ermdglicht auch ein klares Separation of Concerns zwischen
Anwendungs- und Betriebsteam. Eine OpsDB ist somit kein Ersatz fur Unternehmensdatenbanken, sondern vielmehr ein ergdnzendes Tool fur
die Speicherung und Analyse von Betriebsdaten.

Die OpsDB erméglicht auch eine bessere Beobachtbarkeit und Uberwachung des Systems, da sie eine einzige Quelle der Wahrheit fiir die
Betriebsdaten bietet. Dies ermdglicht eine effizientere Fehlerbehebung und Ursachenanalyse sowie die Erstellung von benutzerdefinierten
Metriken und Warnmeldungen auf der Grundlage der in der OpsDB gespeicherten Daten.

2. Analyse-Tracing und Metrik-Tools von der Applikation trennen

Es ist aus mehreren Griinden eine gute Idee, Analyse-, Tracing- und Metrik-Tools aus der Anwendung selbst herauszuhalten und sie auf
verschiedene Systeme aufzuteilen:

1. Entkopplung: Die Trennung der Uberwachungs- und Protokollierungsfunktionen von der Anwendung erméglicht eine bessere
Entkopplung von Belangen, was die Wartung und Aktualisierung der Anwendung erleichtert. AuRerdem kann die Uberwachungs- und
Protokollierungsfunktionalitat unabhéngig von der Anwendung weiterentwickelt werden, was fiir das Hinzufiigen neuer Funktionen oder
die Behebung von Fehlern nitzlich sein kann.

2. Performance: Die Trennung der Uberwachungs- und Protokollierungsfunktionen von der Anwendung kann dazu beitragen, den Overhead
zu verringern, den die Uberwachung und Protokollierung auf die Leistung der Anwendung haben kann. Dies liegt daran, dass die
Uberwachungs- und Protokollierungsfunktionalitdt unabhéngig von der Anwendung optimiert und skaliert werden kann.

3. Skalierbarkeit: Die Trennung der Uberwachungs- und Protokollierungsfunktionen von der Anwendung kann zu einer besseren
Skalierbarkeit beitragen. Durch den Einsatz spezialisierter Tools, wie z. B. eines Log-Aggregators oder eines Metriksammlers, ist es
moglich, grolRe Datenmengen zu verarbeiten und das System entsprechend den sich andernden Anforderungen zu skalieren.

4. Flexibilitat: Die Trennung der Uberwachungs- und Protokollierungsfunktionen von der Anwendung kann die Flexibilitit verbessern. Durch
den Einsatz spezialisierter Tools ist es einfacher, das beste Tool fur die jeweilige Aufgabe auszuwéahlen und zwischen verschiedenen
Tools zu wechseln, wenn sich die Anforderungen des Systems andern.

5. Sicherheit: Die Trennung der Uberwachungs- und Protokollierungsfunktionen von der Anwendung kann zur Verbesserung der Sicherheit
beitragen, da sie getrennt von der Anwendung gesichert werden kénnen. Auf3erdem wird die Einhaltung von Vorschriften erleichtert, da
die Daten gemaf den gesetzlichen Bestimmungen erfasst, gespeichert und analysiert werden kénnen.

6. Nachvollziehbarkeit: Die Trennung der Uberwachungs- und Protokollierungsfunktionen von der Anwendung ermaglicht ein klares
Verstandnis des Systemzustands und der daran vorgenommenen Anderungen, was die Nachvollziehbarkeit verbessern kann.

Siehe dazu Kapitel 6 (A) zum Einsatz von AOP und Interceptoren.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 17



iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

(H) Cloud

1. Cloud-Native Design, typische Stacks und Patterns

Cloud-natives Design fiir eine Anwendung bezieht sich auf die Grundséatze und Praktiken fur die Erstellung, Bereitstellung und Ausfiihrung von
Anwendungen in einer Cloud-Umgebung.

Das Hauptziel von Cloud-nativem Design besteht darin, die Skalierbarkeit, Verfigbarkeit und andere Funktionen von Cloud-Computing-
Plattformen zu nutzen, um Anwendungen zu erstellen, die stabiler, leistungsfahiger und kostenguinstiger sind.

Zu den wichtigsten Grundséatzen des Cloud-nativen Designs gehdren:

® Microservices-Architektur: Kleine, unabhéngig voneinander einsetzbare Dienste ermdglichen eine schnellere Entwicklung, eine effizientere
Skalierung und eine bessere Fehlerisolierung.

® Containerisierung: Hierbei werden eine Anwendung und ihre Abhangigkeiten in einen Container verpackt, der dann in einer Cloud-Umgebung
bereitgestellt und ausgefiihrt werden kann. Container bieten eine konsistente und isolierte Laufzeitumgebung fur die Anwendung.

® Automatisierung und Orchestrierung: Dies beinhaltet die Automatisierung der Bereitstellung, Skalierung und Verwaltung der Anwendung und
ihrer Abhéngigkeiten.

® |Immutable Infrastructure: Dabei wird die Infrastruktur, auf der eine Anwendung lauft, als unverénderlich behandelt, d. h. sie sollte eher ersetzt
als verandert werden. Siehe Kapitel 5 (D) 4.

® Selbstheilung und Selbstoptimierung: Hier geht es um die Entwicklung von Anwendungen, die Fehler automatisch erkennen und beheben
sowie ihre eigene Leistung automatisch optimieren kénnen.

Typische Stacks fir Cloud-native Anwendungen sind (Auswabhl, vgl. auch andere Abschnitte z.B. in Kapitel 5 oder 8):

Kubernetes, Docker und Prometheus fiir die Orchestrierung und Uberwachung von Containern.
Spring Boot als Anwendungsrahmen fiir die Services

Consul, Eureka, Zookeeper fir Service Discovery

Istio, Envoy als Service Mesh

Grafana, Kibana fur die Visualisierung und Analytik

Jenkins, Travis fur CI/CD-Pipelines

2. Betriebstools, die in Cloud-Umgebungen wie AWS, Azure und Google Cloud verwendet werden

Cloud-Anbieter wie AWS, Azure und Google Cloud bieten eine breite Palette von Tools fur den Betrieb und die Verwaltung von Cloud-
basierten Anwendungen und Infrastrukturen. Einige der gédngigen Tools sind:

¢ CloudFormation, Terraform und ARM Templates: Hierbei handelt es sich um Infrastructure-as-Code-Tools (IaC), mit denen Benutzer Cloud-
Ressourcen mithilfe von Code bereitstellen und verwalten kdnnen, anstatt sie manuell zu konfigurieren.

® CloudWatch, Azure Monitor und Stackdriver sind Cloud-native Uberwachungs- und Protokollierungslésungen, mit denen Benutzer Metriken
und Protokolle von Cloud-basierten Ressourcen sammeln, speichern und analysieren kénnen.

® Elastic Beanstalk, App Service und App Engine: Hierbei handelt es sich um Platform-as-a-Service (PaaS)-Losungen, mit denen Benutzer
Anwendungen bereitstellen und ausfuhren kdnnen, ohne die zugrunde liegende Infrastruktur verwalten zu mussen.

® EC2 Auto Scaling, Virtual Machine Scale Sets und Kubernetes Engine sind Losungen zur automatischen Skalierung der Anzahl der Instanzen
einer Anwendung je nach Bedarf.

® Elastic Load Balancing, Azure Load Balancer und Cloud Load Balancing sind Lésungen fur die Verteilung des eingehenden Datenverkehrs
auf mehrere Instanzen einer Anwendung.

® S3, Azure Blob Storage und Google Cloud Storage sind Object Stores, die es den Benutzern ermdglichen, grol3e Datenmengen zu speichern

und abzurufen.
® RDS, Azure SQL Database und Cloud SQL: Hierbei handelt es sich um relationale Datenbankdienste, mit denen Nutzer eine relationale

Datenbank in der Cloud einfach bereitstellen, verwalten und skalieren kénnen.

® CloudFront, Azure CDN und Cloud CDN: Hierbei handelt es sich um Content Delivery Network (CDN)-Services, mit denen Benutzer Inhalte
Uber mehrere Standorte verteilen kénnen, um sie schneller bereitzustellen.

®* AWS Lambda, Azure Functions und Cloud Functions: Hierbei handelt es sich um Serverless-Computing-Ldsungen, die es Benutzern
ermdglichen, Code auszufuhren, ohne Server bereitstellen oder verwalten zu missen.

3. Cloud und laaS

Cloud Infrastructure as a Service (laaS) ist eine Kategorie des Cloud Computing, die Nutzern uber das Internet Zugang zu rohen
Rechenressourcen wie virtuellen Maschinen, Speicher und Netzwerken bietet. laaS-Anbieter wie Amazon Web Services (AWS), Microsoft Azure
und Google Cloud Platform (GCP) ermdglichen es den Nutzern, diese Ressourcen nach Bedarf zu mieten, ohne dass sie in eine eigene
physische Infrastruktur investieren und diese verwalten mussen.

Mit laaS kann man Rechenressourcen je nach Bedarf schnell und einfach vergréern oder verkleinern. laas kann fur eine breite Palette von
Anwendungen verwendet werden, einschliellich Web- und Mobilanwendungen, Big Data-Verarbeitung und maschinelles Lernen.

laaS-Anbieter bieten in der Regel eine breite Palette von Dienstleistungen an, darunter:

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 18



iISAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle”

® Virtuelle Maschinen: Benutzer kénnen virtuelle Maschinen erstellen und verwalten, auf denen verschiedene Betriebssysteme wie Windows,
Linux und macOS ausgefiihrt werden kdnnen.

® Speicher: Benutzer kdnnen Daten in der Cloud speichern und darauf zugreifen, einschlieBlich Object Stores, Blockspeicher und Dateispeicher.

® Vernetzung: Benutzer kénnen virtuelle Netzwerke erstellen und verwalten, einschlieBlich virtueller privater Clouds (VPCs), Lastverteiler und
VPNSs.

¢ Datenbanken: Benutzer konnen relationale und nicht-relationale Datenbanken erstellen und verwalten, darunter MySQL, SQL Server und
MongoDB.

* weitere Dienste wie Sicherheit, Uberwachung und Automatisierung

4. laaS, PaaS, SaaS

laaS, PaaS und SaasS sind drei Kategorien von Cloud Computing-Diensten, die sich durch die Abstraktionsebene unterscheiden, die sie den
Benutzern bieten.

® laaS (Infrastructure as a Service) ist die grundlegendste Stufe des Cloud Computing und bietet den Nutzern Zugang zu
Rohdatenverarbeitungsressourcen wie virtuellen Maschinen, Speicher und Netzwerken. Beispiele fur laaS-Anbieter sind Amazon Web
Services (AWS), Microsoft Azure und Google Cloud Platform (GCP).

® PaaS (Platform as a Service) baut auf laaS auf und bietet Benutzern eine Plattform, auf der sie ihre Anwendungen entwickeln, ausfiihren und
verwalten kdnnen. PaaS-Anbieter bieten in der Regel diverse Diensten wie Datenbanken, Webserver und Entwicklungs-Frameworks an, die
zur Erstellung und Ausfiihrung von Anwendungen verwendet werden kdnnen. Beispiele fiir PaaS-Anbieter sind Heroku, Google App Engine
und AWS Elastic Beanstalk.

® SaaS (Software as a Service) ist die hdchste Abstraktionsebene des Cloud Computing und bietet den Benutzern Zugang zu
Softwareanwendungen, die vom Anbieter gehostet und verwaltet werden. Die Nutzer greifen Giber einen Webbrowser oder eine mobile
Anwendung auf diese Anwendungen zu und mussen sich nicht um die zugrunde liegende Infrastruktur oder Plattform kiimmern. Beispiele fur
SaaS-Anbieter sind Salesforce, Microsoft Office 365 und Google G Suite.

Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten 19



	Kapitel 6 Betrieb, Ueberwachung und Fehleranalyse

