
iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

1 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Kapitel 7 Case Study Flexinale
albion.eu www.tectrain.ch www.accso.de

< Kapitel 6 Betrieb, Ueberwachung und Fehleranalyse Kapitel 8 Ausblick >

Kapitel 7 Case Study "Flexinale"

FLEX Lehrplan

7 Case Study

Dauer: 90 Min Übungszeit: 60 Min

Im Rahmen einer Lehrplan-konformen Schulung muss eine Fallstudie die Konzepte praktisch erläutern.

7.1 Begriffe und Konzepte

Die Case Study führt keine neuen Begriffe und Konzepte sein.

7.2 Lernziele

Die Case Study soll keine neuen Lernziele vermitteln, sondern die Themen durch praktische Übungen vertiefen und die Praxis
verdeutlichen.

7.3 Referenzen

Keine. Schulungsanbieter sind für die Auswahl und Beschreibung von Beispielen verantwortlich.

https://albion.eu/
http://www.tectrain.ch
http://www.accso.de
https://accso.atlassian.net/wiki/spaces/ISFLX/pages/132941286/Kapitel+6+Betrieb+Ueberwachung+und+Fehleranalyse
https://accso.atlassian.net/wiki/spaces/ISFLX/pages/132941356/Kapitel+8+Ausblick

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

2 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Inhalte

Kapitel 7 Case Study "Flexinale"
(A) Was ist die Flexinale? Überblick und Anforderungen

1. Flexinale in a Nutshell
2. Mengengerüste und Qualitätsanforderungen
3. Besucherportal
4. Backoffice
5. Betreuung Fachpublikum
6. Ticketing
7. Zentrale Verkaufsstelle
8. Spielstätte
9. Buchhaltung
10. Bounded Contexts
11. Context Map

(B) How-To: Wie mache ich was in der Flexinale?

1. Wie richte ich die Anwendungen ein und bringe sie erstmalig zum Laufen?
2. Wo finde ich den Code der vier verschiedenen Flexinale-Anwendungen?
3. Wie baue ich die Flexinale-Anwendungen?
4. Wie starte ich die Infrastruktur (Datenbank und Kafka)?
5. Wo gibt es Testdaten?
6. Wie kann ich die Datenbank mit Testdaten füllen?
7. Wo finde ich Testdaten?
8. Wie starte ich die Flexinale-Anwendungen?
9. Gibt es statische Code Analyse für die Flexinale und wo finde ich sie?
10. Wo finde ich Architekturtests für die Flexinale?
11. Wo finde und wie starte ich Tests?
12. Wie starte ich die Anwendung?
13. Wie greife ich auf die verschiedenen Flexinale-Anwendungen zu und wie logge ich mich ein?
14. Wie pflege ich die Daten zu Filmen, Kinos, Kinosälen, etc.?
15. Monitoring
16. Wie baue ich Docker-Images aus den Flexinale-Anwendungen?

(C) Entwicklungstagebuch: Monolith > Modulith 1 > Modulith 2 > Verteiltes System

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

3 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

(A) Was ist die Flexinale? Überblick und Anforderungen

1. Flexinale in a Nutshell

Flexinale ist eine Beispiel-Anwendung für Organisation, Durchführung und Ticketverkauf eines Filmfestivals. Flexinale orientiert sich an einem
echten, realen Kundenproblem (mit anderer Fachlichkeit, aber ähnlichen Nutzergruppen, -szenarien und sehr großen Mengengerüsten von
>300k Nutzern und >2 Mio Anzahl Haupt-Entitäten pro Jahr, bei teils sehr großen Lastspitzen verursacht durch Algorithmik und Nutzer-Requests).

Der Name ist ein Kunstwort aus dem "FLEX"-Advanced Level Modul und dem größten deutschen Filmfestival, der jährlich stattfindenden
Berlinale.

Nachstehende Abbildung gibt einen Überblick über die Flexinale.

Abbildung: Überblick über die Flexinale
(Quelle: selbst erstellt)

Die Funktionalität wird im Detail ab Abschnitt 3 beschrieben.

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

4 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Die vier Flexinale-Varianten implementieren nicht alle Funktionalitäten vollständig. Die folgenden Abbildungen zeigen, was in der jeweilige
Variante implementiert ist.

Die Flexinale-Anwendung ist in vier Varianten implementiert:

als Monolith
als Modulith 1 mit Onion Architektur
als Modulith 2 mit Fachlichen Komponenten
als , im Folgenden: Distributedverteilte, service-orientierte und event-basierte Anwendungen (Besucherportal, Backoffice, Ticketing)

https://github.com/accso/flex-training-flexinale/tree/main/flexinale-monolith
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-modulith-1-onion
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-modulith-2-components
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-distributed

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

5 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Monolith: (Funktional identisch mit Modulith-1 und Modulith-2)

Abbildung: In der Variante "Monolith" implementierte Funktionalität
(Quelle: selbst erstellt)

Modulith-1: (Funktional identisch mit Monolith und Modulith-2)

Abbildung: In der Variante "Modulith-1" implementierte Funktionalität
(Quelle: selbst erstellt)

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

6 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Modulith-2: (Funktional identisch mit Monolith und Modulith-1)

Abbildung: In der Variante "Modulith-2" implementierte Funktionalität
(Quelle: selbst erstellt)

Distributed: (Zusätzliche Funktionalität ggü. Monolith, Modulith-1 und Modulith-2: "Ticket ungültig machen")

Abbildung: In der Variante "Distributed" implementierte Funktionalität
(Quelle: selbst erstellt)

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

7 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.
2.
3.
4.

a.
b.

c.
d.

1.
2.

1.

2.

a.
b.

1.
2.
3.

2. Mengengerüste und Qualitätsanforderungen

Die Qualitätsanforderungen an die Flexinale orientieren sich an realen Mengengerüsten und Nutzungsszenarien.

Mengengerüste

orientieren sich am
-FilmfestBerlinale

Reale Zahlen aus der Berlinale:

Mehr als 400 Filme sollen auf der Berlinale 2023 gezeigt werden.
Die Filme werden häufig mehrfach gezeigt, so dass von weit über 1.000 Vorführungen auszugehen ist.
Es gibt 20 - 30 Kinos / Spielstätten mit 1 - 10 Sälen
Aus der Bilanz der Berlinale 2020

330.000 verkaufte Tickets
Schätzungsweise ca. 30.000 "Named User" im Portal (Grundlage der Schätzung: Jeder Nutzer kauft im
Schnitt ca. 10 Tickets)
bis zu 500.000 Vorführungsbesuche (auch Fachpublikum).
22.000 akkreditierte Fachbesucher

Last Lastspitzen gibt es v.a. kurz vor und während der Flexinale beim Abruf von Informationen zu Filmen und
Vorführungen, sowie beim Ticketkauf.

Antwortzeiten Die Anwendung soll auch unter hoher Last noch responsiv sein.

Informationsseiten (zu Filmen, Spielstätten) sollen im Sekundenbereich antworten.
Beim Ticketkauf dürfen die Antwortzeiten länger sein.

Sicherheit Jeder Zugriff auf die Anwendung von außen muss geschützt sein (User, Password).

Für das Besucherportal, insbesondere zum Einlösen von Gutscheinen, sowie für Aktionen im Backoffice (hier:
Datenpflege) ist eine Authentifizierung erforderlich (user, password).
Es gibt ein Rollenkonzept:

Besucher benötigen die Rolle BESUCHER.
Die Datenpflege im Backoffice benötigt die Rolle ADMIN

Nachvollziehbarkeit Alle Ticket-Käufe müssen über Transaktionen nachvollziehbar sein:

Kauf, d.h. hier das Einlösen von Gutscheinen.
Fehlgeschlagener Kauf (wenn z.B. das Kontingent ausgeschöpft ist)
Ungültig gewordene Tickets (nur verteilte Anwendung)

Mandantenfähigkeit Die Flexinale bedient verschiedene Filmfeste. Aktuell ist in der Software keine Mandanten-ID
vorgesehen, Mandantenfähigkeit kann aber recht einfach durch getrennte Installationen erreicht werden.

Internationalisierung Die Flexinale bedient Filmfeste mit großem internationalem Publikum. Daher muss die Flexinable internationalisierbar
sein: Mindestens deutsch- und eine englischsprachige Version muss es geben.

https://www.berlinale.de/de/home.html
https://www.tagesspiegel.de/kultur/die-besucher-bleiben-der-berlinale-treu-6603265.html

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

8 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.
2.

3. Besucherportal

Hauptentitä
ten,
Aggregate

Implem
entiert?

Login Besucher:innen können das Besucherportal nur mit einem Login benutzen. Besucher

Filmprogramm
ansehen

Besucher:innen erhalten Informationen, welche Filme es gibt, wann und wo sie gezeigt werden, sowie zu
den jeweiligen Kinos (Spielstätten), in denen Filme gezeigt werden.

Nur lesend:

Film, Kino,
Vorführung

Vorführung
auswählen

Zu jedem Film können sich die Besucher:innen anschauen welche Vorführungen es gibt und eine
auswählen, die sie besuchen möchten.

Gutscheinpaket
für Tickets
erwerben

Um Tickets zu erwerben, muss ein Besucher zunächst ein Gutscheinpaket für Tickets erwerben. Die
Gutscheine löst er dann gegen Tickets ein.

(Dieses Vorgehen wurde für diese Case Study gewählt, um keinen Bezahlprozess implementieren zu
müssen. Der Gutscheinkauf selber ist daher ebenfalls nicht implementiert.)

Gutscheinpak
et

Ticketkauf -
Gutscheine
online einlösen

Besucher:innen können für eine ausgewählte Vorführung Gutscheine einlösen. Die Zahl der pro Vorführung
einlösbaren Gutscheine ist begrenzt.

Um Besuchern die Planung zu erleichtern und insbesondere damit sie nicht versehentlich Tickets für zwei
zeitgleich stattfindende Vorführungen erwerben, gibt es folgende Komfort-Funktionen: Ein/e Besucher:in
kann nur Gutscheine für Vorführungen einlösen ...

für die sie noch keine Tickets hat,
die zeitlich nicht mit einer anderen Vorstellung überlappt, für die sie bereits Tickets hat. Bei der
zeitlichen Überlappung ist außerdem ein Puffer eingerechnet für eine Mindestzeit zwischen zwei
Vorführungen (um z.B. die Spielstätte zu wechseln).

Das Aggregate "Ticketbundle" kennt alle Tickets des Besuchers und ist daher notwendig, um diese
Komfortfunktionen bereitzustellen.

Gutschein

Aggregate: Ti
cketbundle -
alle Tickets
eines
Besuchers

Persönliches
Programm
ansehen

Die Vorführungen, für die Tickets erworben wurden, sowie die Anzahl der für die Vorführung erworbenen
Tickets werden angezeigt.

Nur in Distributed:

Tickets, die ihre Gültigkeit verloren haben, werden ebenfalls angezeigt. Gründe, dass ein Ticket seine
Gültigkeit verliert, können z.B. sein, dass eine Vorführung abgesagt wird, oder allgemein Änderungen an
Daten Film, Kino / Kinosaal / Vorführung (s.u. unter Backoffice, "Änderungen an den Daten Film,..."

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

9 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.
2.
3.

1.
2.

1.
2.

3.

4. Backoffice

Hauptentitä
ten,
Aggregate

Implem
entiert?

Flexinale-Daten
pflegen

Daten zum Festival wie Zeitraum, Ort Metadaten
zur Instanz
des Festivals
(z.B. Zeiten,
Tage)

Filme einstellen Die Filme, die auf der Flexinale gezeigt werden, erstellen und pflegen: Name, IMBD-Link, Dauer (in
Stunden)

Film

Ausstrahlungsbe
dingungen
verwalten

Verwalten der (recthlichen) Bedingungen, unter denen ein Film ausgestrahlt werden kann:

Wann und wie lange darf ein Film ausgestrahlt werden?
FSK-Bedingungen
Wie groß dürfen die Spielstätten (Anzahl der Plätze) maximal sein?

Spielstätten
(Kinos) verwalten

Die Spielstätten der Flexinale pflegen: Die Kinos mit ihren Adressen und Kontaktdaten, sowie ihren für die
Flexinale zur Verfügung stehenden Kinosäle und ihr Platzangebot.

Kino

Kinosaal

Programm planen Die Vorführungen der Filme planen, also planen, welcher Fiilm wann und in welchem Kino gezeigt wird. Vorführung

UI für die
Datenpflege im
Backoffice

Die Datenpflege (Film, Kino / Kinosaal, Vorführung) ist in der Flexinale als REST-Controller implementiert.
Per HTTP-POST-Request wird ein Excel-Sheet der Anwendung übergeben, welches die Daten enthält.

CRUD-
Funktionen
für die
Datenpflege im
Backoffice

Im Monolith / Modulith 1 / Modulith 2 können nur Daten hinzugefügt werden.
In Distributed können darüber hinaus Daten aktualisiert werden (sind versioniert).

Das Löschen von Daten ist bewusst nicht möglich.

Änderungen an
den Daten Film,
Kino, Kinosaal
oder Vorführung
und Tickets

Wenn die Daten Film, Kino, Kinosaal oder Vorführung geändert werden, werden die Tickets aller
Vorführungen, die von einer der Änderungen betroffen sind, ungültig.

Das heißt:

Änderungen an einem Film: Tickets für alle Vorführungen, die diesen Film zeigen, werden ungültig.
Änderungen an einem Kino oder Kinosaal: Tickets für alle Vorführungen, die in diesem Kino oder
Kinosaal stattfinden, werden ungültig.
Änderungen an einer Vorführung: Tickets für diese Vorführung werden ungültig.

(nur
Distribut

ed)

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

10 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.
2.
3.

1.
2.
3.

1.
2.

3.

5. Betreuung Fachpublikum

Diese Funktionalität ist nicht implementiert.

Hauptentitä
ten,
Aggregate

Implem
entiert?

Plätze reservieren In jeder Vorführung können Plätze für die Filmcrew und andere Mitwirkende reserviert werden. Reservierung

Kontingent
reservieren

In jeder Vorführung an ein Kontingent an Tickets für ein Fachpublikum, Presse, Fernsehen o.ä. reserviert
werden. Die nicht in Anspruch genommenen Tickets gehen kurz vor Beginn der Vorführung in den Verkauf
in der Spielstätte.

Kontingent

6. Ticketing

Hauptentitä
ten,
Aggregate

Implem
entiert?

Tickets erstellen Wenn ein/e Besucher:in einen oder mehrere Gutscheine für eine Vorführung einlöst, werden entsprechend
Tickets für sie erstellt. Dazu wird zunächst geprüft, ob das Restkontingent für die Vorführung und für den
Verkaufskanal (Online, zentraler Verkauf, an der Kinokasse) noch ausreicht. Nur wenn das vorhandene
Kontingent ausreicht für die gewünschte Anzahl an Tickets, werden diese erstellt.

Ticket

Kontingent (nur für
Verkaufs

kanal
online)

Kontingent
berechnen

Das Kontingent zu einer Vorführung ist die Gesamtzahl der Tickets, die für diese Vorführung verkauft
werden können. Es teilt sich auf in

Kontingent für den Online-Verkauf
Kontingent für den zentraler Verkauf
Kontingent für den Verkauf an der Kinokasse der Spielstätte

Die Aufteilung zwischen den drei Verkaufsarten ist durch eine (anwendungsweit) konfigurierbare Quote für
den Online-Verkauf festgelegt. Das Kontingent für den zentraler Verkauf und den Verkauf an der
Kinokasse der Spielstätte ist jeweils die Hälfte des verbliebenen Restes nach Abzug des Online-
Kontingentes.

Das Kontingent ist die Anzahl der Plätze eines Kinosaals (eigentlich abzüglich der Reservierungen, s.u.
Diese sind jedoch nicht implementiert).

Das Kontingent wird (neu) berechnet,

wenn eine Vorführung in den Verkauf gegeben wird.
wenn Tickets für diese Vorführung verkauft werden.
wenn eine Vorführung geändert wird.

Kontingent

Kontingent
freigeben

s. Betreuung Fachpublikum - Kontingent reservieren:

Tickets aus dem für ein Fachpublikum reservierten Kontingent, die nicht in Anspruch genommen wurden,
werden automatisch zeitgesteuert 30 Minuten vor einer Vorführung für den freien Verkauf direkt in der
Spielstätte freigegeben.

Kontingent

Ticket ungültig
machen

Wenn Daten von Film, Kino, Kinosaal oder Vorführung geändert werden, werden die Tickets für alle
Vorführungen, die von einer der Änderungen betroffen sind, ungültig.

Das heißt:

Änderungen an einem Film: Tickets für alle Vorführungen, die diesen Film zeigen, werden ungültig.
Änderungen an einem Kino oder Kinosaal: Tickets für alle Vorführungen, die in diesem Kino oder
Kinosaal stattfinden, werden ungültig.
Änderungen an einer Vorführung: Tickets für diese Vorführung werden ungültig.

Das Kontingent für die betroffene Vorführung wird neu berechnet.

Ticket

Kontingent (nur
Distribut

ed)

Ticketverkauf
protokollieren

Aus Gründen der Nachvollziehbarkeit wird protokolliert, welche Tickets verkauft wurden oder ungültig
gemacht wurden.

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

11 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.

2.

7. Zentrale Verkaufsstelle

Diese Funktionalität ist nicht implementiert.

Hauptentitä
ten,
Aggregate

Impleme
ntiert

Information Verkäufer und Besucher können Informationen zu Filmprogramm, Spielstätten (Kinos / Kinosälen) und
Vorführungen ansehen

Nur lesend:

Film, Kino,
Vorführung

Restkontingent
anzeigen

Der Verkäufer sieht, wieviele Plätze im zentralen Verkauf für eine Vorführung noch zur Verfügung stehen.

Besucher sehen nur eine grobe Zahl in Form einer Ampel (grün - noch reichlich Plätze frei, gelb - nur
noch wenige Plätze frei, rot - ausverkauft)

Nur lesend:

Kontingent
zentral

Gutschein
einlösen oder
Ticket kaufen

Besucher können Tickets erwerben, indem sie Gutscheine einlösen.

8. Spielstätte

Diese Funktionalität ist nicht implementiert.

Hauptentitä
ten,
Aggregate

Impleme
ntiert

Information Informationen zu Filmprogramm und Vorführungen in dieser Spielstätte Nur lesend:

Film, Kino,
Vorführung

Restkontingent
anzeigen

Der Verkäufer sieht, wieviele Plätze im Verkauf an der Kinokasse für eine Vorführung noch zur Verfügung
stehen.

Besucher sehen nur eine grobe Zahl in Form einer Ampel (grün - noch reichlich Plätze frei, gelb - nur
noch wenige Plätze frei, rot - ausverkauft)

Nur lesend:

Kontingent
Spielstätte

Gutschein
einlösen oder
Ticket kaufen

Anzeige der noch vorhandenen Tickets für eine Vorführung (des Kontingentes für den Verkauf an
der Kinokasse)
Tickets verkaufen

9. Buchhaltung

Diese Funktionalität ist nicht implementiert

Hauptentitä
ten,
Aggregate

Impleme
ntiert

Reporting Informationen zu Anzahl Filme, Anzahl Vorführungen, Anzahl verkaufter Tickets Lesend alle
Entitäten

Finanzbuchhaltung Informationen zu Einnahmen und Ausgaben Lesend
Tickets

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

12 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.

2.

1.
2.
3.

1.

2.

10. Bounded Contexts

Die Abbildung unten zeigt eine Möglichkeit, Bounded Contexts für die Flexinale zu schneiden. Das sind die Treiber für den Schnitt der Bounded
Contexts:

Akteure und
Nutzungsszenarien

Das Besucherportal wird von allen Flexinale-Besuchern genutzt, das Backoffice dagegen nur von Flexinale-
Mitarbeitern.
Der Ticketverkauf dagegen wird von außen, über verschiedene Verkaufskanäle, angestoßen.

Datenhoheit Die Hoheit über Entitäten oder Aggregates sollte vollständig innerhalb eines Bounded Contexts liegen

Qualitätsteigensc
haften: Security

Das Besucherportal steht im Internet, muss daher gut gegen entsprechende Angriffe abgesichert sein.
Die Verwaltung der Filme dagegen kann eine interne Anwendung sein.
Auch der Ticketverkauf muss nicht direkt im Internet stehen, er wird nur angestoßen bspw. durch Aktionen aus
dem Besucherportal

Qualitätsteigensc
haften: Last

Unterschiedliche Bounded Contexts müssen unterschiedlich skalieren.

Der Ansturm auf Tickets ist in den Tagen direkt vor oder zu Beginn einer Flexinale besonders hoch, wenn die
Vorführungen für den Verkauf freigeschaltet werden. Dann muss der Ticketverkauf skalieren.
Die Vorbereitungen - Einstellen der Filme, Spielstätten, Programmplanung - dagegen werden über einen
längeren Zeitraum und nur von einer sehr begrenzten Zahl von Anwendern durchgeführt.

Die Bounded Contexts "Finanzen" und "Reporting" sind hier gestrichelt markiert, weil sie außerhalb des eigentlichen fachlichens Scopes der
Flexinale liegen. Der Bounded Context "Finanzen" wird in einem SAP-System umgesetzt, "Reporting" ist eine Data Warehouse-Anwendung.
Beide benötigen jedoch Daten aus der Flexinale, die sie nur lesend verwenden.

Abbildung: Bounded Contexts der Flexinale
(Quelle: selbst erstellt)

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

13 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

11. Context Map

Die Context Map veranschaulicht die Abhängigkeiten zwischen den verschiedenen Bounded Contexts. Die Pfeile zeigen den Datenfluss in der
Richtung Upstream Downstream. Das heißt besipielsweise, dass der Bounded Context "Besucherportal" Daten aus dem "Backoffice Film"
bekommt, also von diesem Bounded Context abhängt.

Die Bounded Contexts "Finanzen" und "Reporting" benötigen Daten aus fast allen Bounded Contexts.

Abbildung: Context Map der Flexinale
(Quelle: selbst erstellt)

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

14 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.
2.
3.
4.

(B) How-To: Wie mache ich was in der Flexinale?

1. Wie richte ich die Anwendungen ein und bringe sie erstmalig zum Laufen?

Die Einrichtung der Infrastrukur, von IntelliJ, das erstmalige Bauen und Starten der Anwendung ist beschrieben in Installationsanleitung: Java,
Spring-Boot, Maven, Sourcecode für die Case Study "Flexinale"

2. Wo finde ich den Code der vier verschiedenen Flexinale-Anwendungen?

Die vier Anwendungen sind in IntelliJ als ein Projekt mit vier Modulen angelegt. Sie sind direkt unterhalb des obersten Verzeichnisses flex-
training-filmfestival zu finden:

flexinale-distributed
flexinale-modulith-1-onion
flexinale-modulith-2-components
flexinale-monolith

Auf oberster Ebene liegt außerdem das Verzeichnis . Es enthält Skripte zum Starten der Datenbank und Kafka mit docker oder infrastructure
podman.

Das Modul ist in weitere Module zerlegt. flexinale-distributed

Alle Module folgen der Standard-Struktur von Maven-Projekte: , etc.src/main/java, src/test/java

Abbildung: Flexinale-Varianten in IntelliJ
(Quelle: selbst erstellt)

3. Wie baue ich die Flexinale-Anwendungen?

Die Anwendungen werden mit Maven gebaut. Wie das genau geht, ist in 7 Case Study "Flexinale" (C) HowTo: Setup des Flexinale-Beispielcodes
für jede der Anwendungen in den Abschnitten 8.a) / 9.a) / 10.a)/ 11.a) ausgeführt.

https://accso.atlassian.net/wiki/spaces/ISFLX/pages/132942488/FLEX-Schulung+-+Installationsanleitung+f+r+die+Case+Study
https://accso.atlassian.net/wiki/spaces/ISFLX/pages/132942488/FLEX-Schulung+-+Installationsanleitung+f+r+die+Case+Study
https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

15 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.

2.

3.

1.
2.

1.
2.

Der Maven-Build kann auf allen Ebenen der Modul-Hierarchie ausgeführt werden: Auf oberster Ebene für alle vier Anwendungen zusammen, für
jede Anwendung getrennt, und getrennt für die Module in flexinale-distributed.

4. Wie starte ich die Infrastruktur (Datenbank und Kafka)?

Alle vier Flexinale-Anwendungen, ebenso die Tests, benötigen eine laufende Datenbank.
Nur die Flexinale distributed benötigt ein laufendes Kafka.

Die Datenbank und Kafka werden per docker oder podman gestartet.

Wie man die Datenbank erstmalig einrichtet startet, ist in , 5.a) 7 Case Study "Flexinale" (C) HowTo: Setup des Flexinale-Beispielcodes
beschrieben.
Wie man die Datenbank nach der ersten Einrichtung startet und stoppt ist in 7 Case Study "Flexinale" (C) HowTo: Setup des Flexinale-

, 5.b) beschrieben.Beispielcodes
Wie man Kafka startet und stoppt ist in , 6. beschrieben.7 Case Study "Flexinale" (C) HowTo: Setup des Flexinale-Beispielcodes

5. Wo gibt es Testdaten?

Für jede Implementierungsvariante wird eine eigene Postgres-Datenbank benutzt. Wie diese eingerichtet werden, ist in 7 Case Study "Flexinale"
(C) HowTo: Setup des Flexinale-Beispielcodes, 5.a) beschrieben.

Zur Befüllung steht jeweils ein Satz an Testdaten in Form eines Excel-Sheets zur Verfügung. Sie sind abgelegt unter

im Monolith und beiden Modulithen: src/test/resources/testdata/TestData.xlsx
in Distributed im Modul , dort ebenfalls unter flexinale-distributed-testdata src/test/resources/testdata/TestData.xlsx

Die Excel-Sheets haben verschiedene Tabellenblätter für die verschiedenen Datenarten.

Wer die Testdaten ergänzen oder verändern will, kann in diesen Excelsheets ändern.

6. Wie kann ich die Datenbank mit Testdaten füllen?

Die Testdaten können auf zwei verschiedene Arten in die Datenbank geladen werden:

Über per JUnit startbare Testdaten-Loader
oder über HTTP-Requests.

Option 2. ist im Abschnitt Backoffice -Datenpflege weiter unten beschrieben.

Hier beschreiben wir 1. über per JUnit startbare Testdaten-Loader.

Für das Laden per JUnit-Testdaten-Loader gibt es run configurations in IntelliJ, gruppiert nach der jeweiligen Anwendung (s. im Run/Debug-
Configurations-Fenster oder im Servcies-Fenster von IntelliJ)

Abbildung: JUnit Test in IntelliJ
(Quelle: selbst erstellt)

Hier gibt es jeweils run configurations, um

Testdaten aus der Datenbank zu löschen (erstellt insbesondere eine Datenbank mit allen Schemata)
Testdaten in die Datenbank zu laden.

Im Monolith und Modulith gibt es nur jeweils eine run configuration für alle Datentypen gemeinsam, im Modulith 2 und in Distributed gibt es
zusätzlich run configurationen, um Benutzer- und Daten zu Film, Kino, Kinosälen und Vorführungen getrennt zu laden.

https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497
https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497
https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497
https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497
https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497
https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

16 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.
2.
3.

Die JUnit-Klassen, die sich um Löschen und Laden der Testdaten kümmern, liegen in der jeweiligen Anwendung unter , src/test/java/testdata
bzw. in der flexinale-distributed im Modul unter flexinale-distributed-testdata src/test/java/testdata.

Die liegen in der jeweiligen Anwendung unter src/test/resources/testdata, bzw. in der flexinale-distributed im Modul flexinale-Testdaten
distributed-testdata unter src/test/resources/testdata, dort in einem oder mehreren Excelsheets.

Die Testdaten-Loader implementieren folgendes Verhalten:

Wenn ein Datensatz mit der gleichen ID noch nicht in der Datenbank vorhanden ist, wird der Datensatz aus den Excelsheet hinzugefügt.
Wenn ein Datensatz mit der gleichen ID bereits vorhanden ist, wird er mit dem Datensatz aus den Excelsheet überschrieben.
Datensätze in der Datenbank werden nie gelöscht.

7. Wo finde ich Testdaten?

Die Testdaten liegen in der jeweiligen Anwendung unter , bzw. in der flexinale-distributed im Modul src/test/resources/testdata flexinale-distributed-
 unter , dort in einem oder mehreren Excelsheets. testdata src/test/resources/testdata

8. Wie starte ich die Flexinale-Anwendungen?

Die Flexinale-Anwendungen starten wir aus IntelliJ heraus. Wie das genau geht, ist in 7 Case Study "Flexinale" (C) HowTo: Setup des Flexinale-
 für jede der Anwendungen in den Abschnitten 8.c) / 9.c) / 10.c)/ 11.c) ausgeführt. Beispielcodes

9. Gibt es statische Code Analyse für die Flexinale und wo finde ich sie?

Für die statische Code Analyse in der Flexinale wird spotbugs genutzt, sowie findsecbugs für Security-Bugs. Für beide ist das jeweilige Maven-
plugin konfiguriert. Sie laufen in der "Verify"-Phase von Maven.

 Ausnahmen, d.h. Warnungen oder Fehler, die spotbugs oder findswecbugs finden und die bewusst ignoriert werden sollen, sind (wo vorhanden)
in der Datei konfiguriert. Sie liegt jeweils auf oberster Ebene eines Projektes.SpotbugsExcludeFilter.xml

Hinweis: Sporbugs und findsecbugs analysieren den Java byte code. Außerdem benutzen sie die SpotbugsExcludeFilter.xml, die im target-
Verzeichnis eines Projektes liegt. Bei einer Analyse von geändertem Code oder einer Änderung an der SpotbugsExcludeFilter.xml ist also ein
neuer maven build erforderlich.

10. Wo finde ich Architekturtests für die Flexinale?

Architekturtests gibt es für die Modulithen und Distributed. Für die Tests verwenden wir ArchUnit. Diese Tests liegen unter

Modulith-1 flexinale-modulith-1-onion/src/test/java/architecturetests

Modulith-2 flexinale-modulith-2-components/src/test/java/architecturetests

Distributed in einem eigenen Maven-Projekt: flexinale-distributed/flexinale-distributed-test-architecture/src/test/java/architecturetests

Die ArchUnit-Tests sind als JUnit-Tests geschrieben. Damit

können sie wie diese in IntelliJ direkt gestartet werden
laufen sie in der test phase in Maven mit

11. Wo finde und wie starte ich Tests?

Tests für die Anwenung sind als JUnit-Tests geschrieben. Sie liegen jeweils unter

Mon
olith

flexinale-monolith/src/test/java/de/accso/flexinale

Mod
ulith-
1

flexinale-modulith-1-onion/src/test/java/de/accso/flexinale

Anlegen der Datenbank-Schemata
Die Datenbank-Schemata müssen nicht explizit angelegt werden.

Sie werden automatisch von Spring / Hibernate beim Starten der run-configuration gelöscht neu erzeugt.delete all data from database

Dafür sorgt die property .spring.jpa.hibernate.ddl-auto=create

https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497
https://accso.atlassian.net/wiki/pages/createpage.action?spaceKey=ISFLX&title=7%20Case%20Study%20%22Flexinale%22%20%28C%29%20HowTo%3A%20Setup%20des%20Flexinale-Beispielcodes&linkCreation=true&fromPageId=132942497

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

17 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.

2.

1.
2.

1.
2.

1.
2.
3.

Mod
ulith-
2

flexinale-modulith-2-components/src/test/java/de/accso/flexinale

Distri
buted

in zwei eigenen Maven-Projekten:

flexinale-distributed/flexinale-distributed-test-integrated/src/test/java - funktionale Tests. Hierbei werden die Anwendung
integriert in einem einzigen Prozess gestartet. Zum Messaging wird ein In-Memory-Bus verwendet.
flexinale-distributed/flexinale-distributed-test-distributed/src/test/java - Verteilungs-Aspekte werden hier getestet.

Voraussetzungen:

Die Datenbank muss laufen
Für distributed muss für die Tests der Verteileung (Tests in flexinale-distributed-test-distributed) auch Kafka laufen.

Tests können gestartet werden

In IntelliJ, Rechtsklick auf die Testklasse und "Run..." / "Debug..."
Per Maven, test-Phase

12. Wie starte ich die Anwendung?

Die Anwendungen werden als Spring Boot Application gestartet. Für den Start der Anwendungen gibt es in der Gruppe Spring Boot jeweils eine
Gruppe für die Run Configuration(s) in IntelliJ.

Abbildung: Services zum Start in IntelliJ
(Quelle: selbst erstellt)

Der Monolith und die beiden Modulithen bestehen jeweils aus genau einer Spring Boot Application, die gestartet werden muss.

Distributed besteht aus drei Spring Boot Applications. Diese müssen in der richtigen Reihenfolge gestartet werden.

Startreihenfolge für Distributed

Besucherportal (warten auf die Info "Started FlexinaleDistributedApplicationBesucherportal" in der Konsole)
Ticketing (warten auf die Info "Started FlexinaleDistributedApplicationTicketing" in der Konsole)
Backoffice

13. Wie greife ich auf die verschiedenen Flexinale-Anwendungen zu und wie logge ich mich ein?

Infrastruktur für die Anwendungen
Damit die Anwendungen starten können:

Muss PostgreSQL laufen.
Müssen die Datenbankschemata angelegt sein.

Dazu reicht es, einmal die run configuration zum Löschen aller Daten aus der Datenbank zu starten (s. Abschnitt "Datenbank mit
Testdaten füllen").

Nur Distributed: Muss Kafka laufen.

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

18 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Alle Anwendungen (in Distrubuted: Das Besucherportal) laufen unter . Im Default horchen damit alle Anwendungen auf http://localhost:8080/
den gleichen Port, es kann also nur eine Anwendung zu einem Zeitpunkt gestartet werden.

Login

Die Anwendung kann nur mit einem eingeloggten Benutzer benutzt werden. Benutzer und Passwörter finden sich im Testdaten-Excelsheet, im
Tabellenblatt . Sie müssen die Rolle Besucher haben (ROLE_BESUCHER).Benutzer

Beispielsweise kann man sich nach dem Laden der Benutzer-Testdaten mit dem Benutzer mit Passwort einloggen.man mann1

Hinweis: Die Passwörter der einzelnen Benutzer stehen nur im Excel-Sheet im Klartext. In der Datenbank sind sie verschlüsselt. Sie sind aber
immer nach diesem Muster gebildet:

Passwort = <login>1
Beispiel: login: mann, Passwort: mann1

Anwendungen anhand der Header-Farbe unterscheiden

Zur besseren Orientierung hat jede Anwendung eine andere Header-Farbe:

Monolith

Modulith 1 (Onion)

Modulith 2 (Components)

Distributed

Vor der ersten Benutzung
Die Benutzer, die sich einloggen können, müssen in der Datenbank stehen.

Daher vor der ersten Benutzung einmal mindestens die Benutzer aus dem Testdatensatz in die Datenbank laden,
z.B. über die run configuration zum Laden aller Daten in die Datenbank (s. Abschnitt "Datenbank mit Testdaten füllen").

http://localhost:8080/

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

19 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

14. Wie pflege ich die Daten zu Filmen, Kinos, Kinosälen, etc.?

Die UI für die Datenpflege im Backoffice ist eine REST-Schnittstelle, über die ein Excel Sheet mit den gewünschten Daten geladen werden kann.
Die REST-Controller akzwptieren dazu Excel-Sheets mit Daten in dem gleichen Format wie auch die Testdaten abgelegt sind. Zum Test der
REST-Schnittstelle können also die Excelsheets mit den Testdaten (s.o.) verwendet werden.

Die benötigten HTTP-Requests kann man direkt aus IntelliJ heraus absetzen oder per curl von einer Kommandozeile, dazu s.u.

In IntelliJ gibt es run configurations für die HTTP-POST-Requests zur Datenpflege (in diesen ist der User admin mit Passwort admin1 hinterlegt):

Abbildung: Services zum Absetzen von REST-Post-Calls
(Quelle: selbst erstellt)

Per HTTP GET kann man außerdem die Daten zu Film, Kino, Kinosälen und Vorführungenüber die REST-Controller auslesen. Dazu braucht
man die Rolle Besucher (ROLE_BESUCHER). Für die GET-Requests sind keine run-configurations hinterlegt.

HTTP-Requests per Curl

1.
2.

Vor dem Laden der Daten
Damit die Daten überhaupt geladen werden können:

Muss die Anwendung laufen.
Muss es einen Benutzer in der Benutzer-Tabelle geben, der die Rolle Admin hat (ROLE_ADMIN). In den Testdaten gibt es dafür den
User admin (Passwort: admin1).

Einfügen und aktualisieren von Daten zu Film, Kino, Kinosälen, Vorführungen
Mit dem hier beschriebenen Mechanismus kann man

Neue Daten hinzufügen.
Vorhandenen Daten ändern.
Benutzerdaten können nicht über die Datenpflege des Backoffice geladen werden. Sie müssen über die Testdatenloader eingespielt
werden.

Das Löschen vorhandener Daten ist nicht möglich.

(S.a. Beschreibung der Flexinale)

Curl und WSL2

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

20 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Für CLI-Benutzer (Windows CMD oder Powershell): GET-Requests für die Daten zu Film, Kino, Kinosälen und Vorführungen

(Hier wird ein Benutzer mit Besucher-Rechten benötigt (ROLE_BESUCHER)

Port bei Monolith und Modulith1/2 ist 8080, bei Distributed läuft die
Backoffice-App auf 8081

Filme
curl -v -X GET -u USER:PASSWORT http://localhost:PORT/rest/filme

Kinos (und -saele)
curl -v -X GET -u USER:PASSWORT http://localhost:PORT/rest/kinos

Vorfuehrungen
curl -v -X GET -u USER:PASSWORT http://localhost:PORT/rest/vorfuehrungen

Für CLI-Benutzer (Windows CMD oder Powershell): POST-Requests zum Einspielen von Daten zu Film, Kino, Kinosälen und
Vorführungen

(Hier wird ein Benutzer mit Admin-Rechten benötigt (ROLE_ADMIN)

Wechsel in Verzeichnis, wo XLSX-Datei liegt
cd ...\src\test\resources\testdata

Curl

Port bei Monolith und Modulith1/2 ist 8080, bei Distributed läuft die
Backoffice-App auf 8081

Filme
curl -v -X POST -u USER:PASSWORD -F
file=@TestdataFilmKinoKinoSaalVorfuehrung.xlsx http://localhost:PORT
/rest/filme

Kinos (und -saele)
curl -v -X POST -u USER:PASSWORD -F
file=@TestdataFilmKinoKinoSaalVorfuehrung.xlsx http://localhost:PORT
/rest/kinos

Vorfuehrungen
curl -v -X POST -u USER:PASSWORD -F
file=@TestdataFilmKinoKinoSaalVorfuehrung.xlsx http://localhost:PORT

 Curl funktioniert nicht von WSL2 auf die Flexinale-Anwendungen, die unter WIndows (z.B. in IntelliJ) laufen,
da der Zugriff auf localhost nicht möglich ist (siehe hier). Auch Änderungen der wslconfig (siehe hier) funktioniert leider nicht.

Curl muss man daher von der Windows-CMD oder der Windows-Powershell nutzen.

Curl für GET-Requests auf Rest-Controller: Daten auslesen

Curl für POST-Requests auf Rest-Controller: Daten neu einspielen oder updaten

https://stackoverflow.com/questions/64763147/access-a-localhost-running-in-windows-from-inside-wsl2
https://learn.microsoft.com/en-us/windows/wsl/wsl-config

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

21 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

/rest/vorfuehrungen

Benutzer
... können absichtlich NICHT per Curl geladen werden. Sie müssen in
der Datenbank vorhanden sein, sonst ist die Authentifizierung nicht
möglich (401)

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

22 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

15. Monitoring

Für das Monitoring nutzt die Flexinale . Hierfür gibt es Endpunkte in den jeweiligen Applikationen flexinale-distributed-Spring Boot Actuator
besucherportal, bzw. flexinale-distributed-backoffice, bzw. flexinale-distributed-ticketing, dort im infrastructure-Package.

Am Beispiel Besucherportal:

Abbildung: Actuator-Endpoint in flexinale-distributed, backoffice
(Quelle: selbst erstellt)

Die Actuator-Endpoints können per HTTP-Request aufgerufen werden.

In IntelliJ gibt es run configurations für die HTTP-GET-Requests zum Aufrufen der Actuator-Endpoints (in diesen ist der User admin mit Passwort
admin1 hinterlegt):

Monitoring-Endpunkte gibt es nur in der Variante Distributed.

https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

23 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Abbildung: Services zum Absetzen von HTTP-Requests für Actuator-Endpoints
(Quelle: selbst erstellt)

HTTP-Requests per Curl

Für CLI-Benutzer (Windows CMD oder Powershell): GET-Requests für Actuator

Hier wird ein Benutzer mit Admin-Rechten benötigt (ROLE_ADMIN)

Beispiel:

Beispiel: Aufruf des info-Acutator-Endpunkts in Ticketing. Die Die
Ticketing-Application läuft in Distributed auf Port 8082

curl -v -u USER:PASSWORD http://localhost:8082/actuator/info

16. Wie baue ich Docker-Images aus den Flexinale-Anwendungen?

Im Projekt für die jeweilige Applikation gibt es im Verzeichnis infrastructure jeweils Skripte für Docker, bzw. Podman. In Monolith, Modulith-1 und
Modulith-2 liegen die Skripte zum Bauen und Starten der Images im gleichen Verzeichnis

Curl und WSL2

 Curl funktioniert nicht von WSL2 auf die Flexinale-Anwendungen, die unter WIndows (z.B. in IntelliJ) laufen,
da der Zugriff auf localhost nicht möglich ist (siehe hier). Auch Änderungen der wslconfig (siehe hier) funktioniert leider nicht.

Curl muss man daher von der Windows-CMD oder der Windows-Powershell nutzen.

Curl für GET-Requests auf Rest-Controller: Daten auslesen

Docker-Images der Flexinale-Anwendungen benötigen wir nicht für die Schulung. Es reicht dafür völlig aus, die Anwendungen in IntelliJ zu
starten.

https://stackoverflow.com/questions/64763147/access-a-localhost-running-in-windows-from-inside-wsl2
https://learn.microsoft.com/en-us/windows/wsl/wsl-config

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

24 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Abbildung: Monolith:Verzeichnis infrastructure mit Docker-/Podman-Skripten (Struktur in Modulith-1 und Modulith-2 analog)
(Quelle: selbst erstellt)

In Distributed gibt es infrastructure-Verzeichnisse in den jeweiligen Anwendungen (zum Bauen der Images), sowie eines auf oberster Ebene zum
Starten der gesamten Anwendung.

Abbildung: Distributed: Verzeichnis infrastructure in backoffice mit Docker-/Podman-Skripten zum Bauen (Struktur in besucherportal und ticketing
analog)

(Quelle: selbst erstellt)

Abbildung: Distributed: Verzeichnis infrastructure in backoffice mit Docker-/Podman-Skripten zum Starten mit Compose
(Quelle: selbst erstellt)

Zum Bauen der Images gibt es Build-Skripte:

Für Docker: In einer Shell (z.B. WSL2) in das passende Unteverzeichnis wechseln, dort aufrufen.docker_build.sh
Für Podman: In einer CLI (Windows CMD oder Powershell) in das passende Unteverzeichnis wechseln, dort aufrufen.podman_build.bat

Zum Starten der Anwendung inkl. Infrastruktur (Monolith / Modulith-1 und -2: inkl. Postgres-Datenbank; Distributed: zusätzlich Kafka) gibt es
compose-Skripte, Verzeichnisse s.o..

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

25 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

Für Docker: In einer Shell (z.B. WSL2) in das passende Unteverzeichnis wechseln, dort aufrufen.docker-compose_up.sh
Für Podman: In einer CLI (Windows CMD oder Powershell) in das passende Unteverzeichnis wechseln, dort podman-compose_up.bat
aufrufen.

Compose in Distributed

 Der Start der gesamten Anwendung mit den Applikationen als Docker-/ Podman-Images funktioniert derzeit in Distributed nicht. Hier
können sich die Applikationen nicht mit Kafka connecten. Die Fehlerursache ist derzeit unklar.

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

26 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.

2.

(C) Entwicklungstagebuch: Monolith > Modulith 1 > Modulith 2 > Verteiltes System

"ab" Anwendung was (Thema) warum Referenz im Code (Link zu Github)

1 Monolith RestController als "Backoffice"

2 Monolith TicketBundle - unser Aggregate

3 Monolith Rollen Besucher, Admin;
Benutzer mit unterschiedlichen
Rollen

4 Modulith-1 Onion-Architektur

5 Modulith-1 Trennung von domain und
infrastructure:

domain model, Daos
getrennt von Entitäten,
Repositories
Keine Spring-
Annotationen in Domäne,
dafür DAos als Interfaces,
Delegates, SpringFactory

6 Modulith-1 Trennung von Besucher und
Benutzer-Entität

Verschiedene Blickwinkel: Für A&A wird login, password,
Rolle benötigt.

Besucher ist fachlich, wird im Besucherportal benutzt.

Wir ziehen das nicht so konsequent durch, insbesondere
machen wir nichts wirklich mit dem Benutzer. Wir
verwenden ihn nur für Login und die ID an den Tickets.

BenutzerEntity

Besucher

7 Modulith-1 Equals by content Equals-Check ohne Version

8 Modulith-1 Version in den Entitäten (auch
model, später TOs)

Implementierung von Optimistic Locking

9 Alle Good Practice: Architekturtests
für Soll-Architektur vorab
schreiben (nein, nicht alle,
aber... vorab)

(ATDD = Architecture Test
Driven Design)

So überlegt man sich vorab, wie die Architektur aussehen
soll und sieht regelmäßig, wo man steht

10 Modulith-2,
Distributed

Im besucherportal und
ticketing nur noch besucherId
anstelle des vollständigen
Benutzers benutzen

Vorführung hat kein Kontingent
mehr, dafür hat Kontingent nun
die VorführungsId.

Ticket hat nur noch die IDs von
Film, Vorführung, Besucher
anstatt der vollständigen Entität.

Abhängigkeiten im Datenmodell lösen gemäß den
fachlichen Komponenten:

Abhängigkeiten nur noch über die ID (Fremdschlüssel),
nicht mehr als Relation auf die vollständige Entität.

11 Alle Tests müssen die
Architekturtests nicht bestehen.

Viele integrative Tests Per selbstgeschriebener Annotation (in allen Projekten identisch): DoNotCheckIn
ArchitectureTests

Man kann in ArchUnit auch per Importer Testklassen ausschließen.

12 Modulith-2,
Distributed

Security, onion haben keine
Onionarchitektur und müssen
auch keine haben

Primär, weil weitgehend Implementierung von
SpringSecurity-Klassen, damit ist die Struktur vorgegeben.

z.B. in Modulith2: security

13 Alle (Spring-)Context in alle
Testklassen isolieren

Sonst gibt's durcheinander, auch auf der Datenbank Mit Annotation

@DirtiesContext(classMode = . .DirtiesContext ClassMode BEFORE_
)CLASS

14 Alle Bidirektionale Beziehung Kino
KinoSaal: @JsonIgnore im Kino
im KinoSaal (Alles, was
serialisiert wird - TOs oder
Domänenobjekte oder - im
Monolith - Entitäten)

Bidirektionale Beziehungen
(Kino KinoSaal) sind echt

anstrengend

Sonst gibt es eine Endlosschleife. Wir haben uns für Kino
im KinoSaal entschieden (da Kino die abhängige Entität
ist)

15 Alle Tests und damit
Testverzeichnisse aufgeteilt
nach

Architekturtests
Testdaten-Cleaner und -Loader
"echten" Tests der Anwendung

Sind verschiedene Kategorien von Tests, das will man
weit oben unterscheiden.

Die TestDataLoader sind eigentlich nur aus Convenience
als Tests geschrieben - so kann man sie ganz einfach
starten.

16 Distributed (Fast) alle Tests nach distributed-
test-integrated verschoben.

Sehr viele integrierte Tests. Es lohnt sich nicht, kleinteilig
nach Tests in nur den einzelnen Anwendungen zu suchen.

https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-1-onion/src/main/java/de/accso/flexinale/infrastructure/security/BenutzerEntity.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-1-onion/src/main/java/de/accso/flexinale/core/domain/model/Besucher.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-2-components/src/test/java/de/accso/flexinale/shared_code_for_test/DoNotCheckInArchitectureTests.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-2-components/src/test/java/de/accso/flexinale/shared_code_for_test/DoNotCheckInArchitectureTests.java
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-modulith-2-components/src/main/java/de/accso/flexinale/security

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

27 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.

2.

3.

a.

b.

1.
2.

1.
2.
3.
4.

5.

1.
2.
3.

17 Distributed EventBus und Events sind
designed und implementiert:

Bus gibt es InMemory
(synchron) und via Kafka
(asynchron)
Bus ist event-typisiert,
über einen Bus kommt
immer nur ein Typ von
Events (bei Kafka also in
1 Topic nur ein Event-Typ)
Event-Interface und
AbstractEvent als
Vorgaben, haben auch

ID, Context mit
Historie und
Correlation-ID.
Tests sichern ab, dass
die Events die richtige
Struktur haben (z.B.
Version, Default-
Konstruktor), damit
auch Serialisierung
per Jackson
funktioniert.

Subscriber und Publisher
empfangen/senden Events.

18 Distributed Die Retriever aus Modulith-2
werden zu Consumern und der
Kontrollfluss dreht sich von Pull
nach Push.

19 Distributed InMemoryCache implementiert Zur Benutzung überall, wo nicht-eigene Daten abgelegt
werden sollen, z.B. im Besucherportal für alle Daten
FKKsV.

20 Distributed KafkaConsumerAdapter und
KafkaProducerAdapter als
eigene Implementierung erstellt,
nicht per Spring @Listener,...
Annotation

Nur so können wir selber die Topic-Namen vergeben. KafkaConsumerAdapter

KafkaProducerAdapter

21 Alle @Transactional an allen Rest-
oder Web-Controllern gesetzt,
wo es Änderungen gibt (POST).

22 Distributed VorfuehrungSubscriber
idempotent machen, so dass
dieser mit mehreren
VorfuehrungCreatedEvents für
die gleiche Vorfuehrung
umgehen kann (Folge-Created-
Events werden erkannt und
ignoriert)

VorfuehrungSubscriber

23 Distributed Error Handling in Kafka
Consumers: DeadLetterTopic
(DLT)

KafkaConsumerErrorHandler

24 Distributed KinoId im VorfuehrungTO
ergänzt.

Serialisierungsproblem, bzw. Problem der bidirektionalen
Relation. Bei der Kino KinoSaal-Relation muss an einer
Seite ein @JsonIgnore stehen, sonst gibt es eine
Endlosschleife. Diese steht am Jino des KinoSaals.

VorfuehrungTO

KinoSaalTO

25 Distributed Behandlung Doppelzustellung
eines GutscheinEinloesen-
Events

Auch Gutschein einlösen muss idempotent sein GutscheinEinloesenBeauftragtSubscriber

26 Distributed @ für PostContructs
Backofficeund Ticketing:
Publizieren ihren gesamten
Datenbankinhalt

(Besucherportal hat keine
Daten, die andere interessieren)

Restart von Anwendungen; Kafka "Read from Beginning"
ist nicht implementiert.

BootstrappingPostConstructBackoffice
BootstrappingPostConstructTicketing

27 Monolith /
Modulith-1 /
Modulith-2

Gutschein einlösen:
Rückmeldung im
Besucherportal, ob der
Ticketkauf erfolgreich war

28 Distributed Gutschein einlösen: Meldung
"Ticketkauf beauftragt".

(Rückmeldung, wenn er
fehlschlug wegen Kontingent
ausgeschöpft, nicht
implementiert)

... da asynchron.

29 Distributed,
Modulith-2

Film als vollwertiges TO im
VorfuehrungTO (war vorher nur
filmId)

Genauso behandeln wie KinoSaal. VorfuehrungTO in Modulith-2

VorfuehrungTO in Distributed

30 Alle Monolith / Modulith-1 / Modulith-
2 / Distributed sind an -Header
Farben unterscheidbar

Hilft beim Erkennen, wo man gerade ist.

31 Distributed Verschieden Profiles eingeführt:

test-integrated
test-distributed
testdata
configtest

1) Erzeugen des passenden Event-Busses (bzw. der -
Factory):

Keines der Profile: KafkaAsyncEventBus
test-integrated: InMemorySyncEventBusSpy
testdata, configtest, configtest: NopeEventBus

FlexinaleCommonSpringFactory

FlexinaleDistributedApplicationBesucherportal, FlexinaleDistributedApplicationBa
, versus ckoffice FlexinaleDistributedApplicationTicketing FlexinaleDistributedAppl

icationTestIntegrated

BootstrappingPostConstructBackoffice

https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/KafkaConsumerAdapter.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/KafkaProducerAdapter.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing/src/main/java/de/accso/flexinale/ticketing/core/application/event/VorfuehrungSubscriber.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/KafkaConsumerErrorHandler.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-stammdaten_apicontract/src/main/java/de/accso/flexinale/stammdaten/apicontract/event/model/VorfuehrungTO.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-stammdaten_apicontract/src/main/java/de/accso/flexinale/stammdaten/apicontract/event/model/KinoSaalTO.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing/src/main/java/de/accso/flexinale/ticketing/core/application/event/GutscheinEinloesenBeauftragtSubscriber.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-backoffice/src/main/java/de/accso/flexinale/backoffice/infrastructure/BootstrappingPostConstructBackoffice.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing/src/main/java/de/accso/flexinale/ticketing/infrastructure/BootstrappingPostConstructTicketing.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-2-components/src/main/java/de/accso/flexinale/stammdaten_apicontract/apicontract/model/VorfuehrungTO.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-stammdaten_apicontract/src/main/java/de/accso/flexinale/stammdaten/apicontract/event/model/VorfuehrungTO.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/FlexinaleCommonSpringFactory.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-besucherportal/src/main/java/de/accso/flexinale/FlexinaleDistributedApplicationBesucherportal.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-backoffice/src/main/java/de/accso/flexinale/FlexinaleDistributedApplicationBackoffice.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-backoffice/src/main/java/de/accso/flexinale/FlexinaleDistributedApplicationBackoffice.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing/src/main/java/de/accso/flexinale/FlexinaleDistributedApplicationTicketing.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-test-integrated/src/test/java/de/accso/flexinale/FlexinaleDistributedApplicationTestIntegrated.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-test-integrated/src/test/java/de/accso/flexinale/FlexinaleDistributedApplicationTestIntegrated.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-backoffice/src/main/java/de/accso/flexinale/backoffice/infrastructure/BootstrappingPostConstructBackoffice.java

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

28 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

5.
6.

1.

2.

1.
2.

1.
2.

1.

2.

3.

4.

1.

2.
3.

4.

smoketest
local

2) Passende SpringBootApplication auswählen -
Unterscheidung, ob die drei Applications separat laufen
oder integriert als eine einzige Anwendung

3) PostConstruct wird nicht in den integrierten Tests
aufgerufen und nicht beim Erstellen der Testdaten.

BootstrappingPostConstructTicketing

(Besucherportal hat kein PostConstruct)

32 Distributed Alle Spring Factories: Die
creates mit Präfix für Application
versehen

Um in den integrated-Tests alles zusammen als eine
einzige Anwendung starten zu können, brauchen alle
Spring-Beans (hier: mit @Bean annotierte Methoden)
unterschiedliche Namen.

FlexinaleBesucherPortalSpringFactory

FlexinaleBackofficeSpringFactory

FlexinaleTicketingSpringFactory

33 Distributed Update der Daten Film, Kino /
Kinosaal, Vorfuehrung möglich:
Wenn F/K/Ks/V bereits
vorhanden, Update.

VorfuehrungUpdatedEvents
werden nicht nur für die direkt
betroffenen Entitäten publiziert,
sondern auch für die indirekt
betroffenen Vorfuehrungen.

NUR in Distributed umgesetzt!
(in MMM weiterhin nur ADD
möglich!)

Beispiel für Änderungen an DatenF/K/Ks/V und Umgang
mit deren fachlich abhängigen Daten

Backoffice. Insbesondere:

FilmRestController, Methode publishFilmsAndVorfuehrungen

KinoKinoSaalRestController, Methode publishKinosAndVorfuehrungen

34 Distributed Tickets ungültig machen, wenn
sich eine Vorführung ändert
(direkt oder indirekt - also auch,
wenn sich am Film oder dem
KinoSaal in der Vorführung
etwas ändert).

Geänderte Vorführung im
Ticketing:

Tickets für diese
Vorführung ungültig
machen (+ publishen)
Online-Kontingent
zurücksetzen für diese
Vorführung.

Ungültige Tickets im
besucherportal handhaben:

Anzeige ungültiger Tickets
Nur gültige Tickets sind
relevant beim Berechnen
überlappender
Vorführungen oder
"Ticket bereits
vorhanden".

Fachlich sehr einfacher Umgang mit sich ändernden
Vorführungen

Etliche Stellen im Besucherportal, Ticketing

35 Modulith-1,
Modulith-2,
Distributed

Unterscheide die
unterschiedlichen Arten von api:

apicontract
eingehende api (web,
rest, retriever)

Siehe auch unten bei Nr. #45
(Trennung dort von und api_in
api_out

Abhängigkeiten sortieren: Welche apiX darf welche apiY
aufrufen.

Regeln s. Architekturtests in jeder Anwendung:

Architekturtests Modulith 1

Architekturtests Modulith 2

Architekturtests distributed

36 Distributed Actuator-Endpunkte erstellt Fachliches und technisches Monitoring. http-Request jeweils abgelegt in den drei Applications

besucherportal

backoffice

ticketing

37 Distributed PredecessorEventContext,
insbes. Correlation ID, bei
Eventketten weitergeben.

Events, die Teil einer
Eventkette sind, haben
ein
PredecessorEventContext
, die anderen nicht.
Der EventContext wird
beim Aufrufen der
Subscriber gesetzt und
anschließend removed.
Beim Publish wird der
Predecessor aus dem
EventContext geholt und
gesetzt (wenn vorhanden)
Implement ist der
EventContextHolder über
ThreadLocal

Damit wir Eventketten identifizieren können TicketGekauftEvent mit PredecessorEventContext, GutscheinEinloesenB
 dagegen ohne, da Beginn einer Eventkette.eauftragtEvent

Befüllen des EventContext:
Auslesen und Setzen des Predecessors (insbes. Correlation ID) aus dem
EventContextHolder: , beide publish-Methoden.TicketPublisher
Interface , ImplementierungEventContextHolder

38 Distributed Die (fachlichen) Tests der korrekten Behandlung

https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing/src/main/java/de/accso/flexinale/ticketing/infrastructure/BootstrappingPostConstructTicketing.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-besucherportal/src/main/java/de/accso/flexinale/besucherportal/infrastructure/FlexinaleBesucherPortalSpringFactory.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-backoffice/src/main/java/de/accso/flexinale/backoffice/infrastructure/FlexinaleBAckofficeSpringFactory.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing/src/main/java/de/accso/flexinale/ticketing/infrastructure/FlexinaleTicketingSpringFactory.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-backoffice/src/main/java/de/accso/flexinale/backoffice/api/rest/FilmRestController.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-backoffice/src/main/java/de/accso/flexinale/backoffice/api/rest/KinoKinoSaalRestController.java
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-modulith-1-onion/src/test/java/architecturetests
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-modulith-2-components/src/test/java/architecturetests
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-distributed/flexinale-distributed-test-architecture
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-distributed/flexinale-distributed-besucherportal/src/test/curl
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-distributed/flexinale-distributed-backoffice/src/test/curl
https://github.com/accso/flex-training-flexinale/tree/main/flexinale-distributed/flexinale-distributed-ticketing/src/test/curl
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing_apicontract/src/main/java/de/accso/flexinale/ticketing/apicontract/event/TicketGekauftEvent.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing_apicontract/src/main/java/de/accso/flexinale/ticketing/apicontract/event/GutscheinEinloesenBeauftragtEvent.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing_apicontract/src/main/java/de/accso/flexinale/ticketing/apicontract/event/GutscheinEinloesenBeauftragtEvent.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-ticketing/src/main/java/de/accso/flexinale/ticketing/core/application/event/TicketPublisher.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/core/application/eventbus/EventContextHolder.java

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

29 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.
2.

1.

2.

1.

2.
3.

1.

2.

3.

1.

2.

3.

Korrekte Behandlung von
PredecessorEventContext /
Correlation ID für synchronen
Event Bus: Dazu eigene
Implementierung des
EventContextHolder für den
synchronen Fall. Zähler, wie oft
er gesetzt wurde.

Hinweis: Diese Implementierung
funktioniert, wenn es zu einer
Zeit nur maximal einen
EventContext gibt. Für mehrere
wäre ein Stack nötig.

Der passende
EventContextHolder (synchron /
asynchron) wird im jeweiligen
Eventbus gesetzt.

Correlation ID sollen synchron ausführbar sein. Implementierung des Interface durch EventContextHolder InMemorySyncEventC
.ontextHolder

Eventbusse mit jeweils passendem EventContextHolder:

KafkaAsyncEventBus
InMemorySyncEventBus

39 Distributed Erlaube Registrierung
ungetypter "Generic"
Eventsubscriber, um alle Events
zu erhalten.

z.B. für ein Auditlog, das sämtliche Events loggen soll.

40 Distributed Kafka-Konfiguration: Consumer
auf "earliest" umgestellt (aber
siehe auch unten bei #43)

Kein ID-Suffix mehr in
Consumer Groups bei
Subscription an Topics

Dadurch lesen

bei erstmaliger subscription die Consumer alle
Events im Topic (es existiert noch kein Offset)
bei erneuter subscription die Events seit dem
letzten Lesen.

Die Anwendungen müssen nun nicht mehr in einer
bestimmten Reihenfolge gestartet werden.

Änderung in KafkaConfiguration.java

41 Alle Docker-Build-Files + Skripte für
Flexinale erstellt

Die Flexinale selbst kann nun "dockerisiert" werden.
Außerdem gibt es dazu build-Skripte und Compose-
Skripte zum Starten.

 In Distributed funktioniert leider das Compose nicht.
Die Flexnale-Applikationen finden Kafka nicht. Problem
unklar.

In den jeweiligen infrastructure-Verzeichnissen auf oberster Ebene der
Varianten, bzw. in distributed in den Applikations-Projekten für Besucherportal /
Backoffice / Ticketing

42 Modulith-1,
Modulith-2 und
Distributed

Typisierte Attribute,
insbesondere für Version und Id

Attribute sind nun typisiert. Statt "Roh"-Typen wie Integer
und String werden nun explizite Typen benutzt:

Diese Typen sind Records und Teil der
"umgebenden Klasse", also nicht in separaten
Dateien.
Id ist ein Record des Interfaces Identifiable
Version ist ein Record des Interfaces Versionable

Einschränkungen:

In den Persistenz-Klassen wurden bewusst die
Roh-Typen weiter benutzt, da man sonst das
Hibernate-Mapping hätte erweitern müssen.
Typisierte Attribute werden daher benutzt in:
Domain-Klassen, TO-Klassen, Event-Klassen
Daher wurden insbesondere umgestellt: Modulith-
1, Modulith-2 und Distributed.

Es gibt dazu nun Architekturtests, die auf die Typisierung
der Attribute prüfen, z.B. "Wird in einer Domain-Klasse
eine ID-Klasse benutzt anstelle eines Strings?"

Beispiel: Domain-Klasse in Modulith-2Film

public class Film
 implements Identifiable, Versionable, EqualsByContent {

 public record Titel(String raw) implements
RawWrapper<String> {}
 public record ImdbUrl(String raw) implements
RawWrapper<String> {}
 public record DauerInMinuten(Integer raw) implements
RawWrapper<Integer> {}

 public final Id id;
 public final Version version;
 public Titel titel;
 public ImdbUrl imdbUrl;
 public DauerInMinuten dauerInMinuten;

Architekturtest in Modulith-2: , , Für Domain-Klassen für Entity-Klassen für TO-
Klassen

43 Distributed Kafka-Konfiguration: Consumer
sind nun in Consumer-Gruppen
und geben an, wie sie bei Start
lesen wollen

Löst diese Probleme:

Consumergroup in Kafka
hatte die technische
Adapter-Klasse "KafkaCon
sumerAdapter" im Namen
der ConsumerGroup
Ohne UUID-Suffix in der
Consumer-Group hiessen
haben Subscriber in
Besucherportal und
Ticketing gleich nur einer
erhält Stammdaten
Mit UUID-Suffix werden
nach Restart /
Wiederanlauf (weil
"earliest") alle
Bewegdaten (z.B.
GutscheinEinloesen-
Aufträge) nochmal
verarbeitet.

 Man muss also explizit
unterscheiden, welchen Typ der
Subscriber hat und wie er mit
den Daten in einem Topic (als
Stammdaten (i.d.R. immer alles
neu einlesen) oder als

Wird Kafka als verteilter, asynchroner Bus benutzt, so gibt
nun jeder Subscriber an:

1) In welcher Gruppe bin ich? Als Gruppen sind aktuell
die Application-Namen ("besucherportal", "ticketing", ...)
fest vorgegeben. Zum Beispiel sind alle Subscriber im
Besucherportal in einer Gruppe.

2) Wie soll das Startverhalten für die Subscription
aussehen? Möglich sind eine der folgenden drei
Optionen:

// (re)read all messages from the EventBus
// from the very beginning (i.e. from
offset 0)
// In Kafka this is -
// for a new ConsumerGroup - "earliest".
START_READING_FROM_BEGINNING,

// read all messages from now on (so don't
// (re)read anything published before now)
// In Kafka this is -
// for a new ConsumerGroup - "latest".
START_READING_FROM_NOW,

// read all messages from the EventBus,
// starting where we left off last time
// (so last offset we had + 1)
// (if we had not connected before at all:
start
// from beginning, i.e. from offset 0)
// In Kafka this is - for a known
ConsumerGroup -
// the default.
START_READING_FROM_LAST_TIME

EventSubscriptionAtStart

Methode consumerConfig() in KafkaConfiguration

 undInMemorySyncEventBus InMemorySyncEventBusSpy

Verteilmechanismus: Selection

https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/core/application/eventbus/EventContextHolder.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/InMemorySyncEventContextHolder.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/InMemorySyncEventContextHolder.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/KafkaAsyncEventBus.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/InMemorySyncEventBus.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/KafkaConfiguration.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-2-components/src/main/java/de/accso/flexinale/backoffice/core/domain/model/Film.java
http://InternalStructureOfDomainClassesUsingCorrectInterfacesAndAttributeTypesTest
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-2-components/src/test/java/architecturetests/InternalStructureOfEntityClassesUsingCorrectInterfacesAndAttributeTypesTest.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-2-components/src/test/java/architecturetests/InternalStructureOfTOClassesUsingCorrectInterfacesAndAttributeTypesTest.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-modulith-2-components/src/test/java/architecturetests/InternalStructureOfTOClassesUsingCorrectInterfacesAndAttributeTypesTest.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/core/application/eventbus/EventSubscriptionAtStart.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/KafkaConfiguration.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/InMemorySyncEventBus.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/infrastructure/eventbus/InMemorySyncEventBusSpy.java
https://github.com/accso/flex-training-flexinale/blob/main/flexinale-distributed/flexinale-distributed-common/src/main/java/de/accso/flexinale/common/shared_kernel/Selection.java

iSAQB Advanced-Level Schulung "FLEX - Flexible Architekturmodelle"

30 Version 2024.3, erstellt von Martin Lehmann und Dr. Kristine Schaal, Accso GmbH, alle Nutzungsrechte vorbehalten

1.
2.
3.

1.

2.

3.

1.

a.

b.

2.

3.

1.

2.

3.

4.

5.

1.

Bewegdaten (i.d.R. nur die
neuesten Daten neu einlesen)
umgehen soll.

Wegen Problem 2. hatten wir
zwischenzeitlich mal Änderung
#40 (UUID-Suffix, earliest)
reaktiviert, aber damit andere
Probleme, siehe oben.

Die InMemory-Bus-Variante berücksichtigt ebenfalls das
Startverhalten und die Consumergruppen. Anders als
vorher bekommen also alle Subscriber auf nicht mehr
einen Event-Typ ein Event als Broadcast zugeschickt,
falls sie in der gleichen Gruppe sind (dabei sind
unterschiedliche Verteilalgorithmen möglich, i.d.R. ist
"RoundRobin" sinnvoll, sprich nur ein Subscriber in der
Gruppe bekommt die Nachricht, danach der nächste etc.).

Damit unterscheidet sich die InMemory-Variante von
Kafka nur noch:

Kafka ist asynchron - InMemory ist synchron
Kafka hat Partitionen - InMemory nicht
Kafka macht automatische Verteilung der
Consumer über Partitionen - InMemory macht das
über den eingestellten Verteilmechanismus
("Selection")

44 Distributed Datenbank-Schemata aufgeteilt Jeder Service hat nun sein eigenes Datenbank-Schema
(weiterhin jedoch in der gleichen Infrastruktur: Es gibt
weiterhin nur eine Postgres-DB):

besucherportal: distributed-besucherportal: Enthält
die Benutzer-Tabelle (für A&A)
backoffice: distributed-backoffice: Enthällt die
Benutzer-Tabelle (für A&A), sowie Film, Kino,
Kinosaal, Vorfuehrung
ticketing: distributed-ticketing: Enthält die Tabellen
Kontingent und Ticket.

Für die integrierten tests (test-integrated) gibt es ein
weiteres Schema, das alle tabellen enthält: distributed-
test.

Die Testdata-Loader wurden ebenfalls entsprechend
angepasst

45 Modulith-1,
Modulith-2 und
Distributed

Onion-Refactoring Wir haben die Onion-Struktur in M1, M2 und D korrigiert
und i.W. restriktiver gemacht:

Ringe darf man nicht mehr überspringen

Insbesondere dürfen noch domain.services
von genutzt werden (nicht mehr application
aus).api
Das Domain-Model darf aber weiterhin auch
von api rein lesend genutzt werden (daher dort
nun alle Klassen immutable, dazu Änderungen
an).Kontingent

Die Transaktionskontrolle liegt ausschließlich in ap
. plication

api nach "in" und "out" getrennt: In "in" sind Rest-
und Web-Controller sowie die Event-Subscriber. In
"out" sind die Event-Publisher.

Dazu

Architekturtests angepasst (bei der Gelegenheit
auch geändert: Nur noch eine ausgehende
Richtung der Abhängigkeiten sind modelliert / wird
geprüft, bisher waren das redundant die
ausgehenden die eingehenden und
Abhängigkeiten).
Neue Services in erstellt. Diese application
sind nun mit -annotiert.@Transactional
In Distributed: Event-Nutz/Metadaten werden (wie
bisher) in aufbereitet, dem application
Publisher übergeben (der aber nun ein Interface
implementiert, das in liegt ähnlich application
Dao-Interface und Implementierung in persisten

.ce
 umbenannt in apicontract api_contract

(analog zu und)api_in api_out
 abgeschafft, und core application domain

liegen "eins höher"

Bewusst nicht gemacht:

Logging nur in Application erlauben. (Das wäre
sehr aufwendig; außerdem ist es auch in API und
ggf. in Domain mal sinnvoll zu loggen)

	Kapitel 7 Case Study Flexinale

